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ABSTRACT 

 
The effective processing of semi-structured data queries is a preliminary part of data mining 
stage. XML queries employ regular path expressions to find structural patterns within XML 

documents. The operation of structural join is a crucial part of XML query processing. 

Existing approaches reduce complex join expressions to several binary structural joins. In 
this paper, we are proposing a new structural join algorithm called sequence join algorithm, 

for sequential regular path expressions in securing XML query processing storage. It 
exploits information about position of the elements in a product to skip generation of the 
redundant intermediate lists. This paper further discusses the algorithm that performs the 

merge of several input lists of nodes in one pass. We carried out comparative experiments, 

and the results prove that the algorithm is better than multiple binary joins algorithm for 
queries of both small and large cardinality. 

 

Keyword: semi-structured data mining, data model, indexing XML data, sequence 

algorithm, graph numbering, and query processing. 

 

INTRODUCTION 

 

Each industry requires certain safeguards to protect its data while in transit. Bringing 

autonomic capabilities to storage systems would certainly be an improvement, but if 

computing systems that mine data in those storage repositories become next to impossible 

to manage, that partial automation will not yield much benefit. XML is now becoming a 

standard to represent and exchange semi-structured data over the Web (Xyleme 2001, Bray 

et al 2000). The problem of storing XML data in one or several tables is challenging, since 

the XML tree describe some irregular structure while tables are by definition regular. In a 

situation where the XML document has no schema, or when the schema changes 

frequently, it has a more dramatic impact on performance. The key idea behind these 

structures is called partial schema. The partial schema helped to build a concise graph 

representing paths of the data (Wang & Liu 2001). It also served as a guideline for building 

indexes and views or a starting point for structure-based document clustering based on 

approach proposed by Deutsch et al (1999) that uses the XML instance to infer a relational 

schema. The idea is to find regularities that may exist in a given XML data instance, and to 

organise the storage base on those regularities (Deutsch et al 1999, Cooper et al 2001). The 

challenge in any storage schema is that it has to be flexible enough to accommodate  
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data, and efficient as regular data storage. The number of accessible XML documents tends 

to grow as more and more business are storing and interchanging data between applications 

using XML as a common format. 

 

SEMI-STRUCTURED DATA REPRESENTATION 

 

We can represent semi-structured document as a graph or as a tree. The tree model reflects 

nesting of elements within XML file and treats reference elements (IDREF) as values. The 

graph model resolves semantics of reference elements and, thus, allows an element to have 

multiple parent elements. When semi-structured data is represent as a label, directed, and 

possibly cyclic graph, the vertices of such a graph correspond to objects that are either 

treated as containers for some other objects or associated with atomic values (such as text, 

multimedia content, etc.). Edges of the graph stand for containment relationship between 

nodes and have object types as labels. An example of such a model is the Object Exchange 

Model (OEM) (Papakonstantinou et al 1995), in this model, each XML element becomes 

an edge (labelled with the tag name) and directed towards an individual node. Each node 

corresponds to an XML element and has element’s ID as its label. Each edge in the XML 

data graph has a label and a target, where the target is either a node representing a scalar 

data value (e.g. a string or integer) or a reference to an element node in the document via its 

ID. The edge belongs to a class, which can be one of sub-element, attribute, or IDREF (ID 

reference). Both IDREF and sub-element edges always direct towards element nodes in the 

graph; attribute edges. Every element node has precisely one incoming edge of sub-element 

type and any other incoming edges must be of IDREF type. If all IDREF edges of an XML 

data graph are converted into attribute edges (with destination value equal to the target node 

ID), the data graph can be mapped into a tree. Each element of the document forms a node 

in the tree labelled with the element type (tag name) and value. The edges of the tree stand 

for parent-child (containment) relationship between the elements. All sub-elements nested 

within an element appear in the tree as the child nodes directly connected with the edges to 

a parent node. The attribute in the elements represents in a nested sub-elements and form 

additional nodes in the tree, emanating from the associated parent nodes. 

 

PATTERN SPECIFICATION LANGUAGE 

 

A number of languages have been proposed for querying semi-structured and XML 

databases, which includes following XQuery, Lorel, XML-QL, and UnQL. A common 

characteristic of all existing language proposals is the existence of a pattern specification 

language e.g. Xpath, which built around path and sub-tree expressions. These expressions 

replace the traditional SQL FORM clause and enable selections based on value predicates 
as well as path navigation and branching through the XML data graph in order to reach 

relevant data elements. Path queries are popularised in the context of object-oriented 

databases, while the pattern specification language proposed for XML data are substantially 

more complex. In particular, the XPath language, Xquery, and XSLT, is the dominant W3C 

language proposals for XML querying and transformation, which allows branching of other 

regular path expression to enable queries navigation along the paths of data that uses label 

names, wild cards, value predicates and branching predications on the existence of specific 

product paths.  

