‘Cambridge Moralica’ - Towards an Ethical Framework for Social Media Analytics


  • Anna-Katharina Jung University of Duisburg-Essen
  • Sünje Clausen University of Duisburg-Essen
  • Aline Shatki Franzke University of Duisburg-Essen
  • Julian Marx University of Duisburg-Essen




social media analytics, research ethics, design science research


En route to the unravelling of today’s multiplicity of societal challenges, making sense of social data has become a crucial endeavour in Information Systems (IS) research. In this context, Social Media Analytics (SMA) has evolved to a promising field of data-driven approaches, guiding researchers in the process of collecting, analysing, and visualising social media data. However, the handling of such sensitive data requires careful ethical considerations to protect data subjects, online communities, and researchers. Hitherto, the field lacks consensus on how to safeguard ethical conduct throughout the research process. To address this shortcoming, this study proposes an extended version of a SMA framework by incorporating ethical reflection phases as an addition to methodical steps. Following a design science approach, existing ethics guidelines and expert interviews with SMA researchers and ethicists serve as the basis for redesigning the framework. It was eventually assessed through multiple rounds of evaluation in the form of focus group discussions and questionnaires with ethics board members and SMA experts. The extended framework, encompassing a total of five iterative ethical reflection phases, provides simplified ethical guidance for SMA researchers and facilitates the ethical self-examination of research projects involving social media data.


Abbasi, A., Sarker, S., & Chiang, R. (2016). Big Data Research in Information Systems: Toward an Inclusive Research Agenda. Journal of the Association for Information Systems, 17(2), I–XXXII. https://doi.org/10.17705/1jais.00423

ACM. (2018). ACM Code of Ethics and Professional Conduct. Retrieved June 18, 2020, from https://www.acm.org/code-of-ethics

Adjerid, I., Peer, E., & Acquisti, A. (2018). Beyond the Privacy Paradox: Objective Versus Relative Risk in Privacy Decision Making. MIS Quarterly, 42(2), 465–488. https://doi.org/10.25300/MISQ/2018/14316

AIS. (2014). Code of Research Conduct. Retrieved June 17, 2020, from https://aisnet.org/page/AdmBullCResearchCond?&hhsearchterms=%22code%22

Anstead, N., & O’Loughlin, B. (2015). Social media analysis and public opinion: The 2010 UK general election. Journal of Computer-Mediated Communication, 20(2), 204–220. https://doi.org/10.1111/jcc4.12102

Beauchamp, T. L. (2008). The Nature of Applied Ethics. In R. G. Frey & C. H. Wellman (Eds.), A Companion to Applied Ethics (pp. 1–14). Wiley. Retrieved from https://books.google.de/books?id=Qws8gf4f4iUC

boyd, danah, & Crawford, K. (2012). Critical Questions For Big Data. Information, Communication & Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878

Bruns, A. (2019). After the ‘APIcalypse’: social media platforms and their fight against critical scholarly research. Information, Communication & Society, 22(11), 1544–1566. https://doi.org/10.1080/1369118X.2019.1637447

Burton-Jones, A. (2009). Minimizing Method Bias through Programmatic Research. MIS Quarterly, 33(3), 445–471.

Chen, H., Zheng, Z. E., & Ceran, Y. (2016). De-Biasing the Reporting Bias in Social Media Analytics. Production and Operations Management, 25(5), 849–865. https://doi.org/10.1111/poms.12509

Cruz-Jesus, F., Vicente, M. R., Bacao, F., & Oliveira, T. (2016). The education-related digital divide: An analysis for the EU-28. Computers in Human Behavior, 56, 72–82. https://doi.org/10.1016/j.chb.2015.11.027

d’Aquin, M., Troullinou, P., O’Connor, N. E., Cullen, A., Faller, G., & Holden, L. (2018). Towards an “Ethics by Design” Methodology for AI Research Projects. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 54–59). New York, NY, USA: ACM. https://doi.org/10.1145/3278721.3278765

Dawson, A., Lignou, S., Siriwardhana, C., & O’Mathúna, D. P. (2019). Why research ethics should add retrospective review. BMC Medical Ethics, 20(1), 68. https://doi.org/10.1186/s12910-019-0399-1

