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ABSTRACT 

 
Association rules identify associations among data items and were introduced in 1993 by 
Agarwal et al.. Most of the algorithms to find association rules deal with the static 
databases. There are very few algorithms that deal with dynamic databases. The most 

classical algorithm to find association rules in dynamic database is Borders algorithm. This 
paper presents two modified version of the Borders algorithm called Modified Borders. 

Experimental results show that the modified version performs better than the Borders 

algorithm in terms of execution time. To address the scalability issue, the paper also 
proposes a distributed version of the Borders algorithm, called Distributed Borders.  

 

Keywords: Rule mining, itemset, frequent items, support, confidence, border sets, 

promoted border sets.  

 

INTRODUCTION 

 

Association Rule is one of the most vital areas of  research  in data mining and  was 

introduced by Agarwal et. al in 1993 [Agarwal(1993)]. Association rules are of the form 

“80% of the customers who buy bread also buy butter". In other words association rules 

find the influence of one set of items on another set of items. Association rules have got 
numerous applications in real world such as decision support, understanding customer 

behavior, telecommunication alarm diagnosis and prediction, etc. The departmental stores 

also can use association rules in many fields such as catalog design, add-on sales, stored 

layout etc. 

The terms most frequently used in relation to association rules are itemset, support, 

confidence, frequent itemsets . An itemset means a non-empty set of items. The   support of 

an itemset X is defined as the % of transactions/records in a database that contains X.  An 

itemset with support greater than the some pre-defined minimum support is called a 

frequent or large itemset. An association rule between two disjoint and frequent itemsets X 

and Y exists, if     X  ∪ Y  is frequent and confidence is  at least  some pre-defined  value.  
Confidence of an association rule between X and Y is defined as the percentages of 

transactions/records that contain X also contain Y.  

Finding frequent itemset is one important step in association rule mining. There are some 

influential algorithms to find the frequent itemsets from large databases. The most classical 

algorithm is  Aprior (Agarwal(1994)).  Some other important algorithms are AprioriTid 

[Agarwal(1994)], FP-Tree [Han(2000)], Partition algorithm[Savasere (1995)],  DIC 

algorithm[Brin(1997)]  etc. 

One general assumption in all the above-mentioned algorithms is that database is static. 

However in reality, most of the databases are dynamic and are updated frequently i.e. new 

records are added, old records are deleted and existing records are modified frequently. So 

the itemsets, which are frequent, may not be frequent when the database is updated and the 

itemsets, which were not frequent, may become frequent when the database is updated. 

Moreover, new database may contain some new interesting rules, which were not present in 

the old database. One obvious technique is re-running association rule mining algorithms  
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in the updated database to find the frequent itemsets in the updated database. However, this 

is not the optimal solution because of the following reasons.  

1. It will require running the algorithms on adding, deleting or updating a 

small number of records. 

2. It will take too much time because it will scan the same database every 

time. 

3. It will generate most of the  itemsets repeatedly  

Literature shows that there are some algorithms to find frequent itemsets in   dynamic 

databases. Some of them are FUP [Cheung(1996)], FUP2[Cheung(1997)] 

,DELI[Lee(1998)], MAAP[Ezeife(2002)]. Some more works can be found in 

[Thomas(1997), Feldman(1997)].  The main requirements of a dynamic association rule-

mining algorithm are 

1. It should be able to use the already discovered frequent itemsets to discover new 

frequent itemsets. 

2. It should not have to scan the old records/transactions. 

3. It should scan the new records/transactions as few number of times as possible. 

 

The most popular and important algorithm, which follows the above criteria, to find 

frequent itemsets in dynamic database is the Borders algorithm [Feldman(1999)]. This 

algorithm has used the concept of  border and promoted border set to update the frequent 

itemsets. However, the algorithm suffers from scalability problem and cannot be used in 

distributed environment. To address these problems, this chapter presents a modified 

version of Borders algorithm, which takes less time than that of Borders algorithm. This 

chapter also presents a Distributed Border algorithm, which is meant for distributed 

dynamic databases. Symbols given in   Table  1 are used to explain the algorithms.  

 

BORDERS ALGORITHM 

 

Feldman  et. al. [Feldman(1999)] proposed   Borders algorithm,  which uses the concept of  

border set. There are three variations of Borders algorithm : addition of 

transactions/records; addition and deletion of transactions/records ;  changing of minimum  

support threshold.   The main characteristics of the algorithm are as follows. 

