
AJIS Vol 13, No. 1 September 2005

 19

RULE MINING FOR DYNAMIC DATABASES

A Das & D K Bhattacharyya

Department of Information Technology

Tezpur University, Napaam 784 028, India
E-mail : dkb@tezu.ernet.in, anjan_sh@rediffmail.com

ABSTRACT

Association rules identify associations among data items and were introduced in 1993 by
Agarwal et al.. Most of the algorithms to find association rules deal with the static
databases. There are very few algorithms that deal with dynamic databases. The most

classical algorithm to find association rules in dynamic database is Borders algorithm. This
paper presents two modified version of the Borders algorithm called Modified Borders.

Experimental results show that the modified version performs better than the Borders

algorithm in terms of execution time. To address the scalability issue, the paper also
proposes a distributed version of the Borders algorithm, called Distributed Borders.

Keywords: Rule mining, itemset, frequent items, support, confidence, border sets,

promoted border sets.

INTRODUCTION

Association Rule is one of the most vital areas of research in data mining and was

introduced by Agarwal et. al in 1993 [Agarwal(1993)]. Association rules are of the form

“80% of the customers who buy bread also buy butter". In other words association rules

find the influence of one set of items on another set of items. Association rules have got
numerous applications in real world such as decision support, understanding customer

behavior, telecommunication alarm diagnosis and prediction, etc. The departmental stores

also can use association rules in many fields such as catalog design, add-on sales, stored

layout etc.

The terms most frequently used in relation to association rules are itemset, support,

confidence, frequent itemsets . An itemset means a non-empty set of items. The support of

an itemset X is defined as the % of transactions/records in a database that contains X. An

itemset with support greater than the some pre-defined minimum support is called a

frequent or large itemset. An association rule between two disjoint and frequent itemsets X

and Y exists, if X ∪ Y is frequent and confidence is at least some pre-defined value.
Confidence of an association rule between X and Y is defined as the percentages of

transactions/records that contain X also contain Y.

Finding frequent itemset is one important step in association rule mining. There are some

influential algorithms to find the frequent itemsets from large databases. The most classical

algorithm is Aprior (Agarwal(1994)). Some other important algorithms are AprioriTid

[Agarwal(1994)], FP-Tree [Han(2000)], Partition algorithm[Savasere (1995)], DIC

algorithm[Brin(1997)] etc.

One general assumption in all the above-mentioned algorithms is that database is static.

However in reality, most of the databases are dynamic and are updated frequently i.e. new

records are added, old records are deleted and existing records are modified frequently. So

the itemsets, which are frequent, may not be frequent when the database is updated and the

itemsets, which were not frequent, may become frequent when the database is updated.

Moreover, new database may contain some new interesting rules, which were not present in

the old database. One obvious technique is re-running association rule mining algorithms

AJIS Vol 13, No. 1 September 2005

 20

in the updated database to find the frequent itemsets in the updated database. However, this

is not the optimal solution because of the following reasons.

1. It will require running the algorithms on adding, deleting or updating a

small number of records.

2. It will take too much time because it will scan the same database every

time.

3. It will generate most of the itemsets repeatedly

Literature shows that there are some algorithms to find frequent itemsets in dynamic

databases. Some of them are FUP [Cheung(1996)], FUP2[Cheung(1997)]

,DELI[Lee(1998)], MAAP[Ezeife(2002)]. Some more works can be found in

[Thomas(1997), Feldman(1997)]. The main requirements of a dynamic association rule-

mining algorithm are

1. It should be able to use the already discovered frequent itemsets to discover new

frequent itemsets.

2. It should not have to scan the old records/transactions.

3. It should scan the new records/transactions as few number of times as possible.

The most popular and important algorithm, which follows the above criteria, to find

frequent itemsets in dynamic database is the Borders algorithm [Feldman(1999)]. This

algorithm has used the concept of border and promoted border set to update the frequent

itemsets. However, the algorithm suffers from scalability problem and cannot be used in

distributed environment. To address these problems, this chapter presents a modified

version of Borders algorithm, which takes less time than that of Borders algorithm. This

chapter also presents a Distributed Border algorithm, which is meant for distributed

dynamic databases. Symbols given in Table 1 are used to explain the algorithms.

BORDERS ALGORITHM

Feldman et. al. [Feldman(1999)] proposed Borders algorithm, which uses the concept of

border set. There are three variations of Borders algorithm : addition of

transactions/records; addition and deletion of transactions/records ; changing of minimum

support threshold. The main characteristics of the algorithm are as follows.

Entire database is scanned only when new candidate sets are generated.

There are only few candidates for which support is counted even if entire database is

scanned.

AJIS Vol 13, No. 1 September 2005

 21

Table 1: Symbols

D Database

|D| Number of records/transactions in the database D.

TID Transaction ID.

X ,Y Itemsets.

S(X) Support of X in %

Si The site I

n Number of sites.