Eke, C. I., Norman, A. A., Liyana Shuib, & Nweke, H. F. (2020). Sarcasm identification in textual data: systematic review, research challenges and open directions. Artificial Intelligence Review, 53(6), 4215–4258. https://doi.org/10.1007/s10462-019-09791-8

Ess, C. (2005). “Lost in Translation”?: Intercultural Dialogues on Privacy and Information Ethics (Introduction to Special Issue on Privacy and Data Privacy Protection in Asia). Ethics and Information Technology, 7(1), 1–6. https://doi.org/10.1007/s10676-005-0454-0

Ess, C., & Association of Internet Researchers. (2002). Ethical decision-making and Internet research: Recommendations from the aoir ethics working committee. Retrieved September 21, 2020, from https://aoir.org/reports/ethics.pdf

European Commission. (2018). Ethics in Social Science and Humanities. Retrieved September 21, 2020, from https://ec.europa.eu/research/participants/data/ref/h2020/other/hi/


European Parliament and European Council. (2018). REGULATION (EU) 2016/679 / General Data Protection Regulation. Retrieved September 18, 2020, from https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1532348683434&uri=CELEX:02016R0679-20160504

Franzke, A. S., Bechmann, A., Zimmer, M., Ess, C., & Association of Internet Researchers. (2020). Internet Research: Ethical Guidelines 3.0. Retrieved September 21, 2020, from https://aoir.org/reports/ethics3.pdf

Grieves, G. (2019). Just tick the box. In The Meeting of Aesthetics and Ethics in the Academy (pp. 101–109). Routledge. https://doi.org/10.4324/9780429197321-8

Günther, W. A., Rezazade Mehrizi, M. H., Huysman, M., & Feldberg, F. (2017). Debating big data: A literature review on realizing value from big data. Journal of Strategic Information Systems, 26(3), 191–209. https://doi.org/10.1016/j.jsis.2017.07.003

Guri-Rosenblit, S. (2015). Internationalization of Higher Education: Navigating Between Contrasting Trends. In A. Curaj, L. Matei, R. Pricopie, J. Salmi, & P. Scott (Eds.), The European Higher Education Area: Between Critical Reflections and Future Policies (pp. 13–26). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-20877-0_2

Hagendorff, T. (2020). The Ethics of AI Ethics: An Evaluation of Guidelines. Minds and Machines, 30(1), 99–120. https://doi.org/10.1007/s11023-020-09517-8

Hevner, A. R. (2007). A Three Cycle View of Design Science Research. Scandinavian Journal of Information Systems, 19(2), 87–92.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems Research. MIS Quarterly, 28(1), 75-105. https://doi.org/10.2307/25148625

Hongladarom, S. (2017). Internet Research Ethics for the Social Age. (M. Zimmer & K. Kinder-Kurlanda, Eds.), Internet Research Ethics In A Non-Western Context. Peter Lang US. https://doi.org/10.3726/b11077

IEEE. (2020). IEEE Code of Ethics. Retrieved June 17, 2020, from https://www.computer.org/education/code-of-ethics

Jimenez-Marquez, J. L., Gonzalez-Carrasco, I., Lopez-Cuadrado, J. L., & Ruiz-Mezcua, B. (2019). Towards a big data framework for analyzing social media content. International Journal of Information Management, 44, 1–12. https://doi.org/10.1016/


Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2

Johnson, G. M. (2020). Algorithmic bias: on the implicit biases of social technology. Synthese. https://doi.org/10.1007/s11229-020-02696-y

Jouhki, J., Lauk, E., Penttinen, M., Sormanen, N., & Uskali, T. (2016). Facebook’s Emotional Contagion Experiment as a Challenge to Research Ethics. Media and Communication, 4(4), 75–85. https://doi.org/10.17645/mac.v4i4.579

Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003

Kekes, J. (1986). Moral Intuition. American Philosophical Quarterly, 23(1), 83–93.

Kuckartz, U. (2016). Qualitative Inhaltsanalyse: Methoden, Praxis, Computerunterstützung. (3rd ed.). Weinheim und Basel: Beltz Juventa.

