
AJIS Volume 12 No. 2 May 2005

21

SOFTWARE DEVELOPMENT METHODS AND TOOLS:

A NEW ZEALAND STUDY

Chris Phillips, Elizabeth A. Kemp, Duncan Hedderley
Institute of Information Sciences and Technology

College of Sciences

Massey University
Palmerston North

Email: c.phillips@massey.ac.nz, e.kemp@massey.ac.nz, HedderleyD@crop.cri.nz

ABSTRACT

This study is a more detailed follow-up to a preliminary investigation of the practices of software

engineers in New Zealand. The focus of this study is on the methods and tools used by software
developers in their current organisation. The project involved detailed questionnaires being piloted and

sent out to several hundred software developers. A central part of the research involved the

identification of factors affecting the use and take-up of existing software development tools in the
workplace. The full spectrum of tools from fully integrated I-CASE tools to individual software

applications, such as drawing tools was investigated. This paper describes the project and presents the

findings.

Keywords: Software development methods, CASE tools, software engineers, New Zealand

INTRODUCTION

There are few studies that attempt to model the activities of software engineers. Singer et al. (1997)

commented on the paucity of studies in this area noting that little effort had been expended in

understanding how software engineers work. In regard to New Zealand, Groves et al. (2000) carried

out a survey of software requirement specification practices, but were primarily concerned with the

requirements gathering activity. They concluded that there was a wide range of types and

organisations engaged in software development. In addition many kinds of applications were being

built. Whilst this made it difficult to identify meaningful patterns from the data collected, some

tentative conclusions were put forward. The most significant factor when determining the practices

employed appeared to be the size of the software development group. Such groups tended to have

better defined development processes, spent more time on requirements capture and had more

rigorous testing regimes.

This study has a wider focus which includes the software development methods adopted, and the

tools and notations used to support these methods. A central part of the research has involved an

investigation to identify factors affecting the use and take-up of existing software development tools

in the workplace. The full spectrum of tools from fully integrated I-CASE tools to individual

software applications, such as drawing tools, has been investigated, with the purpose of determining

what tools are currently being used to support software development activities. The research has

been undertaken in two phases:

A preliminary study of the practices of software engineers in New Zealand. This involved a review

of relevant literature on software engineering and CASE tools, the development and testing of an

interview protocol, and structured interviews with five software engineers. Kemp, Phillips and Alam

(2003) describe this phase of the project, present an analysis of the data, and examine the results in

the context of the theory described in the literature. The results of this study will be summarised later

in this paper.

A follow-up study involving detailed questionnaires being piloted and sent out to several hundred

software developers in New Zealand. The focus of this study, which is being reported in this paper,

AJIS Volume 12 No. 2 May 2005

22

has been on the software development methods and tools used by each developer in their current

organisation. Specific information has been sought on the usefulness and take-up of tools, and on

how well I-CASE tools meet claimed benefits for this type of tool.

The goals of the research are improved software engineering processes and methods, better

computer-aided software engineering (CASE) tool support, and improved training of software

engineers. Close links have been established with major software development companies in New

Zealand, and part of the research has been conducted at selected sites.

This paper continues by briefly reviewing software development methods and CASE tools. The

main results from the preliminary study are then outlined. The research method adopted in this

study is next described, and the results presented in detail. Following a discussion of the results

some conclusions are drawn. The questionnaire used in the research is presented in full in the

Appendix.

SOFTWARE DEVELOPMENT METHODS

Those who write about the discipline of software engineering describe the lifecycle activities that

should be undertaken (Lending and Chervany, 1998; Pfleeger, 1998; Schach, 1999; Sharma and Rei,

2000; Pressman, 2001; Sommerville, 2001). Life cycle activities depend upon the software

development method followed such as the waterfall, data-centred, prototyping or evolutionary

approaches. At a practical level, the activities undertaken may vary depending upon the size and

nature of a given project. Tool support may also vary, as discussed in the next section. These

variables were explored through the questionnaire used in the research.

The traditional lifecycle or waterfall model is typically described in a sequential fashion moving

from stage to stage involving requirements specification, software design, coding and testing, each

requiring a set of deliverables (Sommerville, 2001). Iterations between phases are required

however, to enable revisions to be made whilst an application is under development. In the data

centred approach the focus is on the data rather than function and the specific method of entity

relationship modelling (Sallis et al., 1995).

Prototyping an application begins with some requirements gathering and moves on to the

development of some part of the system. It assumes that the customer can communicate their

requirements more effectively once there is something to look at (Yourdon, 1994). The developer

may undertake prototyping when there are no clearly stated requirements. It is also appropriate when

the developer has little experience of the application domain or of the tools and languages that will

be used to develop the system (Yourdon, 1994). The subsequent prototype can be discarded as in

throw away prototyping or retained as the basis for further development as in evolutionary or

incremental prototyping (Schach, 1999; Pressman, 2001). Problems can arise if the prototype is

taken to be a working version of the application.

There are other iterative and evolutionary approaches. Evolutionary in this context means that

increasingly complete versions of the software are developed (Pressman, 2001). One such is the

spiral model (Boehm, 1988), which uses prototyping to reduce risks as well as incorporating the

phases of the classic life cycle (Pressman, 2001). Another evolutionary approach involves

component-based development and is centred round the Object-Oriented approach. The Unified

Process (Jacobson et al., 1999) and Rational Unified Process (Kruchten, 1999) are examples of this.

Currently, there is also a move to using what are termed agile methods (Beck, 1999; Fowler, 2001).

Such methodologies “attempt a useful compromise between no process and too much process,

providing just enough process to gain a reasonable payoff.” (Fowler, 2001, p2). These

methodologies emphasise the frequent delivery of software, regular (daily) contact with the

customer, and minimising documentation.

AJIS Volume 12 No. 2 May 2005

23

Once a life cycle has been selected a software engineer has to make a decision about what notations

to use to model and document the system. These make it easier to understand a problem and shape a

solution (Robillard et al., 2003). A large number of notations are available including entity

relationship, data flow and data structure diagrams (Jordan and Machesky, 1990) and the nine

notations specified in the Unified Modelling Language: use case, class, sequence, collaboration,

activity, state, component, deployment and package diagrams (Booch et al., 1999). Robillard et al.

(2003) observe that gains in uniformity, reliability and productivity are made when notations are

consistent across the various phases of the lifecycle. It is important though that staff have tools to

support them and are trained in their use.

A further decision relates to the programming language (or languages) used to implement the

software. The choice of language will depend upon the nature of the system, and may be

constrained by company standards and by the range of tools available to support the language. Many

systems now incorporate the use of graphical user interfaces and the Web, which further extends the

range of possibilities. A wide range of programming support environments is available, including

integrated development environments (IDEs), 4GL workbenches, web development tools, and data

base management tools.

The level of training provided for development staff in methods and tools may impact their

effectiveness. A further issue is whether it is better for staff to learn tool use before, during or after

they learn the method. These issues will also be explored through the questionnaire.

CASE TOOLS

CASE tools are available which can assist software engineers carry out activities at all stages of the

lifecycle (Pressman, Somerville). At one end of the spectrum there are tools which support one

activity and at the other complete environments which support many lifecycle activities. These are

referred to as integrated CASE (ICASE) tools. A complete taxonomy is provided by Pressman

(Table 1). The benefits of CASE tools are said to include: a smooth transfer of information, greater

productivity, an increase of project control and improved co-ordination. There may though be an

initial decrease in productivity when CASE tools are introduced. There are also tools known as

metaCASE tools which allow you to specify your own CASE tool (Aldersen, 1991) This is to

enable a fit between the organisations’ development process and the tool.