α Minimum support in %

β Positive real number (< α)

Told
I Old database at the site I

Tnew
 i Incremental database at site I

Told The old database (∪ Told
I)

T new The newly added records/transactions (∪Tnew
i)

Tdel Records/transactions to be deleted.

Twhole
 I Told

i ∪ Tnew
 I

Twhole The whole database

(Told ∪ T new) - Tdel

Lold Set of frequent itemsets in Told (with local support)

Bold Set of border itemsets in Told (with local support).

Bold
/ First border set in Told

Bold
// Second border set in Told

Bwhole
/ First border set in Twhole

Bwhole
// Second border set in Twhole.\\

Lwhole
i Frequent itemsets in Twhole at the site i

Lwhole Set of frequent itemsets in Twhole

Bwhole Set of border itemsets in Twhole

B i Promoted border itemsets at the site I

B Promoted border set (∪ Bi)

F i Frequent itemsets in the updated database at the site I

F Frequent itemsets in the updated database (∪ F I).

L whole (i) x, x ∈ L whole and |x| = I

B whole
i Border itemsets in T whole at the site I

B(i) b ∈ B and |b|=I

Li Frequent itemset of size i

C i Candidate itemset of size i

C Set of all candidates.

c A candidate itemset.

S(X) y Support count of the itemset X in the database y

X.sup.new i Support of X at T new
I

X.sup.new Support of X at T new

X.sup i Local support of the itemset X at the site I

X.sup Global support of X

S(X) Y
i Support of X at the site i for the database Y.

AJIS Vol 13, No. 1 September 2005

 22

Figure 1 : Border Set

Actually, Manila and Toivonenn gave concept of border set. An itemset X is called a

border set if X is not frequent, but all its proper subsets are frequent. So collection of

border sets forms the border line between the frequent sets and non-frequent sets. An

itemset that was a border set before the database was updated and has become frequent
after the database has been updated is called a promoted border set. Borders algorithm also

uses the same concept and maintains support counts for all the frequent sets as well as

border sets.

Input : T new , Told α, Lold and Bold
Output : Lwhole and Bwhole

Scan T new and increment the support count of X ∈ Lold ∪ Bold

B :={X | X ∈ Bold and S(X) Twhole ≥ α}

Lwhole := B ∪ {X | X ∈ Lold and S(X) Twhole ≥ α }

B whole = {X | ∀ x ∈ X, X -{x} ∈ L whole }

m= max {i | B(i) ≠ φ }
 Candidate-generation :

 L0 = φ, i =1
While(Li ≠ φ or i ≤ m) do
 Ci+1= { X = S1 ∪ S2 | (i) |X|=i+1,

 (ii) ∃ x ∈ S1, S1 -{x}∈ B(i) ∪ Li

 (iii) ∀ x ∈ S2, S2 -{x} ∈ L whole(i) ∪ Li }

 Scan Twhole and obtain S(X) for all X ∈ Ci+1

 Li+1 = { X | X ∈ Ci+1 and S(X) ≥ α}

AJIS Vol 13, No. 1 September 2005

 23

L whole = L whole ∪ L i+1

 B whole = Bwhole ∪ Ci+1 - L i+1}
 i = i+1

Enddo

Figure 2: Borders Algorithm (addition)

The algorithm is based on the observation that a set is required to be considered as a

candidate set only if it has a subset that is a promoted border. The following lemma proves

this observation. In addition to the lemma, the paper [Feldman(1999)] also proved that

Borders algorithm is correct.

 Lemma: If X is an itemset which is frequent in Twhole and not frequent Told , then there exist

a subset Y ∈ X such that Y is promoted border.
Proof : Let Y be a minimal cardinality subset of X , which is frequent in T whole , but not in T

old. So all proper subsets of Y are frequent in T whole. However, by minimality of Y, none of

these subsets is a new frequent set in T whole. So Y is a border set in Told.

Given L old and B old, the task of the Borders algorithm is to find L whole and B whole. The

algorithm (addition) is presented in Figure 2 . The algorithm assumes that L old and Bold

are known with their respective supports. L old and Bold can be found by any association

rule mining algorithms like Apriori. The algorithm starts by making one pass over the new

database T new and counts the supports of the itemsets of L old ∪ Bold for Tnew .
During this pass the algorithm calculates B and L whole. If B is null, then L whole contains all

the frequent sets of Twhole. However, if there is at least one promoted border (i.e. B is not

null), then the algorithm generates new candidate sets Ci+1 (steps 8-10) and scans over the

entire database to count the support of them (steps 11-13). Then it finds the frequent

itemsets Li+1 based on the support count and updates Lwhole and B whole. This process

continues as long as new candidates can be generated. So the algorithm scans the whole

database, if there is some promoted border set. Otherwise, it does not require scanning the

whole database.

An example

Let us take Told and Tnew as given in Table 2 and Table 3 respectively and the support be

40%.