The key idea underlying the implementation of the existing join algorithms is the 

decomposition of the original query path expression into a set of simple (binary) path  
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expressions. Each binary expression produces an intermediate join result, which is used on 

the subsequent stage. The XISS system introduces three join algorithms: element-attribute 

(EA-join), element-element (EE-join), and Kleene-closure (KC-join). The element-attribute 

algorithm joins two intermediate results from sub-expressions, which are a list of elements 

and a list of attributes. The element-element algorithm joins two lists of elements. The 

principal difference between these algorithms is that the latter one checks ancestor-

descendant relationship between each pair of the input lists while the former one tests 

parent-child relationship. The Kleene-closure algorithms iteratively uses element-element 

algorithm to compute closure of the expression. It repeatedly applies EE-join to the result 

from the previous stage of iteration. Both EA-join and EE-join algorithms have a loop over 

one input list nested into a loop over another list and, therefore, have time complexity 

O(|E1|·|E2|), which is quadratic in the size of the input lists. As KC-join depends upon EE-

join, it has quadratic time complexity either. 

However, structural join algorithms proposed by Al-Khalifa et al (2002) exploit the 

advantage of element numbering to decrease the time of processing (Al-Khalifa et al 2002). 

The tree-merge join algorithm is an extension of relational equality merge join performed 

on sorted inputs. The time complexity of the tree-merge join is non-quadratic O(|E1|+|E2|), 

but may include multiple passes over the same input set of descendant nodes. To avoid this 

problem, the second of the proposed algorithms, stack-tree join algorithm, utilises stack of 

nodes and has time complexity O((|E1|+|E2|)/B), where B is the blocking factor. However, 

semi-structured data imposes new challenges for parallel algorithms and requires new 

methods.  

 

DATA MODEL 

 

In representing semi-structured data, we use a graph data model labelled pseudo graph 

G = {V, A, L}, where V = {v1, … , vn} is a non-empty finite set of vertices, 

A = {(vi, vj)|vi, vj∈V} is a finite set of ordered pairs of vertices called arcs, and 

L = {l1, … , lk} is a set of labels ascribed to vertices and/or arcs. Such definition of the 

database assumes that a graph can have loops and multiple arcs among its vertices. From 

the perspective of the database, a vertex of the graph is an object of the database and an arc 

is a relation. The data graph has an implicit order of its nodes obtained by the graph 

traversal. In order to make most of the graph numbering, we map original data graph into a 

directed cyclic graph. One of the important properties of the directed cyclic graph is that it 

has a cyclic ordering of nodes. We exploit this property to define a position of every node 

in the graph. Each object and relation within the database forms a node of the numbering 

graph. The edges of the graph stand for relationships between both of these elements, 

objects and relations. Relations that form cycles are reversed and relabelled. Position is an 

important characteristic of graph nodes and intensely used for indexing and querying semi-

structured data. The position of the node ni is denoted as (Di, Si, Ei, Li), where Di is the 

graph component identifier within the database; Si, Ei are distinct graph ordering numbers 

of the node ni (pre-order and post-order respectively), and Li is the nesting depth of the 

node ni within the graph. The ancestor-descendant relationship gives a graph node of ni, and 

position (Di, Si, Ei, Li). The graph node nj and its position (Dj, Sj, Ej, Lj), the node ni is an 

ancestor of the node nj (and node nj is a descendant of the node ni) if Di = Dj (both nodes 

belong to the same component), Si < Sj and Ei > Ej (ancestor-descendant) or Si > Sj and 

Ei < Ej (descendant-ancestor). Intermediate nodes nx and their positions (Dx, Sx, Ex, Lx) that 

constitute path between the two nodes are select to meet the criteria: 
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Dx = Di = Dj, Si < Sx < Sj and Ei > Ex > Ej (node ni is an ancestor of the node nj); or 

 

Dx = Di = Dj, Si > Sx > Sj and Ei < Ex < Ej (node ni is a descendant of the node nj). 