Business process engineering Analysis and design

Process modelling and management PRO/SIM

Project planning Interface design and development

Risk analysis Prototyping

Project management Programming

Requirements tracing Web development

Metrics and management Integration and testing

Documentation Static analysis

System software Dynamic analysis

Quality assurance Test management

Database management Client/server testing

Software configuration management Re-engineering

Table 1: Classification of CASE tools (based on Pressman, 2001)

In a study by Sharma and Rei, which had a response rate of 23%, only one seventh (that is 46) of

AJIS Volume 12 No. 2 May 2005

24

those 350 who returned the questionnaire adopted CASE tools. Overall 60% of activities performed

by the departments surveyed were supported to some degree by CASE. There was a very high CASE

tool adoption rate for activities such as the representation of objects, relationships and processes

(95% of the respondents) with a much smaller proportion of adopters using CASE for testing and

validation purposes (39%). They found that as the size of the Information Systems department grew

larger, the proportion of adopters was almost twice as large as the non-adopters. In another study,

Gray et al. (2000) concluded that it was hard to provide evidence of productivity gains or increases

in the quality of the product from the use of CASE tools, and that further research into the practices

of software engineers was required in order that more usable tools might be provided. The research

being reported here represents a step along this road.

Organisational Issues Cost Jarzabeck & Huang, 1998

 Vendor support McChesney & Glass, 1993

 Training McChesney & Glass, 1993

 Use of appropriate life cycle Holt, 1997

 Compatability Misra, 1990

 Standards Iivari, 1996

Interface Ease of use Finnigan et al., 2000

 Ease of learning Lending & Chervany, 1998

 Ease of navigation Misra 1990

 Help and error messages Finnigan et al., 2000

 Reporting and feedback Finnigan et al., 2000

People Creativity McChesney & Glass, 1993

 Experience Orlikowski, 1993

 High expectations Aaen, 1994

 Autonomy Lending & Chervany, 1998

Functionality Smooth transition Lending & Chervany, 1998

 Complexity of features Lending & Chervany, 1998

 Supports multiple users Gray et al., 2000

 Supports RE Gray et al., 2000

 Customisation Misra, 1990

Table 2: Factors involved in CASE adoption

There is a large literature on the adoption of CASE tools which focuses on the factors that play a

role in whether they are accepted or not. Table 2 shows the main issues involved. These factors are

explored through the questionnaire.

Some key problems relating to the adoption of CASE tools are as follows:

1. Developers with considerable investment of time and experience of traditional

software development practices are more reluctant to use CASE tools than those with less

experience (Orlikowski, 1993).

2. People do not find CASE tools easy to use even when happy with the provision of

help, navigation facilities etc (Finnegan et al).

3. Users find notations and editors inadequate for their purpose, seeing them as an

obstacle (Gray et al., 2000).

4. Tools do not support problem solving and creativity (Jarzabeck & Huan, 1998).

5. Intrinsic motivation (tools are fun) and extrinsic motivation (tool is useful) are low

AJIS Volume 12 No. 2 May 2005

25

when using CASE tools (Lending and Chervany, 1998).

6. The complexity of CASE tools is seen as an obstacle to their use by developers

(Iivari, 1996, Gray et al. 2000). Lending and Chervany (1998) also found the use of

CASE tools to be time-consuming and difficult.

7. Training is not often seen as a worthwhile activity by IT managers (Schwarzkopf

et al 2004) who have limited budgets. Training is also seen having a limited shelf life

(Arnold and Niederman, 2001).

The above difficulties suggest that current CASE tools may not be providing claimed benefits. The

take-up of CASE tools, including ICASE, is one of the issues explored through the questionnaire

used in the study being reported in this paper.

PRELIMINARY STUDY

This earlier study (Kemp, Phillips and Alam, 2003) was a preliminary investigation of the practices

of software engineers within New Zealand, with particular reference to their use of development

tools. It was decided to employ a qualitative research approach using structured interviews, rather

than a quantitative method such as a questionnaire, because of the exploratory nature of the study

and the complex processes involved. Once the research objectives were determined, the relevant

literature on Software Engineering practice and the use of CASE tools was reviewed. This was used

as the basis for developing the interview protocol which was subsequently revised after testing it out

in a pilot interview. The focus was on determining the activities of the developer and other members

of the team on a current project. Five participants were selected, who it was anticipated, would

provide rich data about working as software engineers. All of them were required to be currently

developing software and using tools. It was also seen as important to cover different environments

rather than interview several developers from an organisation. The people selected were working on

quite different kinds of projects and for companies of different types and sizes.

Results

The companies studied varied in size from large to small and worked on projects of various kinds.

Project planning and management was undertaken by all the developers studied using appropriate

software. In 60% of cases this was Microsoft Project. Structured analysis and design, object

oriented analysis and design, prototyping and data-centred approaches were used by the developers

when building systems. In three cases there was a mix of software development methods used,

tailored to the requirements of the organization

In all of the organisations well-accepted notations were used on the projects described by the

developers to model the system: entity relationship, data flow diagrams, class diagrams, state charts

etc. Some but not all of these were used on any given project. Generally tools were used to draw

the diagrams and models but in one case some models were hand-drawn. Visio was used as a

drawing tool in three of the organisations.

CASE tools were provided for all the developers although only in one organisation was the use of all

tools made compulsory. All of the organisations used CASE tools for representation and analysis

purposes but they played a limited role with regard to testing. There were problems though moving

from one phase of the life cycle to another, that is integrating the relevant information. Because of

time pressures, training in the use of CASE/I-CASE tools was limited and they were not always used

to their full potential. All the developers noted problems for staff in coming to speed with the

functionality of the tools. Tools could be rejected if they did not seem to meet the perceived need. If

a suitable tool was not available then sometimes one was written in house that was tailored to the

AJIS Volume 12 No. 2 May 2005

26

company’s requirements, such as performance tracking software and a defect management tool .

With respect to CASE adoption only two of the firms had purchased an I-CASE tool (Rational

Rose). In neither case was it used to integrate models but more as a drawing tool. Cost, complexity

and other organisational issues such as introducing I-CASE when a team was under pressure to

develop systems were seen as obstacles to investment in this area. There was also a concern

expressed by one developer that the introduction of such a tool would slow down the production of

code. The functionality and usability of I-CASE tools were also seen as an obstacle. The preference

seemed to be for flexible, light-weight tools.

Despite the various differences reported, all of the participants in this study followed appropriate

procedures for developing software. There was no instance where the process was ad hoc. Perhaps

this was because no one was involved in small projects. Many factors appeared to play a part in

accounting for the differences reported: the project type, the kind of development, the financial

situation of the company, the culture of the organisation, the size of the project, the experience of

staff, and the developer’s preference. None of the organisations used an Agile methodology (Fowler,

2001).

THIS STUDY

The findings reported in the above study were the result of only five case studies. Exploratory

studies of this type are required so that the software engineering community can start to find out how

practitioners actually work. However more comprehensive research is seen as necessary.

The study being reported in this paper is a more substantial one involving a questionnaire sent to

several hundred developers. The focus has been on the software development methods and tools

used by developers in their current organisation. Specific information has been sought on the

background and experience of the participants, on the software development methods and tools

being used, on the usefulness and take-up of available tools, and on how well I-CASE tools meet

claimed benefits for this type of tool. Finally, through a number of open-ended questions,

participants have been asked to present their views on a number of issues relating to current and

future software tools. The questionnaire is discussed in detail in the next section.