A1 A2 A3 A4 A5

1

1

1

0

0

0

0

0

1

1

1

0

1

0

0

0

0

0

0

1

1

1

1

0

0

AJIS Vol 13, No. 1 September 2005

 24

Table 2 : Told

A1 A2 A3 A4 A5

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

1

1

0

0

1

1

0

1

0

0

Table 3 : Tnew

Then, Lold is {(A1,A2,A3,A5), (A1A3), (A1A5), (A3A5), (A1A3A5)} and Bold is { (A4),

(A1A2), (A2A3), (A2A5)}. Next, T new is added with T old. Now, T new is scanned to

calculate B, Lwhole and B whole.

B = {(A4)}

L whole = {A4 , A1 , A5, A1A5)}

B whole = {(A1A4), (A4A5), (A1A5)}

Here, we have got one promoted border (A4). So, we have to generate new candidate

itemsets. New Candidates are generated in level-wise fashion as in Apriori.

Candidate 2-itemsets are C2 = { (A1A4) , (A4A5)}

Candidate 3-itemsets are C3 = { (A1A4A5) }

Now the whole database T whole is to be scanned to update L whole and B whole.

Discussion :

The Borders algorithm is robust enough to find the frequent itemsets in a dynamic

database. However, from our experimental study, it has been observed that

• With the increase in the volume of the Told and T new, the cost of the

scanning of T whole in the every iteration becomes too expensive.

• It suffers from scalability problem.

To overcome the above problems, this paper proposes two enhanced versions of the present

Borders (addition) algorithm. These are Modified Borders and Distributed Borders.

Modified Borders has used two border sets to reduce scanning of entire database. On the

other hand, Distributed Borders is the extension of Borders in distributed environment.

MODIFIED BORDERS ALGORITHM

As it is mentioned above, Borders has to scan entire database when there are some

promoted borders. However, scanning entire database is very expensive, particularly, when

the database is large. Scanning entire database can be avoided if new candidates are not

generated frequently. New candidates are generated, if there is even one promoted borders

because borders are not included to generate candidate in the old database. So, if borders

are included to generate candidates in the old database, then there will be no new

candidates. However, it will be infeasible to include all the borders to generate candidates

in the old database. This concept led us to include some of the borders, which are likely to

become promoted border, to generate candidate sets in the old database so that if those

borders become promoted, no new candidates will have to be generated. New candidates

AJIS Vol 13, No. 1 September 2005

 25

will be generated only when some borders, which were not included to generate candidates

in the old database, becomes promoted. Based on the above discussion, Borders has been

modified by including two border sets. The first border set is Bold
/
and the second border set

is Bold
//
. Bold

/
 is calculated as

{ X | ∀ x ∈ X, X-{x} ∈ (L old ∪ B old

/); S(X) ≥ β and S(X) < α }. Bold

//
 is calculated as

{X | ∀ x ∈ X, X-{x}∈ (L old ∪ B old
/
) ; S(X) < β }. Bold

/
 and Lold take part in

candidate generation, whereas the elements of Bold
//
 are not used in candidate generation.

Another requirement in the algorithm is that all the subsets of an itemset X ∈ (Bold
/
 ∪

Bold
 //
) must be ∈ (Lold ∪ Bold

/
). Obviously, Bold

/
 contains the itemsets with higher

probability of becoming promoted when new transactions are added. New candidate sets

will be generated only when any of the elements of the Bold
//
 becomes promoted. If new

candidate itemsets are generated, one scan over the whole database is required to find

supports of the new candidates.

The algorithm

The algorithm works as follows. Lold, Bold
/
 and Bold

//
 are assumed to be known with their

respective support counts. The algorithm starts by making one pass over the new database

Tnew and updates supports of the elements of Lold ∪ B old
/
 ∪ Bold

//
. During the pass, the

algorithm generates four categories of itemsets - B
/
, B

 //
, B

///
 and B

////
 . If B

//
 is null, then

no new candidate set is required to be generated. If B
//
 contains at least one itemset, then

new candidate sets are required to be generated. If new candidate sets are generated, the

algorithm makes one pass over the entire database to count the support of the new
candidate sets. At the end, the algorithm generates Lwhole, Bwhole

/
and Bwhole

//
, which are

counterparts of the Lold , Bold
/
 and Bold

//
 respectively, for the whole database Twhole. The

algorithm is presented in the Figure 3.