 

The sibling relationship gives graph node ni and its position (Di, Si, Ei, Li). The graph node 

nj and its position (Dj, Sj, Ej, Lj), the node ni is a sibling of the node nj (and node nj is a 

sibling of the node ni) if Di = Dj (both nodes belong to the same component), Si < Sj and 

Ei < Ej (preceding) or Si > Sj and Ei > Ej (following). The path between these two nodes is 

selected with respect to one of the common ancestors of nodes ni and nj, nc and its position 

(Dc, Sc, Ec, Lc): Dc = Di = Dj, Sc < min(Si, Sj) and Ec > max(Ei, Ej). Then intermediate nodes 

nx and their positions (Dx, Sx, Ex, Lx) are select to meet the criteria:  

 

Dx = Dc, Si < Sx < Sc and Ei > Ex > Ec or Sc < Sx < Sj and Ec > Ex > Ej (ni precedes nj); or 

 

Dx = Dc, Sj < Sx < Sc and Ej > Ex > Ec or Sc < Sx < Si and Ec > Ex > Ei (ni follows nj). 

 

Finding a relationship between a pair of nodes is the core operation of the semi-structured 

data query processing. Graph numbering is the efficient way to determine it fast. 

Nevertheless, the scale of the real-world data challenges its wide application. As one of the 

solutions to overcome scale problem, we use graph layering as shown in Figure 1.  

 

 
Figure 1. Layered data view 

 

The original data graph is processed in order to determine its strong components. A strong 

component D of a graph G is a sub graph of every node in D and the removal of that node 

does not make D none connected. A node that ruins connectivity of the graph is a median. 

Nodes within a strong component are always connected. Nodes representing strong 

components of the graph along with medians form sets of trees. These trees are the next 

layer with its separate numbering. Every node of the original graph ascribed to the pair of 

positions, within the component tree. The procedure of finding whether a couple nodes are 

connected or not takes two steps: a) determine if their component are connected and if they 

are then b) determine their relationship within the component. 

 

GRAPH NUMBERING AND QUERY PROCESSING 

 

We have proposed the graph numbering using indexing for querying connections among 

data that exploits the concept of node position to merge several input lists in one pass. As it 

 

Data graph 

Component tree 
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processes several binary structural relationships that form a sequence, we call it sequence 

join algorithm. The basic idea of the algorithm is to synchronously read input lists to find 

first match of the node intervals and put it into the result list. If the intervals in two adjacent 

lists do not match, based on the result of their comparison, the record of one of the lists will 

be deleted. The propagation of changes goes from the last list back to first. The depth of the 

recursion is equal to the number of input lists, which relates to XML data tree input. For 

regular path expression a1/a2/…/an, both approaches require n selection operators resulting 

in lists of nodes A1, A2, …, An respectively. The execution plans for binary joins and 

sequence join are shown in Figure 2 below. We consider the total time to perform join 

operation as the sum of time needed to read input lists (σ) and time necessary to create 

output list (τ): σ + τ. 

 

 

 
 

 

Figure 2. Execution plans of the binary and sequence joins 

 

 

The task of matching complex query reduces the performance of join operation for each 

binary structural relationship in query expression. For n input lists of nodes, it causes 

creation of intermediate lists of nodes. The next step is to perform binary join operation 

over the intermediate lists. The latter will be applied until the result is the only one, in result 

list. Thus, the whole number of intermediate list (including the result list) is n – 1. In Figure 

2 a) these lists are denoted as An+1, …, A2n–1. The total time necessary to perform multiple 

pair wise join is: 

  

 
 

The τi and σi is the time required to create and read list i respectively. The sequence join 

reads input lists A1, …, An and project the result list A2n–1, as shown in Figure 2 b). The total 

time necessary to perform sequence join is: 

 

 
 

The σi is time required to read input lists, and τ2n–1 is time needed to create the result table. 
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The parameters τi and σi depend on the capacity of the list i. If the number of nodes in each 

list is comparable then we can assume the times to create and read list are equal. The time 

differences between the two approaches in Figure 2 above is illustrated in Figure 3 below: 

  

 
Figure 3. Time differences 

 

However, the parameters of τi and σi depend on the capacity of the list i. If the number of 

nodes in each list is comparable then we can assume the times to create and read list are 

equal: ∀i, i = 1,…,n; σi = σ, τi = τ. Time cost functions of the algorithms is: 

 

(σ + τ)(n – 2), (1a) 

 

Where τ and σ is average time required to create an output and read an input list 

respectively, n is number of original input lists. The Figure 4 shows the time cost graphs of 

sequence join algorithm performance. 

 

 
 

Figure 4. Time difference between the binary and sequence joins 

 

The key idea of our proposed framework is to consider the original database as a graph: 

• Both objects and relations of the database are represented as graph nodes – this 

provides a unified way for their arrangement, indexing and storage. 

• The initial graph is direct and, generally, cyclic – we convert it into a directed 

cyclic graph by giving database relations status of nodes, then rearranging nodes 

so the graph is rooted. 