The broad goals of the research are a better understanding of software development methods and

tools from the viewpoint of software developers. We also wish to investigate whether there is any

relationship between the survey results and the size of organisation, the type of company, the length

of project or the type of application developed. It is hoped that the research will lead to improved

software engineering processes and methods, better computer-aided software engineering (CASE)

tool support, and improved training of software engineers.

RESEARCH METHOD

The study involved detailed questionnaires being piloted and sent out to several hundred software

developers in New Zealand. The developers were randomly selected from addresses in a business

directory.

Questionnaires are a less flexible medium than interviews, since questions must be fixed in advance.

However they can be used to reach a much wider subject group, take less time to administer, and are

open to more rigorous analysis (Dix, Finlay, Abowde and Beale, 1998). It is vital however that the

questionnaire is well designed, and that it gathers relevant and unambiguous data. Shneiderman

(1998, p132) states that “the keys to successful surveys are clear goals in advance, and then

development of focussed items that help to attain those goals”. It is also essential that a

questionnaire is piloted prior to being sent out.

AJIS Volume 12 No. 2 May 2005

27

The questionnaire

The focus of the questionnaire was on the software development methods and tools used by each

developer in their current organisation. The seven-page questionnaire, made up of 25 questions,

appears in full in the Appendix. It contains a mix of general, open-ended, scalar, multi-choice and

ranked questions. Prior to being sent out, it was piloted with three local developers, and modified

accordingly.

Section A (questions 1-7) gathered background information on the respondent and their

organisation, including job title, length of time with the organisation, the nature of the business, the

size of the organisation, the size of the software development section and the types of applications

developed. The intention here was to build a picture of the respondent and their working

environment.

The questions in the main body of the questionnaire (Section B) fell into three broad groups. The

first group (questions 8-16) asked the respondent to select a recent (or current) software project with

which they were involved, and answer questions relating to the project, and the development

methods and tools used. In regard to the project, information was gathered on the duration, the size

of the project team, and the development methods, modelling notations, and programming languages

used. The names of the operating systems used to support the project were also elicited. In regard

to tool use, a total of 20 software development life cycle activities under four main categories, were

listed on the questionnaire. Specific information was sought on the tools used to support each of the

life cycle activities, the usefulness of these tools, and whether their use was compulsory. The

categories were requirements analysis, design, coding and testing, and project management.

Respondents could define additional activities in each category.

With regard to I-CASE tools (questions 17-19), information was gathered on how well they met

claimed benefits for this type of tool, and how well they met a range of functional and non-

functional requirements, including those relating to usability. Where I-CASE tools were not being

used, respondents were asked to provide any insights as to why they had not been adopted.

In a series of open-ended questions to complete the questionnaire (questions 20-25), respondents

were asked to state what features and facilities they did not use in current tools, whether they had

tried and rejected tools (and for what reasons), what new tools if any were being considered for

adoption in their organisation, and what they would like to have in an ideal set of software

development support tools. Information was also elicited on the amount of formal training on

software development tools being provided within their organisation.

THE RESULTS

There were 147 responses to the questionnaire which was sent out to 561 people randomly selected

from addresses in a business directory. Organisations of all sizes were mailed. This gives a

response rate of 26.2 % of the sample. 75 of the respondents were involved in the software

development, process which is 13.4% of the original sample. Overall the 75 respondents had been

involved in software development for many years with 73% having had more than 10 years

experience and 8% less than 3 years. This was a very experienced group who could provide a great

deal of information about current practice. With regard to type of company, nearly 41% of

respondents worked for software development firms and an additional 6.5% for consultancies. Of

the remainder, 12.5 % worked in manufacturing, another 10.5% were employed by organisations

specialising in Telecommunications and the others from areas such as wholesale, banking, research,

education and unspecified organisations.

AJIS Volume 12 No. 2 May 2005

28

Background information (questions 4 to 7)

Over half of the respondents worked in small firms (20 or fewer employees), 9% in medium (21 to

50 employees) and 36% in large firms (greater than 50 employees). Seventy six percent of the

respondents worked in organisations with small software development/maintenance teams (up to 10

people). Only 16% were working in organisations with large software development units (over 50

people).

Respondents were asked to state what types of applications were most commonly developed in their

organisation (Table 3). If we consider first and second rankings then Management Information

Systems (MIS) and Transaction Processing (TP) systems are most likely to be developed, with

embedded and systems software least common. If we consider all rankings for systems developed

within an organisation then web based systems are almost as likely to be developed as MIS and TP

systems. Nine companies were only involved in one type of development – 5 of them building

MIS. For each of real time, web, system and embedded software, there was only one specialist

organisation. On the other hand, there were 12 companies involved in building at least 4 kinds of

software.

 MIS TP RT Web System Embedded

First and second

rankings 38 36 14 23 10 8

All rankings 45 42 24 38 14 14

Table 3: Types of applications commonly developed

Project, methods and tools (questions 8 to 16)

The respondents were asked to specify the length of the project on which they worked before

answering questions on methods and tools. Sixty percent worked on a project that lasted between 3

months and 1 year. Only a small number worked on a very small (<3 months) or very large project

(>3 years). Eighty six percent of those who replied to this question worked on projects where the

number of participants was less than ten. Only 7% worked on projects where more than 20 people

were involved.

Respondents were asked which software development methods were used on the project. They could

mention more than one. Two people used no formal development approach whatsoever although

they explained that some thought went into the process. The other responses indicated that

structured, object-oriented analysis and design, and prototyping (more than 40% in each case) were

widely used. There were also 6 people using methods not mentioned in the questionnaire such as

Xtreme Programming, Functional Definitions and REP. Table 4 shows the percentage of the 73

respondents using each software development method.

 Structured Prototyping

Object-

Oriented Data-Centred Other

Number 33 33 31 16 10

Percentage 45.0% 45.0% 42.5% 22.0% 14.0%

Table 4: Use of each software development method

AJIS Volume 12 No. 2 May 2005

29

Of the 73 who used development methods, 33 people (45%) used only one approach with 28

choosing from the methods listed. The most favoured single method was object-oriented analysis

and design used by 10 respondents. There were 7 people who used each of the structured and

prototyping approaches. This left 40 people who used various combinations of methods, 35 of

whom (48% of the respondents) used two or more of the listed development methods. The figures

for these combinations in order of their popularity are shown in Table 5.

Combination Number

Structured analysis & design/prototyping 16

Structured analysis & design/Object-Oriented 11

Data-centred/prototyping 8

Structured analysis & design/data-centred 7

Object-Oriented/prototyping 4

Object-Oriented/data centred 4

Table 5: Software development methods used in combination

Only 66 people answered the question concerning whether tools were introduced before, at the same

time or after the software development method. If we ignore the 9 respondents who chose not to

answer, then in 43% of cases a tool to support the method followed was introduced first. In another

43% of cases the tool and method were introduced at the same time. Only in a small proportion of

cases was the tool introduced after the method.

Respondents were asked about the value of notations used on a scale of 1 to 5 (1 represented not

useful and 5 very useful). Only ERDs had a mean above 3.5 which shows a reasonable though not

high rating for usefulness (Table 6).