Input : Tnew , Told , α, β , Lold and Bold
/
,

 Bold

//

Output : Lwhole and Bwhole
/
, Bwhole

//

Scan Tnew and increment the support count of X ∈ (Lold ∪ Bold
/
 ∪ Bold

 //
)

B
/
= {X | X ∈ Bold

/
 and S(X)T whole ≥ α}

 B
//
= {X | X ∈ Bold

//
 and S(X)T whole ≥ α }

Lwhole = B
/
 ∪ B // ∪ {X | X ∈ L old and S(X)T whole ≥ α }

B
///
= {X | X ∈ Bold

//
; ∀ x ∈ X, X -{x} ∈ Lwhole; S(X) Twhole ≥ β and S(X)Twhole < α }

B
////
 = {X | X ∈Bold

/
 ∪ Lold ; ∀ x ∈ X, X -{x} ∈ Lwhole ; (S(X)Twhole ≥ β and S(X)Twhole < α

)}

 Bwhole
 /
 = B

///
 ∪ B

 ////

Bwhole
//
 = {X | ∀ x ∈ X, X -{x} ∈ Lwhole and S(X) < β }

If B
// ≠ φ then

 m = max {i | B
//
(i) ≠ φ }

 Candidate-generation:

L0 = φ , B0 = φ, k=2
While (Lk-1 ≠

 φ or Bk-1 ≠ φ or k ≤ m+1) do

 Ck = φ
 L = B

//
(k-1) ∪ Lk -1 ∪ B

///
(k-1) ∪ B k-1

 M = L k-1 ∪ L whole (k-1) ∪ B whole
/
(k-1)

 For all itemsets in l1 ∈ L do begin

AJIS Vol 13, No. 1 September 2005

 26

 For all itemsets in l2 ∈ M do begin

 If l1 [i] = l2[i] (1 ≤ i ≤ k-2) and l1[k-1] < l2[k-1] then
 C = {l1 [1], l1[2], …l1[k-2], l1[k-1], l2[k-1]}

 Ck = Ck ∪ C
 End for

 End for

 Prune Ck : All the subsets of Ck of size k-1 must be present in M ;

 Scan Twhole and obtain support S(X) for all X ∈ Ck

 Lk = {X | X ∈ Ck and S(X) ≥ α }
 L whole=Lwhole ∪ Lk

 B k = {X |X ∈ (Ck - Lk); ∀ x ∈ X, X-{x} ∈ L whole; S(X) ≥ β and S(X) < α)
 Bwhole

/ = Bwhole

/
 ∪ Bk

 Bwhole
//
 = Bwhole

//
 ∪ {X |X ∈ (Ck - Lk); ∀ x ∈ X, X-{x} ∈ Lwhole ; S(X) < β)

 k = k+1 ;

Enddo

Figure 3: Modified Borders Algorithm

 An example

Let us consider Told as given in Table 4 and assume α = 40% and β = 30%.

A B C D E

1 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 1 0 1 0

1 1 1 0 0

1 0 0 0 0

0 0 0 0 0

1 1 0 1 0

Table 4 : Told : Sample market -basket database

Now, Lold, Bold
/
 , Bold

//
 are obtained as given below.

Lold = {A, B, D , (AB)}

Bold
/

 = {(C)}

Bold
 //
= {(E), (AD , BD, AC, BC, CD}

Suppose, Tnew (Table 5) is added to the T old (Table 4). When Tnew is scanned, B
/
, B

//
, B

/// B////, Lwhole, Bwhole
/ and Bwhole

// are obtained as {C}, {E}, φ, φ, {A, B, D, (C), (E), (AB)
}, φ and φ respectively. Since B// is not null, new candidate itemsets will have to be
generated. New candidate itemsets, after pruning, will be {(AE,BE,CE,DE), (ABE) }. Then,

entire database is scanned to find the support count of the new candidates.

AJIS Vol 13, No. 1 September 2005

 27

A B C D E

0 0 1 1 1

1 1 0 0 1

1 1 1 0 1

0 0 1 0 1

Table 5 : Tnew

Experimental results

We compared Modified Borders with Borders algorithm using two synthetic databases and

one real database. Both the algorithms were implemented on a Intel PIV based WS (with

256 MB SDRAM). Lold, Bold , Bold
 /
 and Bold

//
had been computed separately.

Test Data : We used synthetic databases, which were generated using the technique given

in [Agarwal(1996)], and the Connect-4 dataset, which were downloaded from UCI machine

learning repository(www.ics.uci.edu). All the synthetic datasets contained 100K records

and dimensionality of each record is 255. Other parameters for synthetic databases are

shown in the Table 6 . For all the experiments, initial sizes of the synthetic databases and

Connect-4 were taken as 80K records and 47557 records respectively.

Data Set |T| [I] |D|

T20I4100K 20 4 100K

T20I6100K 20 6 100K

Table 6 : Parameters used for synthetic data generation

We executed each of the experiments several times. Tables 7 through 9 show average

number of full database scan required in Borders and Modified Borders as the value of β
increased from 3.5% to 4.5% and size of incremental database is increased from 5K records

to 20K records. The value of α (minimum support) was taken as 5 % for all the
experiments. Average execution times over all increments are given in Figures 4 through

6.