Laacke, S., Mueller, R., Schomerus, G., & Salloch, S. (2021). Artificial Intelligence, Social Media and Depression. A New Concept of Health-Related Digital Autonomy. The American Journal of Bioethics, 21(7), 4–20. https://doi.org/10.1080/15265161.2020.1863515

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310

Lee, I. (2018). Social media analytics for enterprises: Typology, methods, and processes. Business Horizons, 61(2), 199–210. https://doi.org/10.1016/j.bushor.2017.11.002

Leurs, K. (2017). feminist data studies: using digital methods for ethical, reflexive and situated socio-cultural research. Feminist Review, 115(1), 130–154. https://doi.org/10.1057/s41305-017-0043-1

Lomborg, S., & Bechmann, A. (2014). Using APIs for Data Collection on Social Media. The Information Society, 30(4), 256–265. https://doi.org/10.1080/01972243.2014.915276

Marabelli, M., & Markus, M. L. (2017). Researching Big Data Research: Ethical Implications for IS Scholars. Retrieved from https://www.hhs.gov/ohrp/regulations-and-policy/


Markham, A., Buchanan, E., & Association of Internet Researchers. (2012). Ethical Decision-Making and InternetResearch:Recommendations from the AoIR Ethics Working Committee(Version 2.0). Retrieved September 21, 2020, from https://aoir.org/


Martin, K. (2019). Designing Ethical Algorithms. MIS Quarterly Executive, 18(2), 129–142. https://doi.org/10.17705/2msqe.00012

Mayring, P. (2014). Qualitative content analysis: theoretical foundation, basic procedures and software solution. Klagenfurt. Retrieved from https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173

Mirbabaie, M., Bunker, D., Stieglitz, S., Marx, J., & Ehnis, C. (2020). Social media in times of crisis: Learning from Hurricane Harvey for the coronavirus disease 2019 pandemic response. Journal of Information Technology, 35(3), 195–213. https://doi.org/10.1177/

Misirlis, N., & Vlachopoulou, M. (2018). Social media metrics and analytics in marketing – S3M: A mapping literature review. International Journal of Information Management, 38(1), 270–276. https://doi.org/10.1016/j.ijinfomgt.2017.10.005

Mittelstadt, B. (2017). From Individual to Group Privacy in Big Data Analytics. Philosophy & Technology, 30(4), 475–494. https://doi.org/10.1007/s13347-017-0253-7

Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature Machine Intelligence, 1(11), 501–507. https://doi.org/10.1038/s42256-019-0114-4

Mittelstadt, B., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 205395171667967. https://doi.org/10.1177/2053951716679679

Møller, L. A., & Bechmann, A. (2019). Research Data Exchange Solution. Retrieved from https://pure.au.dk/portal/files/177764165/Research_data_exchange_solution.pdf

Morgan, D. L. (1988). Focus Groups as Qualitative Research: An Expanded Sourcebook (Vol. 2). Thousand Oaks: SAGE Publications.

Nili, A., Tate, M., & Johnstone, D. (2017). A Framework and Approach for Analysis of Focus Group Data in Information Systems Research. Communications of the Association for Information Systems, 40, 1–21. https://doi.org/10.17705/1CAIS.04001

O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increas Inequality and Threatens Democracy. Broadway Books.

Ravn, S., Barnwell, A., & Barbosa Neves, B. (2019). What Is “Publicly Available Data”? Exploring Blurred Public–Private Boundaries and Ethical Practices Through a Case Study on Instagram. Journal of Empirical Research on Human Research Ethics, 15(1–2), 40–45. https://doi.org/10.1177/1556264619850736

Safari, B. A. (2016). Intangible Privacy RIghts: How Europe’s GDPR Will Set A New Global Standard For Personal Data Protection. Seton Hall L. Rev. 809, 47(809).

Stahl, B. C. (2012). Morality, Ethics, and Reflection: A Categorization of Normative IS Research. Journal of the Association for Information Systems, 13(8), 636-656.