Notation N Mean

ERDs 44 3.6

DFDs 43 3.3

Flowcharts 42 3.3

Sequence diagrams 34 3.0

Structure Charts 38 2.9

Detailed UC specs 34 2.8

Activity diagrams 32 2.7

Class diagrams 37 2.7

State diagrams 32 2.5

Use case diagrams 30 2.4

Table 6: Perceived usefulness of notations

Overall, ERDs and DFDs were seen as the most useful notations with state diagrams and use case

diagrams the least. Using Tukey’s HSD, the differences between ERDs on the one hand and Class,

State and Use case diagrams on the other were significant. It should be noted that 35 respondents

(47%) used 3 notations or less. Several languages were often used on a project but in over 30% of

the cases, VB was one of those selected. Only the C/C++ family approached the popularity of

VB (Table 7).

AJIS Volume 12 No. 2 May 2005

30

Language Number Percentage

VB 23 30.7%

C/C++ 16 21.3%

Delphi 8 10.7%

Java 8 10.7%

Assembler 4 5.3%

Perl 4 5.3%

HTML 3 4.0%

Other 39 52.0%

Table 7: Programming language used

Overwhelmingly the Operating system of choice was Windows (used by 84% of respondents)

although nearly 19% of respondents used Unix or an associated version. Both of these obviously

were used on some projects.

With regard to life cycle activities, respondents were asked to check those they carried out and name

the support tool used (if any). Table 8 shows the number of respondents and percentage of the

sample who carried out an activity. It also shows the number who used a tool to support them.

Percentage* shows the proportion of those performing an activity who used a tool.

The most frequently carried out activities were requirements gathering, software coding and

software testing. Modelling activities were often omitted, many being undertaken by less than 40%

of the respondents. In the case of object modelling this figure was as low as 16%.

 Performed

by

 Using Tool

Activity Number Percentage Number Percentage*

Requirements Gathering 58 77.3% 28 48.3%

Software Coding 55 73.3% 38 69.1%

Software Testing 53 70.7% 29 54.7%

Software Documentation 49 65.3% 32 65.3%

User Interface Design 46 61.3% 26 56.5%

Project

Planning/Scheduling/Review

46 61.3% 33 71.7%

Data Base Design 43 57.3% 24 55.8%

Software Design 39 52.0% 16 41.0%

User Interface Prototyping 36 48.0% 23 63.9%

Design Specification 35 46.7% 21 60.0%

Architecture 32 42.7% 17 53.1%

Data Structure Design 32 42.7% 15 46.9%

Data Modelling 28 37.3% 15 53.6%

Test Plan Specification 28 37.3% 15 53.6%

Process Modelling 23 30.7% 12 52.2%

Algorithm/Component Design 21 28.0% 13 61.9%

AJIS Volume 12 No. 2 May 2005

31

Task Modelling 18 24.0% 10 55.6%

Workflow Modelling 17 22.7% 9 52.9%

Object Modelling 12 16.0% 8 66.7%

Capturing Of Design Rationale 6 8.0% 5 83.3%

Table 8: Activities performed and tool support

Whilst requirements gathering was the activity most frequently performed, less than half of those

who carried it out were supported by a tool. Some respondents mentioned their use of a whiteboard

for such purposes. The only other activity where less than 50% of users were assisted by a tool was

data structure design. Some activities that were both frequently carried out and supported by a tool

included software coding, software documentation and project management. The activity “capturing

design rationale” was only carried out by 6 people but tool support was 83.3%. Over 60 tools were

used by the respondents but those mentioned most frequently are shown in Table 9.

Tool Number Tool Number

Microsoft Word 33 Microsoft Excel 10

Microsoft Project 22 Rational products 8

VB 14 Access 7

Visio 13 Delphi 7

Table 9: Most commonly used tools

An analysis of the results of this question by phase shows that Visio was used most frequently for

activities in the software requirements analysis phase, Microsoft Word for most activities during

software design, coding and testing (e.g. for specifying test cases) and VB was the most commonly

employed tool for prototyping and coding. MS Project was the piece of software most widely used

for project management.

The respondents were asked to rate the usefulness of different kinds of tools on a scale from 1 to 5

where 1 represented not useful and 5 very useful. More respondents answered this question on the

general usefulness of the different kinds of tools than specified their use on the project.

Table 10, which shows the usefulness of the different categories of tools is sorted by the mean

obtained. Programming environments were seen as most useful and MetaCASE tools least. Other

types of tools that scored quite highly (> 3.5) were DB Management tools, Word Processors,

Drawing Tools and Spreadsheets. CASE tools (ICASE and MetaCASE fared badly). The means for

programming environments, DBM tools, Word Processors, Drawing Tools and Spreadsheets were

statistically significant (using Tukey’s HSD) from those for ICASE tools, auto testing tools and

MetaCASE tools.

The “Percentage Compulsory” figure was worked out by dividing the number who stated that they

used a tool of a particular type by the number who stated its usage was compulsory. Only in one

case – for Programming Environments (71.4%) - was the “use compulsory” figure greater than 50%.

There were then only 2 cases where the figure was greater than 40% - for DB Management Tools

(48.4%) and Word Processors (45.3%). Spreadsheets, drawing tools and project management

software were all used by reasonably large numbers but in none of these cases did the percentage

compulsory figure reach 24%.

Of the 73 people who replied to this question, thirty seven people (49%) who worked on projects

AJIS Volume 12 No. 2 May 2005

32

could, but did not have to, use any CASE tools. Only three used none at all. Ten people (13%)

reported that usage of all the tools they rated for usefulness was compulsory. In no case when tool

usage was compulsory did the number of tools used on the project exceed five. Finally for the

remaining 28 (37%), some tools had to be used whilst others were optional.

Numbe

r Mean

Percentage compulsory

Prog Env 49 4.5 71.4%

DBM Tools 31 4.3 48.4%

Word Proc's 53 4.1 45.3%

Drawing Tools 40 3.9 20.0%

Spreadsheets 39 3.9 23.1%

Prototyping Tools 26 3.5 11.5%

Proj Mngmt Tools 35 3.4 14.3%

Web Dev Tools 21 3.2 28.6%

Config Mngmt Tools 20 3.2 25.0%

ICASE Tools 20 2.5 25.0%

Auto Testing Tools 15 2.3 0.0%

MetaCASE Tools 10 1.4 0.0%

Table 10: Usefulness of tools

Overall, people who had to use tools rated the usefulness of tools on average 1 point higher than

people who did not have to use tools. This applied across the board, not just for some tools.

ICASE (questions 17 to 19)

Only ten people were using an ICASE tool. Five of the respondents were using Rational Rose. No

other tool had more than 1 user. These users were asked to rate how well their ICASE tool met a

range of claimed benefits on a scale from 1 to 5 where 1 represents very poor and 5 represents very

well (Table 11). None of the means are above 3.5 so there was no benefit that received a high

rating. The results indicated though that productivity was seen as the most likely benefit with

reduction in development costs the least likely. The means for productivity, ease of maintenance,

control of process and integration were statistically significant (using Tukey’s HSD) from that for

the item with the lowest mean – reduced cost.

AJIS Volume 12 No. 2 May 2005

33

 Number Mean

Productivity 10 3.4

Ease of Maintenance 8 3.4

Control of Process 9 3.3

Integration 10 3.3

Documentation 10 3.3

Project Communication 8 3.1

Reliability 10 3.1

Change Control 8 3.0

Complexity 8 3.0

Flexibility 8 2.8

Reduced Costs 8 2.4

Table 11: ICASE Tools: perception of benefits

ICASE users were also asked to rate how well the tool met 23 specified requirements (Table 12).

The same scale was used as that in the previous question.