Table 7 : Database:T20I4100K

Table 8 : Database:T20I6100K

Increment Borders Modified

(β =3.5%)
Modified

(β =4%)
Modified

(β =4.5%)
5K 1 0 0 1

10K 3 0 1 2

15K 2 0 0 2

20K 3 1 1 3

Increment Borders Modified

(β=3.5%)
Modified

(β =4%)
Modified

(β =4.5%)
5K 0 0 0 0

10K 3 0 0 2

15K 2 1 1 1

20K 3 0 1 2

AJIS Vol 13, No. 1 September 2005

 28

Table 9 : Database:Connect4

Figure 4 : Average Execution Time

Increment

Borders Modified

(β = 3.5%)
Modified

(β=4%)
Modified

 (β =4.5%)

5K 0 0 0 0

10K 1 0 1 1

15K 1 0 1 1

20K 2 1 1 1

AJIS Vol 13, No. 1 September 2005

 29

Figure 5 : Average Execution Time

AJIS Vol 13, No. 1 September 2005

 30

Figure 6 : Average Execution Time

Observations

Following are some observations made from the experimental results.

• Experimental results (Tables 7, 8 & 9) show that Borders algorithm

requires whole scan of the database several number of times, whereas

Modified Borders requires whole scan of database a few number of times.

• The value of β has a great effect on the performance of Modified
Borders algorithm. As the value of β increases, number of whole scan
also increases. In our experiments, we found that when β =4.5%, number
of full scan of the database is almost same in both the algorithms.

• As far as execution time is concerned, Modified Borders takes much less

time than that of Borders when β is small (Figures 4, 5 & 6). As the
value of β increases, Modified Borders tend to take little more time. This
is because number of full scan tends to increase with the increase of

value of β.

On the selection of the value of ββββ :

Value of β plays an important role in the algorithm. When β → α, the algorithm tends to
become Borders algorithm. With the decrease in value of β, performance of Modified
Borders becomes better than Borders algorithm in terms of execution time. However,

AJIS Vol 13, No. 1 September 2005

 31

with the decrease in value of β , the memory requirement increases due to the additional
candidate sets. So value of β cannot be decreased too much. This cost of additional
memory requirement is quite negligible in comparison to the requirement of full database

scanning, particularly when database is very large. So there should be some trade off in

choosing the value of β . If there is not enough memory and the database is dense, the value
of β can be set to a higher value. For sparse databases, β can be set to a lower value. Here
is one simple method to adjust the value of β. For the first increment of the database, β can
be set to a lower value. In the subsequent increments, β can be increased a little until
number of candidates is manageable and gives desired result.

DISTRIBUTED BORDERS ALGORITHM

The Borders algorithm is sequential in nature and meant for centralized database.

However, most of the databases are distributed in nature. Distributed Borders algorithm is

basically meant for distributed dynamic databases. However, it can also be used in a

centralized database by partitioning the database and placing the partitions in different

nodes of distributed systems. This process reduces the number of candidate sets to a great

extent resulting in high flexibility, scalability and low cost performance ratio

[Cheung(1996),31-42]. Distributed algorithms posses some problems such as locally

frequent or border sets may not be globally frequent or border sets. Again, message passing

being a costly affair, processing should be confined in the local sites as much as possible.

To explain the algorithm, it is assumed that databases of similar structure are distributed in

different sites which are networked. Let us consider a transactional database, where each

record is a transaction in a supermarket made by the customers. Each transaction is of the

form <TID,1 ,1 ,0...0, 1> . Here TID is the transaction id, which is unique for each

transaction. 1 and 0 represents the corresponding item has been bought and not bought

respectively in the transaction. It is also assumed that the database is horizontally

partitioned and allocated in n sites Si (i=1, 2, 3...n) in a distributed system. Now, the task is

to maintain the global frequent itemsets and global border sets in this distributed

environment when the database is updated.

Distributed algorithm for maintaining frequent itemsets in dynamic database

Here, we have examined the Borders algorithm in the distributed environment. Let Told be

the old transaction database distributed in n sites. Told
i
 is the old transaction database at the

site i (i =1, 2, 3...n). Tnew and Tnew
i
 are the new transactions to be added to the whole

database and to the transactions at the site i respectively. X.sup and X.sup
i
 are the

global support count and local support count at the site i respectively of the itemset X. For

a given minimum support threshold α , an itemset X is globally frequent in the old
database(updated database) if X. sup ≥ α |Told| (X.sup ≥ α |Twhole|). Similarly, an
itemset X is locally frequent in the old database(updated database) at some site i, if X.sup

i

≥ α |Told
i
| (X.sup

i
 ≥ α |Twhole

i
 |). Like the Borders algorithm, this algorithm also uses the

concept of border set and promoted border set. The only difference is that all the concepts

have been used in the context of the distributed environment. An itemset X is a global

border, if X is not globally frequent, but all its subsets are globally frequent. An itemset X

becomes globally promoted border on adding the new transactions, if X is a globally

border in the old database and globally frequent in the updated database. Lold is the global

frequent itemsets in the old database and Bold is the global border sets in the old database.