• Every node of the graph ascribed with a couple of ordering numbers of the graph 

and post-order graph traversals analogous to a tree traversals. 
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Figure 5. Framework of treating relational data as semi-structured 

 

Figure 5 is performed has a pre-processing stage of storing new data or wrapping a legacy 

system. The query stage exploits graph numbering for fast selection of all intermediate 

nodes that constitute paths between nodes. 

 

PROTOTYPE SYSTEM 

 

We implemented a prototype system for storing, indexing, and querying connections 

among data. The system works as a wrapper for an existing relational database. The real 

world data set has been used as an input of the prototype. We used a subset of over 20,000 

companies from a FAME (Financial Analysis Made Easy) database. The FAME database 

contains financial and statistical information about all companies in UK. We have limited 

our objects to company’s directors, shareholders, postcodes and ownership data. The 

prototype screenshot shows the sample query of the semi-structured data to find connection 

between a person and a company (see Table 1 for sample queries). 

 

 

Query XQuery expression Dataset 
RPE 

length 

Q1 /FMDataBase/FCCAmRadio/Address/City HAM-RADIO 3 

Q2 /PLAY/ACT/SPEECH/LINE Shakespeare 4 

Q3 /country/province/city/name Mondial 4 

Q4 Xmark (100Mb) 4 

Q5 
/person/profile/interest/category 

Xmark (1Gb) 4 

Table 1. Description and parameters of the test queries 
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Figure 6. Query performance comparisons 

 
The cases with the query path length of more than 2, demonstrates improved performance 

of the sequence algorithm against the pair-wise algorithm (see Figure 6). However, the 

selection of the result of all intermediate nodes that constitute paths between queries nodes 

are represented as a tree with expandable nodes.  

 

CONCLUSION 

 

Current approaches adopted the existing relational storages (and map semi-structured data 

into relational) or use native solutions. There exist hybrid solutions as well. Since any input 

query may initiate both mining processes and storage/retrieval operations, it is necessary to 

define appropriate criteria and algorithms for splitting/joining results obtained on each 

level. We have developed the sequence join algorithm for regular path expressions. In 

contrast to pair wise approach, the algorithm takes several lists of elements as an input and 

exploits the position of the element within XML document to compute faster structural 

relationships between elements. The processing of XML documents may require a traversal 

of all document structure and, therefore, the cost could be very high. A strong demand for a 

means of efficient and effective XML processing has posed a new challenge for the  

Q5 
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database world (Shoniregun & Logvynovskiy2004). Therefore, the structural pattern are 

matched with available input lists at once but does not generate non-existent sub-results and 

hence eliminates creation of excessive intermediate data.  

 

REFERENCES 

 

Al-Khalifa, S. Jagadish, H.V.  Koudas, N.  Patel, J.M.  Srivastava, D. and Wu, Y.,(2002) 

“Structural Joins: A Primitive For Efficient XML Query Pattern Matching”, In 

Proceedings of the IEEE International Conference on Database Engineering 

(ICDE). 

Bray, T.,  Paoli, J. Sperberg-McQueen, C.M.,  Maler, E.,  (2000) “Extensible Markup 

Language (XML) 1.0 (Second edition) ”, W3c recommendation. Technical Report rec-

xml-20001006, Available from   http://www.w3.org/TR/REC-xml, (Access date: 29 

October 2004) 

Cooper, B. Sample, N. Franklin, M. Hjaltason, G. and Shadmon, M.  (2001) “A Fast Index 

For Semistructured Data”, In Proceedings of VLDB’01. 

 Deutsch, A. Fernandez, M. and Suciu, D. (1999) “Storing Semistructured Data With 

Stored”, In Proceedings  of SIGMOD Conference   

Papakonstantinou, Y. Garcia-Molina, H. and Widom, J. (1995) “Object Exchange Across 

Heterogeneous Information Sources”, In Proceedings of the 11th International 

Conference on Data Engineering. 

Shoniregun, C. A. and Logvynovskiy, O. (2004) “Securing XML Documents”, The 

Australian Journal of Information Systems (AJIS), September, Vol 11, pp 194-200. 

Wang, K., Liu, H.Q.  (2001) “Mining is part of Association Patterns From Semistructured 

Data”, In Proceedings of the 9th IFIP 2.6 Working Conference on Database 

Semantics (DS-9), Hong Kong, April. 

Xyleme, L. (2001) “A Dynamic Warehouse For Xml Data Of The Web”, In Bulletin of the 

Technical Committee on Data Engineering, vol. 24, no. 2, June. 

 

       . 

 

 

 