Numb

er Mean

Consistency 10 3.7

Documentation 10 3.7

Support RE 10 3.7

Reliability 9 3.6

Integration/Langs 8 3.5

Support Re-Use 10 3.5

Transit Models 9 3.4

Effective Editing 10 3.4

Smooth Navig 9 3.3

Efficient Working 9 3.3

Transit Activities 8 3.1

Support Methods 8 3.1

Performance 9 3.1

Interface 10 3.1

Integration/Tools 8 3.0

Integration/SW 9 3.0

Support Group 9 3.0

Reporting &

Feedback 9 2.9

Help 9 2.9

Vendor Support 9 2.9

Customisation 7 2.9

AJIS Volume 12 No. 2 May 2005

34

Easy to Learn 10 2.8

Cost 9 2.6

Table 12: ICASE Tools: perception of how well they meet requirements

There were six requirements where the mean was equal to or greater than 3.5 – consistency,

documentation, support for reverse engineering, high reliability, support for re-use and transition

between models. The conclusion can be drawn, therefore, that these requirements on the whole are

met by ICASE tools. This type of tool though was seen as failing to meet the requirement for

acceptable cost – with a mean of 2.6 and for ease of use (easy to learn, support, feedback). The

means for consistency and documentation were statistically different from that for cost.

Fifty two people answered the question about why ICASE tools were not employed in their

organisation. Some of the respondents gave more than 1 reply. The principal reasons given for not

employing ICASE are shown in Table 13. Almost half the respondents (46%) saw ICASE tools as

unsuited to current projects, while high cost was seen as a significant factor by 27% of those who

replied. Nineteen percent saw ICASE tools as unfit for purpose, and a similar number considered

the learning curve to be too great.

Category Number Percent of

respondents

Cost (of product, time to make changes, extra lifecycle costs) 14 27%

Not required (not needed yet, size or type of project) 24 46%

Unsuitable for purpose i.e. not useful (inadequate features,

too restrictive)

10 19%

Time – learning curve, pressure to deliver constraints 10 19%

Unaware of ICASE 6 11.5%

Not integrated with other tools 2 4%

Requirement for champion 2 4%

Table 13: ICASE Tools: reasons for non-adoption

Open ended questions (20 to 25)

Only twenty two people answered the question about which features or facilities of tools available to

them were not used. The name of the tool was not always given and no tool was mentioned more

than twice. The respondents rarely specified the facility not used. What is of interest, however, are

the principal reasons given by the respondents for not using features of a tool. Forty percent of those

who replied stated that they did not have the knowledge to use all the appropriate features. For

almost 25% there was insufficient time for training. A study by Huff et al (1995) confirmed that

many users fail to apply the technology to anywhere near its potential.

Forty one people answered the question about what new software tools, if any, were being

considered within the organisation. Overall, more than forty different tools were mentioned. Seven

respondents, a sixth of those who answered this question, mentioned Rational Rose as being under

consideration. Visual Studio was mentioned almost as many times (by 6 people, that is in a seventh

of the cases). Otherwise there was little commonality. There was a trend, though, for tools to be

under consideration for web related development. Some of the languages and tools mentioned in

this regard were XML, HTML, and Dreamweaver.

Thirty four people answered the question about a tool that had been rejected, sometimes

AJIS Volume 12 No. 2 May 2005

35

giving more than one reason for this. A variety of tools were mentioned although the only one to be

rejected by more than 2 organisations was Rational Rose which was no longer employed in four

cases. ICASE tools, it should be noted, were rejected on at least 7 occasions (in about 20% of

cases.) The principal reasons given for rejection were: cost (8), unsuitability for purpose (8) and

practical issues such as performance and portability (6).

Twenty six people mentioned one or more features that they would like to see incorporated into

tools. A wide range of suggestions was made and there was little overall agreement about what was

required. The need for integration was mentioned by seven respondents in total (representing about

a quarter of those who answered this question.) and not only in the context of version control. One

person requested better integrated regression testing, whilst another was concerned with a feature

that provided integrated project and task management. People see the need to integrate tools whilst

still rejecting a single integrated tool on the ground of cost, complexity etc.

Seventy two people answered the question about the days of formal training provided per annum on

development tools (Table 14). Forty percent of the respondents received less than 1 day’s training

per year at most with 29.5% percent getting between 1 and 3 days training. The remainder received

more than 4 days. Large companies with large software development groups tended to provide

more training than other company structures.

 <1 1-3 4-10 >10

Number 29 19 16 7

Percentage 40.0% 29.5% 11.5% 11.5%

Table 14: days of formal training per annum

Fifty nine people answered the question on whether the number of days training per year was

adequate. It was clear from an analysis of the answers that they were discussing the effectiveness of

the training they received whether informal or not. It was not an issue for five people. Of the rest,

twenty five replied that the training provided was adequate whilst twenty six thought that it was

insufficient. Three people stated that it was good in some circumstances but not in others eg

“Enough for the capable developers but insufficient for new developers.”

Sixteen people were happy with formal training. For two of the latter, training was seen as an

ongoing process eg “this organisation promotes constant learning.” Six people, though, were quite

scathing about the value of formal training e.g. “I have had no training at all for ten years. The

little I did have was a waste of time.” There were also a group of nine people who were satisfied

with the informal training they received. “On-project training is more useful.”

Twenty five percent of those who replied that their training was inadequate cited time constraints as

a reason for the lack of training. Almost as large a percentage (23%) quoted budgetary constraints.

For a little more than 10% the lack of local provider was a problem. This factor was closely

associated with cost. Three people mentioned that their organisation could not afford the cost

involved in sending people overseas to train. For about 8%, their organisation did not realise the

necessity for training. If we consider days training in association with the compulsory usage of

tools, 13 out of the 30 people who did not have to use any tools had less than 1 days training per

year.

Twenty nine people replied to the last question which asked for any other comments about software

development, methods and tools. Many factors that had been mentioned earlier, with regard to tools,

were re-iterated: their cost, poor interface, time to learning, unsuitability etc. However some other

issues were brought up, principally the philosophy of an organisation. Forty five percent of those

who answered this question, wrote about their underlying philosophy for success when developing

AJIS Volume 12 No. 2 May 2005

36

software. They tended to focus on the issue of process rather than tools with two people specifically

stating this was more important eg “I believe we should be concentrating more on processes and

documentation than tools”. Three others in this group referred to the importance of understanding

the business and two to meeting end user requirements. For one respondent, successful

communication with users was vital to effective user involvement. Three people described the main

features of their process with one person mentioning their quality management system. Finally there

were three respondents who advocated the use of agile processes eg the tool is only a small part of

the software development process. A quality, agile SDLC is far more important.

Other issues mentioned by the respondents included the need for specialized tools, real world

constraints on the use of tools and the lack of a design culture. Some particularly thoughtful

comments were made about real world constraints: “Tools – In my experience you need to be very

committed to using a CASE tool and put a lot of effort into using it properly, otherwise it’s just a

specialised drawing tool”, and “Methodologies are great, but you have to pick and choose and

customise, which means many of the supporting tools over or under deliver.”

DISCUSSION

The response rate for this survey (26%) is similar to that in the Sharma and Rei study (23%). Only

75 of the respondents were employed in the software industry and they worked for many different

types of organisations both large and small. A large variety of application types were being

developed by the companies for which the respondents worked. MIS, transaction processing and

web systems, though, were each being developed by more than 50% of the sample. Given the

importance of the web, this finding was not unexpected. Overwhelmingly most respondents had

been involved in software development for many years. This was a very experienced group who

could provide a great deal of information about current practices. Seventy three of the respondents

compared to 46 in the Sharma and Rei (2000) study worked on projects where CASE tools were

used.