AJIS Vol 13, No. 1 September 2005

 32

Given Lold and Bold, the problem here is to find updated frequent itemsets Lwhole and border

sets Bwhole for the updated database Twhole.

The main purpose of the Distributed Borders algorithm is to reduce the number of

candidate sets and in turn reduce the number of messages to be passed across the network

and execution time. To reduce the number of messages, we used polling technique as

discussed in DMA [Cheung(1996,911-921)]. Some interesting observations, which are

listed below, can be made relating to frequent, border and promoted border sets in large

database in distributed environment. Some of these observations were discussed in

[Cheung(1996,911-921)].

1. Every global frequent itemset X must be frequent in at least one site Si.

2. If an itemset X is locally frequent at some site Si, than all its subsets are also

locally frequent in the site Si.

3. If an itemset X is globally frequent at some site S i, then all its subsets are also

globally frequent at the site Si.

4. If an itemset X is globally frequent or promoted border, then X must be

frequent in at least one site i.

Proof: This is obvious because if an itemset X is small in all the sites, it

cannot be frequent in the whole database. 
5. If an itemset X is a global promoted border set, then X must be frequent in

Tnew
i
 for some site Si.

Proof: Let an itemset X is a promoted border set in the updated database

Twhole. Then S(X) < α |Told | and S(X) ≥ α |Twhole|. Since Twhole = Told ∪ Tnew ,
S(X) ≥ α |Tnew|. Therefore S(X) ≥ α ∑ |Tnew

i
.| . Hence, S(X) ≥ α |Tnew

 i
| for at

least one site Si. 

6. If X is global border set, then there exist a Y ⊂ X so that Y is local border in
some site Si.

Proof: If X is a global border set, then X must be small/infrequent in at least

one site Si. Therefore, there exist at least one subset of X, which is a local

border set in the site. 

7. If a new candidate set c ∈ Twhole has to be frequent or border in Twhole , then
either c or one of its immediate proper subsets must be locally frequent in one

Tnew
i
.

Proof : If c is a new candidate set there can be two possible cases:

a) c is frequent in the updated database Twhole : In this case c must be

frequent in Tnew i.e. c must be frequent in Tnew
i
 for some i.

b) c is a border set in the updated database Twhole : In this case c

will be small and all of its subsets will be frequent in the updated

database Twhole. So there exists at least one c
/ ⊂ c, which was

small in the old database Told. Otherwise, c would have been

generated in the old database Told. This c
 /
 will be frequent in the

updated database Twhole. So c
/
 must be frequent in the Tnew i.e. c

 /

must be frequent in Tnew
i
 for some i. 

8. If a candidate set X in the updated database is either frequent or border set, all

of its immediate proper subsets must be either ∈ (F ∪ B) or frequent in at
least one site.

Proof: There can be two possible cases:

a) X is frequent in the updated database: If X is frequent, then all the

subsets of X must also be frequent in the updated database. Let Y ⊂ X.

AJIS Vol 13, No. 1 September 2005

 33

Then, Y is either a candidate set or Y ∈ F ∪ B . If Y is a candidate and Y
is frequent, then Y must be frequent in at least one site because Y

cannot be frequent if it is small in all the sites.

b) X is border in the updated database: In this case, all the subsets of X must

be frequent in the updated database. So, by first option, all the subsets

are either ∈ (F ∪ B) or frequent in at least one site. 

Local pruning

Using the above observations many unnecessary candidates can be pruned locally. If an

itemset X is locally small in all the sites, then X cannot be frequent globally. That is why,

itemsets are first checked if they are locally frequent or not. Their global support are found

only when they are locally frequent in at least one site Si. Similarly some promoted border

sets also can be pruned away locally using Observation 4. So, if a border set X is not

frequent in any site, then it is not tested for global promoted border. Observation 7 is also

very significant in pruning away candidate sets locally. After the candidate sets are

generated, support of the candidate sets are counted in the incremental part Tnew
i
. If any

candidate set or at least one of its immediate proper subsets is not frequent in at least one

Tnew
i
, it can be pruned away because by Observation 7 it can be neither frequent nor

border. Observation 8 is also helpful in pruning away unnecessary candidate sets.

 Input: Lold , Bold, Tnew
i
, Told

i
 and α

 Output: Updated Lwhole and Bwhole

Repeat the following steps at each site i distributively.

Scan Tnew
i
 and count the support of all the itemsets X ∈ (Lold ∪ Bold) and find

 B
i
 = {X|X ∈ Bold and S(X)T new

i
 ≥ α | Tnew

i
| }

 Lwhole
i
 = B

i
 ∪ { X | X ∈ Lold and S(X)Twhole

i
 ≥ α |Twhole

i
| } (by observation 4)

 Broadcast X ∈ Lwhole
i
to other sites along with their supports.