Stahl, B. C. (2013). Responsible research and innovation: The role of privacy in an emerging framework. Science and Public Policy, 40(6), 708–716. https://doi.org/10.1093/scipol/sct067

Stahl, B. C., Timmermans, J., & Mittelstadt, B. (2016). The Ethics of Computing. ACM Computing Surveys, 48(4), 1–38. https://doi.org/10.1145/2871196

Statista. (2020). Number of active social media users worldwide. Retrieved September 16, 2020, from https://de.statista.com/statistik/daten/studie/739881/umfrage/monatlich-aktive-social-media-nutzer-weltweit/

Stieglitz, S., Dang-Xuan, L., Bruns, A., & Neuberger, C. (2014). Social Media Analytics. Business & Information Systems Engineering, 6(2), 89–96. https://doi.org/10.1007/s12599-014-0315-7

Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. (2018). Social media analytics – Challenges in topic discovery, data collection, and data preparation. International Journal of Information Management, 39(1), 156–168.

Stieglitz, S., Wilms, K., Mirbabaie, M., Hofeditz, L., Brenger, B., López, A., & Rehwald, S. (2020). When are researchers willing to share their data? – Impacts of values and uncertainty on open data in academia. PLOS ONE, 15(7), e0234172. https://doi.org/10.1371/journal.pone.0234172

Taylor, J., & Pagliari, C. (2018). Mining social media data: How are research sponsors and researchers addressing the ethical challenges? Research Ethics, 14(2), 1–39. https://doi.org/10.1177/1747016117738559

Tinati, R., Phillipe, O., Pope, C., Carr, L., & Halford, S. (2014). Challenging social media analytics. In Proceedings of the 2014 ACM conference on Web science - WebSci ’14 (pp. 177–181). New York, New York, USA: ACM Press. https://doi.org/10.1145/2615569.2615690

Tremblay, M. C., Hevner, A. R., & Berndt, D. J. (2010). Focus Groups for Artifact Refinement and Evaluation in Design Research. Communications of the Association for Information Systems, 26. https://doi.org/10.17705/1CAIS.02627

Twitter. (2020). Developer Agreement and Policy. Retrieved September 16, 2020, from https://developer.twitter.com/en/developer-terms/agreement-and-policy

Tye, M., Leong, C., Tan, F. T. C., Tan, B., & Khoo, Y. H. (2018). Social media for empowerment in social movements: The case of Malaysia’s grassroots activism. Communications of the Association for Information Systems, 42(1), 408–430. https://doi.org/10.17705/1CAIS.04215

van Schie, G., Westra, I., & Schäfer, M. T. (2017). Get your Hands Dirty: Emerging Data Practices as Challenge for Research Integrity. In M. T. Schäfer & K. Es, van (Eds.), The Datafied Society (pp. 183–200). Amsterdam University Press. https://doi.org/10.5117/9789462981362

Whitchurch, C. (2012). Expanding the parameters of academia. Higher Education, 64(1), 99–117. https://doi.org/10.1007/s10734-011-9483-2

Wiener, M., Saunders, C., Chatterjee, S., Dennis, A. R., Gregor, S., Mähring, M., & Mertens, P. (2018). Information Systems Research: Making an Impact in a Publish-or-Perish World. Communications of the Association for Information Systems, 43(1) 466–481. https://doi.org/10.17705/1CAIS.04326

Wiener, M., Saunders, C., & Marabelli, M. (2020). Big-data business models: A critical literature review and multiperspective research framework. Journal of Information Technology, 35(1), 66-91. https://doi.org/10.1177/0268396219896811

Williams, M. L., Burnap, P., & Sloan, L. (2017). Towards an Ethical Framework for Publishing Twitter Data in Social Research: Taking into Account Users’ Views, Online Context and Algorithmic Estimation. Sociology, 51(6), 1149–1168. https://doi.org/10.1177/

Zeng, D., Chen, H., Lusch, R., & Li, S. (2010). Social Media Analytics and Intelligence. IEEE Intelligent Systems, 25(6), 13–16. https://doi.org/10.1109/MIS.2010.151

Zook, M., Barocas, S., boyd, d., Crawford, K., Keller, E., Gangadharan, S. P., Pasquale, F. (2017). Ten simple rules for responsible big data research. PLoS Computational Biology, 13(3), 1–10. https://doi.org/10.1371/journal.pcbi.1005399




How to Cite

Jung, A.-K., Clausen, S., Franzke, A. S., & Marx, J. (2022). ‘Cambridge Moralica’ - Towards an Ethical Framework for Social Media Analytics. Australasian Journal of Information Systems, 26. https://doi.org/10.3127/ajis.v26i0.3121



Research on Applied Ethics