Using the Chi-square test, we found few associations between the results of the survey and either the

size of the organisation, the type of company, the length of the project or the type of applications

developed. The strong association (P<.0001) was between sector and size of company/software

development team with manufacturing companies tending to be large but with small software

development groups and Telecoms companies tending to be large with large software development

groups. Software development companies, however, were usually on the small side.

The more people were involved on the project, irrespective of project size, the more likely ICASE

was to be used. Generally this involved large companies with large software development groups

(although the data set was too small to be statistically significant). Such companies also tend to

provide more training (p=.0026). Groves et al. indicated that the size of the software development

group seems of some importance when determining practices. Here the evidence suggests that this

was true with regard to investment in ICASE and training. Otherwise methods on projects, project

lengths etc tended to be similar..

Structured systems analysis and design (usually associated with the waterfall model) and

prototyping were the most commonly used development approaches followed closely by object-

oriented analysis and design. Given the greater longevity of the first two of these, it was interesting

to note the wide use of the OO paradigm. It should also be noted that more than one method was

employed on a large number of projects. The same mix of results was found in the preliminary study

(Kemp et al. 2003).

As Gray (2000) claimed, notations and conceptual modelling do not appear to be seen as especially

useful, with none used by more than 60% of the sample. In fact merely 4 of the 10 notations were

AJIS Volume 12 No. 2 May 2005

37

used by more than 50% of the respondents and in almost 50% of cases 3 notations or less were used

on a project. Only ERDS, a notation of long standing, had a mean above 3.5 (which can be seen to

represent somewhat useful). Surprisingly, given that 40% of the respondents stated that they used an

object oriented analysis and design approach, class, state and use case diagrams all had low means

with the difference being statistically significant. Sequence diagrams though were seen as more

useful than the other UML notations.

With regard to activities and tools used to support them, it should be noted that there was no activity

performed on 100 % of projects. One reason for this relates to the fact that not all organisations

involved in the survey were in the business of developing the complete product. Some companies

for example were involved with requirements gathering but not coding.

The activity that was most frequently performed was that of requirements gathering followed by

software coding and testing both of which were carried out on more than 70% of the selected

projects. Modelling activities fared badly overall coming 13, 15, 17, 18 and 19 (out of 20) in the

table. Object modelling, carried out on only 16% of the projects, scored very poorly. This is

consistent though with the poor opinion of class diagrams as a notation. There were only two

activities that were widely performed where the use of a tool was compulsory, software coding and

project planning activities. The lack of compulsion was something of a surprise. For instance, in

only 20% of cases, was the use of drawing tools made compulsory. This fits in of course with the

lack of interest in modelling activities. Design activities fared somewhat better.

With regard to the perceived usefulness of CASE tools, more respondents evaluated tools than used

them on the project referenced. This could be for two reasons. Firstly, they did not write down all

the tools that they used on a project. Secondly they are accustomed to using tools of this kind on

other projects and felt that they could evaluate their usefulness. The discrepancy between the totals

for usage is particularly marked for spreadsheet usage .

At a detailed level, three kinds of tools (programming environments, DB Management tools and

Word Processors) had a mean greater than 4 indicating that these were seen as really useful. ICASE

and MetaCASE, the most complex tools, performed particularly badly. It was interesting that in

less than half of the cases tools to support new methodologies were introduced before the

methodology was used. It was as likely for both tools and methodologies to be introduced together.

It is not surprising given that staff might be struggling to learn a methodology as well as a tool that

that many tools were not perceived as useful.

When considering the tools overall, the percentage using each one was not very high with only 4

used by more than 50% of the sample. Nonetheless, on all but 2 projects a CASE tool was used.

The results cannot confirm or refute Orlikowski’s contention that developers with considerable

investment of time and experience of traditional software development practices are more reluctant

to use CASE tools than those with less experience (Orlikowski, 1993). The results do indicate

though that a large group (83%) of predominantly experienced developers chose to use one or more

CASE tools.

Those people who were made to use a tool rated them on average 1 point higher than people who did

not have to. This applied to all tools and suggests that once people have to use the tool then they

perceive its benefits. Lending and Chervany (1998) believe that extrinsic motivation (tool is useful)

is low when using CASE tools, but perhaps when compulsion is taken into account the level of

extrinsic motivation increases. This may be because people have to come to grips with features that

they otherwise would not use and appreciate their value. It may also be because people who have to

use tools are given some training. The data in the questionnaire on training did not relate to

specific tools so could it was not possible to determine if there was any effect of this kind.

It is interesting to consider the value of a tool to an organisation. Some tools are clearly very

specialised eg Microsoft Project whilst others such as Rational Rose and Oracle (ICASE) tools are

AJIS Volume 12 No. 2 May 2005

38

meant to be used at several stages of the life cycle. There were also two tools, Visio and Word, that

were used for several activities. Many readers might not consider Word to be a typical CASE tool

but it was included by several respondents. In particular it was seen as useful for specifying test

cases.

As in the preliminary study ICASE tools were not widely used. In this study they were only used by

10 people. Most (but not all) respondents were aware of what they were. Forty eight people were

able to explain why ICASE was currently not used in their organisation or on the project (not

required, unsuitable, time constraints). ICASE tools were also being considered by 7 more

organisations. Given that no benefit had a mean above 3.5 then clearly no-one perceived ICASE

tools as having any outstanding benefits. Productivity which is often mentioned (Pressman, 2001)

only had a mean of 3.4. The use of ICASE was not seen as reducing development costs

The situation was somewhat improved with regards to ICASE tools meeting requirements. Four

requirements had a mean higher than 3.5: consistency, documentation, support for reverse

engineering and reliability. An acceptable cost, however, scored very poorly with a mean of 2.6. If

the requirements are divided into five groups – those related to Artefacts, Support, Performance

Integration, and Human Computer Interaction (HCI), - and the means of each group compared, it can

be seen that there was no mean greater than 3.5. The mean for the HCI group of requirements is the

lowest, thus indicating usability of the system was not found to be satisfactory (Finnegan et al,

2000) (Figure 1 and Table 15).

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Artefacts Support Perfomance Integration HCI

M
e
a
n

Figure 1: ICASE Tools: analysis of requirements by category

AJIS Volume 12 No. 2 May 2005

39

Group name Components

Artefacts Consistency of work products

 Effective drawing/editing of diagrams

 Good documentation of work products

 Smooth Navigation of diagrams

 Smooth transition between activities

 Smooth transition between models

HCI Customisation

 Easy to learn

 Efficient Working Interface

 Help

 Interface

 Reporting & Feedback

Integration Integration with other software

 Integration with programming languages

 Integration with tools

Support Support for multiple methods

 Support for reverse engineering

 Support for re-use

 Support for group working

Performance issues Performance

 Reliability

 Vendor Support

Note Cost was not included in any of these categories.

Table 15: ICASE Tools: category components

With regard to CASE tool acquisition and rejection overall, the picture which emerges is a dynamic

one. Despite criticisms of tools, many organisations (40) are investigating the purchase of further

CASE tools. Given the fact that more than half of the companies were developing web-based

systems, it was no surprise that several of the tools under consideration were specifically for

building web applications. On the other hand tools were also being discarded. In 34 organisations

previously purchased tools were being rejected for reasons of cost or unsuitability.

When people were asked to state why they did not use features or facilities in tools that were

available to them, the principle reason given was lack of knowledge. Ignorance of the capabilities of

tools probably relates to their complexity (Iivari, 1996 and Gray et al, 2000). Shortage of time was

also reported as an obstacle to people improving their skills (Lending and Chervany, 1998). When

considering features that could be incorporated into tools, the main request was for better

integration. It appeared that people see the need to integrate tools whilst still rejecting a single

integrated tool on the basis of cost.