Prune Lwhole
 i
 : Lwhole

i
 = { X | X ∈ Lwhole

i
 and S(X)Twhole ≥ α |Twhole| }

 Compute B = ∪Bi and Lwhole = ∪ Lwhole
i

Bwhole = {X | ∀ x ∈ X, X-{x} ∈ Lwhole }

 Generate candidates:

m = max { i | B(i) ≠ φ }
i=1

While (Li ≠ φ or i ≤ m) do
 Ci+1 = { X = S1 ∪ S2 | (i) |X|=i+1,

 (ii) ∃ x ∈ S1, S1- {x} ∈ B(i) ∪ Li ,

 (iii) ∀ x ∈ S2, S2-{x} ∈ L whole (i) ∪ Li }

 Scan Tnew
i
 and compute X.sup.new

i
 for all X ∈ Ci+1.

 Remove any candidate set X ∈ Ci+1, which is or at least one of its immediate
proper subsets is not frequent in Tnew

i
(by observation 7).

 Scan Told
i
 and find the support X.sup

i
 for all X ∈ Ci+1 (Tnew

i
has already been

scanned)

 Ci+1 = {X ∈ Ci+1 | ∀ x ∈ X, Y= X-{x}, Y ∈ Lwhole or Y.sup
i
 ≥ α |Twhol e

i
| } (by

AJIS Vol 13, No. 1 September 2005

 34

observation 8)

 Find the global support for all X ∈ Ci+1 as X.sup = ∑ X.sup
i

 Li+1 = {X | X ∈ Ci+1 and X.sup ≥ α }

 Lwhole = Lwhole ∪ Li+1

 Bwhole = Bwhole ∪ (Ci+1 - Li+1)
 i=i+1

Enddo

Return Lwhole and Bwhole

Figure 7 : : Distributed Borders Algorithm

Explanation of the algorithm

It is assumed that the Lold and Bold are available with the local support to all the sites. The

algorithm starts with scanning the incremental portion Tnew
i
 and finds local support for all X

∈ Lold ∪ Bold. This is because frequent sets and border sets, which are frequent locally in
at least one site, can only be frequent globally. Then comes the step 2, which finds the

global support for Lwhole
i
 This can be done by simply broadcasting the local support of X

∈ L whole
i
. If all the items are broadcast to all the sites, then for each item X, O(n

2
) messages

will be required, where n is the number of sites. So polling techniques as described in

[Cheung(1996,31-42)] can be used. This technique reduces the number of messages to O(n)

for each itemset. Step 3 prunes away all X ∈ Lwhole
i
 , which are not globally frequent.

Then the Step 4 just broadcasts the Lwhole
i
to other sites and receives the same from other

sites to compute Lwhole and B. It can be noted that, all the sites will be having the same set

of Lwhole and B. Steps 6-11 are responsible for generating the candidate sets. The

candidate sets are generated in the step-wise method like Apriori. Some kind of pruning

techniques are required to prune away some unnecessary candidate sets. Observation 4
helps prune away some candidate sets. Steps 13-15 are basically pruning steps. It scans

the Tnew
i
and finds the X.sup.new

i
for all the candidate sets. According to Observation 4, a

candidate X can be neither frequent nor border, if neither X is frequent nor at least one of

its immediate proper subsets is frequent in any Tnew
i
. So the candidates, which do not

conform to Observation 4, can easily be removed from the candidate sets. Step 16 finds

the global support for all the candidate sets. Polling technique as given in [Cheung(1996)]

can be used here also. Steps 17-19 find frequent itemsets and border sets for the updated

database. Finally, step 22 returns the global frequent itemsets and global border sets.

Experimental results

We simulated the algorithm on a share-nothing environment. A 10/100 Mb LAN was used

to connect six PIII machines running Windows NT. Each machine had 20GB disk space

and 256MB memory. The dataset used in the experiments were T20I4200K and

T20I6200K, which were generated using the technique given in [Agarwal(1996)]. Each

datasets contained 200K tuples (transactions). Each dataset was partitioned and

corresponding partitions were loaded in the machines before the experiments started.

Data Set |T| [I] |D|

T20I42000K 20 4 200K

T20I6200K 20 6 200K

Table 10 : Parameters used for synthetic data

AJIS Vol 13, No. 1 September 2005

 35

We carried out three experiments. In the first experiment, we used three machines (sites).

The purpose of the experiment was to find the execution time and number of candidate sets

for different minimum support. Each machine initially contained 63K transactions and 3K

transactions were added to each machine as incremental database. The results are given in

Figure 8.

The second experiment was the scale up experiment. The testbed of the second experiment

was same as that of first experiment. Here also we used three machines(sites). The purpose

of the second experiment was to find the effect of the database size on the execution time.

Three machines initially contained 30%, 30% and 25% transactions respectively. Size of

incremental database was 5% for each of the machines and minimum support was 1%. The

results are given in Figure 9.