Forty percent of the respondents received less than 1 day of formal training per year. With regard to

training in tool use, cost (Schwarzkopf, 2004) and time constraints were again mentioned as the

main reason for the failure to deliver appropriate training. As a result, practitioners may not be using

tools to their full potential (Huff, 1995).

The issues of cost, complexity and time (Jarzabeck & Huang, 1998) emerged as key complaints in

AJIS Volume 12 No. 2 May 2005

40

the preliminary study. In this questionnaire, cost is clearly a key reason for not purchasing ICASE

tool as well as for the failure to provide training in CASE tools of all kinds. Given the small size of

many of the software development companies this is not surprising. The lack of time and

complexity were also important factors. The appropriateness of a tool though for its intended

purpose also emerged as an issue in this questionnaire. This relates to a tool not meeting

requirements i.e. being too cumbersome/restrictive.

The last question, which was open ended, asked people to add any further comments. A surprisingly

large percentage of the 29 respondents (45%) considered their philosophical approach to software

development, the issue of process, to be more important for software development than the tools

used. This attitude may well relate not only to the complexity and unsuitability of tools but also to

their lack of support for problem solving(Jarzabeck and Huang, 1998). There could also be, overall,

little intrinsic and extrinsic motivation as hypothesised by Lending & Chervany (1998). The value

of tools may only be fully appreciated if people are fully trained in their use and have to use them.

CONCLUSIONS

The work reported here is a follow-up study to an earlier investigation into the practices of software

engineers in New Zealand. The study involved a detailed questionnaire being piloted and sent out to

several hundred software developers, and focussed on the software development methods and tools

used by each developer in their current organisation. Specific information was sought on the

usefulness and take-up of tools, and on how well I-CASE tools meet claimed benefits for this type of

tool.

Most of the respondents had been involved in software development for many years, and were an

experienced group who could provide significant insights into current practices. Few associations

were found between the size of the organisation, the type of company, the length of the project or the

type of applications developed. It appeared that developers see the need to integrate tools whilst

still rejecting a single integrated tool on the basis of cost and complexity - ICASE and MetaCASE,

the most complex tools, scored particularly badly for usability. Notations and conceptual modelling

do not appear to be seen as especially useful. Despite criticisms of tools however, many

organisations are investigating the purchase of further tools. A significant finding was that close to

half the respondents who answered the final open-ended question, considered the issue of process to

be more important for software development than the tools used.

Through the investigation, links have been established with software development companies in

New Zealand, and part of the research was conducted at selected sites. It is hoped that this research

will make a contribution to improved software engineering processes and methods, better CASE

tool support, and improved training of software engineers. Through university teaching being

conducted by the authors, the findings of this study are also being made available to software

engineering students – tomorrow’s practitioners - for debate and study.

AJIS Volume 12 No. 2 May 2005

41

ACKNOWLEDGEMENT

The authors gratefully acknowledge funding from the New Zealand Foundation for Research,

Science and Technology to carry out part of this research.

REFERENCES

Aaen, I. (1994) Problems in CASE introduction: experiences from user organisations, Information

and Software Technology, 36, 11, pp 634-654.

Arnold, D. & Niederman, F. (2001)The global IT work force. Communications of the ACM 44,

7, pp 31- 33

Beck, K. (1999) EXtreme programming eXplained: embrace change, Reading, MA: Addison-

Wesley.

Boehm, B (1988) A Spiral Model for Software Development and Enhancement, Computer, Vol. 21,

5, pp 61-72.

Booch, G., Rumbaugh, J. & Jacobson, I. (1999) Unified modeling language user guide, Reading

Mass: Addison-Wesley.

Dix, A., Finlay, J., Abowd, G., & Beale, R. (1998): Human-Computer Interaction, Prentice Hall,

Hemel Hempstead.

Finnigan, D., Kemp, E. & Mehandjiska, D. (2000) Towards an ideal CASE tool, SMT 2000,

Wollongong, IEEE Computer Society Press, pp 189-197.

Fowler, M. (2001) The new methodology,

http://www.martinfowler.com/articles/newMethodology.html, updated Nov 2001.

Gray, J.P., Liu, A. & Scott, L. (2000) Issues in software engineering tool construction. Information

and Software Technology. 42, pp 73-77.

Groves, L., Nickson, R., Reeve, G., Reeves, S. & Utting, M. (2000) A survey of software

requirements specification practices in the New Zealand software industry, Proceedings

ASWEC 2000: Australian Software Engineering Conference 2000. (ed.) D. D. Grant. IEEE

Computer Society. pp 189-201.

Holt, J. (1997) Current Practice in software engineering: a survey, Computing and Control

Engineering Journal, 8 (4), pp 167– 172.

Huff, S.L., Munro, M.C., Marcolin, B.L. & Compeau, D.R. (1995): Understanding and Measuring

End User Sophistication, Proc. Of 14
th
 New Zealand Computer Conference, Wellington,

23-25 August.

Iivari, J. (1996) Why are CASE tools not used?, 39, 10, pp 94-103.

Jacobson, I., Booch, G. & Rumbaugh, J. (1999) The Unified Software Development Process,

Reading, Mass : Addison-Wesley.

Jarzabek, S. & Huang, R. (1998) The CASE for user-centered CASE tools, Comms of the ACM,

41, 8, pp 93-99.

Jordan, E.W. & Machesky, J.J. (1990) Systems Development: Requirements, Evaluation, Design,

and Implementation, Boston: PWS-KENT Publishing Company.

Kemp, E.A., Phillips, C.H.E. & Alam, J. (2003): Software Engineering Practices and Tool Support:

An Exploratory Study in New Zealand, Australian Journal of Information Systems, Vol 11

No 1, 37-54.

Kruchten, P. (1999) The Rational Unified Process, An Introduction (2nd Edition), Reading,

Mass: Addison-Wesley.

Lending, D. & Chervany, N.L. (1998) CASE Tools: Understanding the Reasons for Non-Use,

Computer Personnel, April 1998, pp 13-24.

AJIS Volume 12 No. 2 May 2005

42

McChesney, I.R. & Glass, D. (1993) Post-Implementation management of CASE methodology,

European Journal of Information Systems, 2, 3, pp 201-209.

Misra, S.K. (1990) Analyzing CASE system characteristics: evaluative framework, Information &

Software Technology, 32, 6, pp 415-422.

Orlikowski, W. J. (1993) CASE Tools as Organizational Change: Investigating Incremental and

Radical Changes in Systems Development, MISQ, Vol. 17, No.3, pp 309-340.

Pressman, R. S (2001) Software Engineering: A Practitioner’s Approach, 5
th
 Ed., Singapore:

McGraw-Hill.

Robillard, P., D’Astous, P., & Kruchten, P. (2003) Software Engineering process with the

UPEDU, Boston: Pearson Education.

Sallis P., Tate, G., & MacDonnell, S. (1995) Software Engineering Practice, Management,

Improvement, Sydney: Addison-Wesley.

Schach, S. (1999) Classical and Object-oriented Software Engineering, New York: McGraw-

Hill.

Scott, C.A., Clayton, J.E. and Gibson, E.L. (1991) A Practical Guide to Knowledge Acquisition,

Reading, Mass: Addison-Wesley.