The third experiment was the speedup experiment. The speedup factor is defined as

S(n)=T(1)/T(n) and efficiency is defined as S(n)/n, where T(n) is the execution time with n

sites. Here, we increased the number of machines(sites) from 1 to 6. Sizes of initial

database and incremental database were taken as 80% and 20% respectively. Initial and

incremental database were divided equally among the machines and minimum support was

taken as 1% . When we used 1 machine(site), it was the sequential run time of the Borders

algorithm. The results are given in Figure 10.

DISCUSSION

The result of the first experiment was obvious and straightforward. In some cases execution

time did not decrease significantly with the increase of minimum support. This was because

whole scan of the database might be required in some sites. It was evident from the second

experiment that execution time increased with the increase of the size of initial database

and incremental database. . However, it increased linearly. Third experiment measured

speedup and efficiency of the algorithm. We found average efficiency of 63% and 67%

for T20I6200K and T20I4200K respectively, which showed that the algorithm achieved

sub-linear speedup. However, as with other distributed algorithms, performance of this

algorithm also depends on the factors such as database types, distribution of data,

skewness of data, network speed and other network related problems.

CONCLUSION

This paper has presented two enhanced versions of the Borders algorithm : Modified

Borders and Distributed Borders. Modified Border tried to reduce the execution time by

avoiding the full scan of the database in most of the cases. On the other hand, Distributed
Borders is the modification of Borders algorithm to make it suitable for distributed

dynamic databases.

AJIS Vol 13, No. 1 September 2005

 36

Figure 8 : Execution Time

AJIS Vol 13, No. 1 September 2005

 37

Figure 9 : Execution Time for Different Database Size

AJIS Vol 13, No. 1 September 2005

 38

Figure 10 : Execution Time for Different Number of Sites

REFERENCES:

Agarwal R, Imielinski T and Swami A(1993) “Mining Association Rules between Sets of

Items in Large Databases”, ACM SIGMOD International Conference on

Management of Data, May.

Agarwal R and Shrikant R (1994) “Fast Algorithms for Mining Association Rules in Large

Databases", Proceedings of 20
th
 International Conference on Very Large Databases

, August-September , Santiago, Chile,

Agarwal R, Mannila H, Shrikant R, Toivonen H and Verkamo A I(1996). Fast Discovery

of Association Rules. MIT Press.

Brin S, Motwani R, Tsur D and Ullman J(1997), “Dynamic Itemset Counting and

Implication Rules for Market- Basket Data", Proceedings of 1997 SIGMOD ,

Montreal, Canada, June.

Cheung D W, Han J, Vincent T Ng, W Fu Ada, and Fu Y(1996) “A Fast Distributed

Algorithm for Mining Association Rules”, Proceedings of 4th Inernational

Conference on Parallel and Distributed Information Systems , pages 31–42.

 Cheung D W, Ng V T, Ada W Fu and Fu Y(1996) “Efficient Mining of Association Rules

in Distributed Databases”, IEEE Transactions on Knowledge and Data Engineering

, December , 911-921.

Cheung D W, Han J, Ng V T and Wong C Y(1996) “Maintenance of Discovered

Association Rules in Large Databases: An Incremental Updating Technique”, 12th

AJIS Vol 13, No. 1 September 2005

 39

 International Conference on Data Engineering, New Orleans, Louisiana.

Cheung D W, Lee D W, and Kao S D(1997). “A General Incremental Technique for

Maintaining Discovered Association Rules”, In Proceedings of the fifth International

Conference on Database System for Advanced Applications, Melbourn, Australia.

Ezeife C I and Y Su(2002). “Mining Incremental Association Rules with Generalized FP

Tree”, Proceedings of 15
th
 Canadian Conference on Artificial Intelligence, AI2002,

Calgary, Canada, May.

Feldman R, Aumann Y, Amir Y, and Mannila H(1997) “Efficient Algorithms For

Discovering Frequent Sets in Incremental Databases” , Proceedings of ACM

SIGMOD Workshop on Research Issues on Data Mining and Knowledge

Discovery(DMKD).

 Feldman R, Aumann Y and Lipshtat O(1999) “Borders : An Efficient Algorithm for

Association Generation in Dynamic Databases” , Journal of Intelligent Information

System, pages 61–73.

Han J, Pei J and Yin Y (2000) “Mining Frequent Patterns without Candidate Generation”,

Proceedings of the 2000 ACM-SIGMOD International Conference on

Management of Data, Dallas, Texas, USA.

Lee S D, Cheung D W and Kao B(1998). “Is Sampling Useful in Data Mining? A Case in

The Maintenance of Discovered Association Rules”, Data mining and Knowledge

Discovery.

 Savasere , Omiecinski E and Navathe S (1995), “An Efficient Algorithm For Mining

Association Rules in Large Databases”, Proceedings of 21st Conference on Very

Large Databases, Zurich, September.

Thomas S, Alsabti K , Bodagala S, and S Ranka(1997) “An Efficient Algorithm for The

Incremental Updation of Association Rules in Large Databases”, Proceedings of The

3rd International Conference On KDD And Data Mining(KDD’97), New port.