Schwarzkopf, A., Mejias, R., Jasperson, J., Saunders, C., & Gruenwald H. (2004) Effective practices

for IT skills staffing, Communications of the ACM, 47, 1, pp 83-88.

Sharma, S. & Rei, A. (2000) CASE deployment in IS organisations, Communications of the

ACM, 43, 1, pp 80-88.

Shneiderman, B. (1998): Designing the User Interface: Strategies for Effective Human

Computer Interaction, (3rd ed.). Addison-Wesley, Reading, MA.

Singer, J., Lethbridge, T., Vinson, N. & Anquetil, N. (1997) An Examination of Software

Engineering Work Practices, Proceedings of CASCON '97, Toronto, pp 209-223.

Sommerville, I. (2001) Software Engineering, Reading, Mass: Pearson.

Yourdon, E (1994): Object-Orientated Systems Design, USA: Prentice Hall International

Editions.

AJIS Volume 12 No. 2 May 2005

43

APPENDIX

QUESTIONNAIRE

Software Development Methods and Tools

Note: The focus is on the software development methods and tools which are used in your present

organisation. The questionnaire is in two parts, and should take about 20 minutes to complete.

A. Background Information

1. What is your job title? _______________________________________

2. How long have you been with your present organisation?

<1 year 1-3 years 4-10 years >10 years

3. How long have you been involved with software development?

<1 year 1-3 years 4-10 years >10 years

4. How is your organisation best described?

Software Development Telecommunications

Consulting Banking/Finance/Insurance

Wholesale/Retail Trade Manufacturing

Education Public Service/Local Government

Health Central Government

Research Military

Other (please specify) __

5. How many people are employed in your organisation?

<5 5-20 21-50 51-150 >150

6. How many people are engaged in software development/maintenance?

<3 3-10 11-20 21-50 >50

7. What type(s) of applications are developed in your organisation?

(please rank: 1 most common, 2 next….., leave blank if not applicable)

Management information systems (e.g. decision support)

Transaction processing systems (e.g. payroll, POS, accounting, inventory)

Real time applications (e.g. process control, manufacturing)

E-commerce/web applications

Embedded systems (e.g. software running in consumer devices or vehicles)

Systems software (e.g. telecommunications software)

Other (please specify) __

AJIS Volume 12 No. 2 May 2005

44

B. Software Development Methods & Tools

Choose a recent (or current) software project in your present organisation, with which you were

involved, and answer questions 8-16 in relation to this project.

8. What was the length of the project (from inception to an operational system)? Please

estimate if the project is a current one.

<3 months 3-6 months 7-12 months 1-3 years >3 years

9. How many people were involved with the project?

<3 3-9 10-20 >20

10. Which software development methods were used on the project? You may check more

than one box.

Structured Analysis and Design

Object-oriented Analysis and Design

 Data-centred design

 Prototyping

Other (please specify) __

__

11. In relation to the principal method used on the project, were the tools which support it

introduced:

 Before the method? 

 At the same time as the method? 

 After the method? 

12. For each modelling notation used on the project, indicate on the following scale how useful

it was:

 Not useful………………….Very useful

 1 2 3 4 5

 entity-relationship diagrams (ERDs)     

 data flow diagrams (DFDs)     

 structure charts     

 class diagrams     

 use case diagrams     

 detailed use case specifications     

 activity diagrams     

 state diagrams     

 flowcharts     

 sequence diagrams     

 Other (please specify):____________________     

 ____________________________________     

AJIS Volume 12 No. 2 May 2005

45

13. List the major programming languages used on the project:

__

 __

14. List the major operating systems used to support the project:

__

 __

15. Indicate by checking the boxes which of the following software development life cycle

activities were undertaken on the project. Enter the name(s) of any software development tool(s)

used to support each activity.

 Activity Development tool(s) used

Software Requirements Analysis

 - requirements gathering  

 - task modelling  

 - process modelling  

 - object modelling  

 - data modelling  

 - workflow modelling  

 - user interface prototyping  

 - test plan specification  

 - other (specify) ________________  

 ___________________________  

Software Design

 - architecture  

 - algorithm/component design  

 - data structure design  

 - data base design  

 - user interface design  

 - capturing of design rationale  

 - design specification  

 - other (specify) ________________  

 ___________________________  

Software Coding & Testing

 - software coding  

 - software testing  

 - software documentation  

 - other (specify) ________________  

 ___________________________  

Project Management

 - project planning/scheduling/review  

 - other (specify) ________________  

AJIS Volume 12 No. 2 May 2005

46

16. For each of the following tools used on the project, indicate on the scale how useful it was,

and check the final box if its use was compulsory.

 Not useful………..Very useful Compulsory

 1 2 3 4 5

 integrated CASE tools      

 metaCASE tools      

 web development tools      

 drawing tools      

 database management tools      

 prototyping tools      

 programming environments      

 automated testing tools      

 project management tools      

 configuration management tools      

 word processors      

 spreadsheets      

 Other (please specify):_______________      

 _______________________________      

 _______________________________      

 _______________________________      

Questions 17-25 are more general questions relating to tool use in your present organisation

If Integrated CASE (ICASE) Tools (e.g Rational Rose, Oracle) are used, please answer questions 17

and 18. If not, please proceed to question 19.

17. Indicate on the following scale how well the ICASE tool used in your organisation meets

each of the following claimed benefits for this type of development tool. Please name the tool.

 ICASE tool: ___________________

 Very Poorly………………….Very Well

 1 2 3 4 5

 improved software reliability     

 improved productivity     

 greater control of development process     

 easier software maintenance     

 greater integration of system models     

 better system documentation     

 improved project communication     

 better change control     

 greater flexibility     

 reduced complexity     

 reduced development costs     

AJIS Volume 12 No. 2 May 2005

47

18. Indicate on the following scale, how well the above ICASE tool meets the following

requirements:

 Very Poorly……….….……... Very Well

 1 2 3 4 5

 smooth transition between activities     

 smooth transition between models     

 effective drawing/editing of diagrams     

 smooth navigation of diagrams     

 consistency of work products*     

 good documentation of work products*     

 integration with other tools     

 integration with programming languages     

 integration with other software     

 support for group working     

 support for re-use     

 support for reverse engineering     

 support for multiple methods     

 ease of learning     

 good reporting and feedback     

 good help and error messages     

 good customisation facilities     

 efficient working     

 good user interface     

 good performance     

 high reliability     

 acceptable cost     

 good vendor support     

*Work Products refers to any artefacts produced along the way (models, documents, code etc):

19. If your organisation does not employ ICASE tools, please briefly indicate why not:

__

 __

 __

 __

 __

 __

 __

AJIS Volume 12 No. 2 May 2005

48

20. Are there any major features and/or facilities in the current software development tools in

your organisation which you do not use? Briefly indicate why.

__

 __

 __

 __

 __

__

21. Have any software development tools been tried and rejected within your organisation?

Please list with brief reasons for rejection:

__

 __

 __

 __

 __

__

22. What new software development tools, if any, are being considered within your

organisation at present?

__

 __

 __

 __

__

__

 __

23. What features and/or facilities would you like to see in future software development tools

which are not provided in current tools?

__

 __

 __

 __

__

__

AJIS Volume 12 No. 2 May 2005

49

24. Approximately how many days of formal training per annum in software development tools

are provided for each developer in your organisation?

<1 day 1-3 days 4-10 days >10 days

Do you consider this training to be adequate? Please comment.

__

 __

 __

 __

__

25. Please add any other comments relating to software development methods and tools

(continue on reverse side if necessary):

__

 __

 __

 __

 __

__

 __

 __

 __

__