Entire database is scanned only when new candidate sets are generated. 

There are only few candidates for which support is counted even if entire database is 

scanned.  
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Table 1: Symbols 

 

 

D  Database 

|D|   Number of records/transactions in the database D. 

TID  Transaction ID. 

X ,Y   Itemsets. 

S(X)   Support of X in % 

Si    The site I 

n   Number of sites. 

α       Minimum support in %  

β  Positive real number ( < α )  

Told 
I   Old database at the site I 

Tnew 
 i   Incremental database  at site I 

Told     The old database ( ∪ Told 
I  ) 

T new       The newly added records/transactions (∪Tnew
i )  

Tdel   Records/transactions to be deleted. 

Twhole
 I   Told 

i   ∪   Tnew 
 I 

Twhole   The whole database   

(Told ∪  T new) -  Tdel 

Lold     Set of frequent itemsets in Told  (with local support) 

Bold     Set of border itemsets in Told (with local support). 

Bold
/  First border set in  Told 

Bold 
//   Second border set in Told 

Bwhole 
/   First border set in Twhole 

Bwhole
//   Second border set in Twhole.\\ 

Lwhole 
i  Frequent itemsets in Twhole at the site i  

Lwhole   Set of frequent itemsets in Twhole 

Bwhole   Set of border itemsets in Twhole 

B i         Promoted border itemsets  at the site I 

B            Promoted border set (∪ Bi  ) 

F i          Frequent itemsets in the updated database at the site I 

F           Frequent itemsets in the updated database (∪ F I). 

L whole (i)   x, x ∈ L whole  and |x| = I 

B whole 
i  Border itemsets in T whole at the site I 

B(i)   b ∈  B and  |b|=I 

Li  Frequent itemset of size i  

C i    Candidate itemset of size i  

C   Set of all candidates. 

c   A candidate itemset. 

S(X) y    Support count of the itemset X in the database y 

X.sup.new i   Support of X at T new 
I 

X.sup.new   Support of  X at T new 

X.sup i   Local support of the itemset X at the site I 

X.sup   Global support of X 

S(X) Y 
i   Support of X at the site i for the database Y. 
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Figure 1 : Border Set 

 

Actually, Manila and Toivonenn gave concept of border set.  An itemset X is called a 

border set if X is not frequent, but all its proper subsets are frequent. So collection of   

border sets forms the border line between the frequent sets and non-frequent sets.  An 

itemset that was a border set before the database was updated and has become frequent 
after the database has been updated is called a promoted border set.  Borders algorithm also 

uses the same concept and maintains support counts for all the frequent sets as well as 

border sets.  

 

Input :   T new  , Told  α, Lold and Bold   
Output : Lwhole and Bwhole                                                                                 

Scan T new  and increment the support count of  X  ∈  Lold  ∪ Bold   

B :={X | X  ∈   Bold  and  S(X) Twhole   ≥  α} 

Lwhole := B  ∪  {X  | X  ∈ Lold and S(X) Twhole  ≥   α } 

B whole = {X |  ∀ x ∈ X, X -{x} ∈ L whole } 

m= max {i | B(i)  ≠  φ } 
 Candidate-generation : 

 L0 =  φ, i =1 
While( Li ≠  φ or  i  ≤ m) do 
            Ci+1= { X = S1 ∪  S2 |  (i)  |X|=i+1, 

       (ii) ∃ x  ∈ S1,  S1 -{x}∈  B(i) ∪ Li  

      (iii) ∀ x  ∈ S2,  S2 -{x} ∈  L whole(i)  ∪ Li } 

   Scan Twhole  and obtain S(X)  for all X ∈ Ci+1 

   Li+1 = { X | X  ∈  Ci+1 and  S(X)  ≥ α} 
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L whole =  L whole  ∪ L i+1 

  B whole  =  Bwhole  ∪  Ci+1  - L i+1} 
    i = i+1 

Enddo 

 

Figure 2: Borders Algorithm (addition) 

 

The algorithm is based on the observation that a set is required to be considered as a 

candidate set only if it has a subset that is a promoted border. The following lemma proves 

this observation. In addition to the lemma, the paper [Feldman(1999)] also proved that 

Borders algorithm is correct. 

 Lemma: If X is an itemset which is frequent in Twhole  and not frequent Told , then there exist 

a subset Y  ∈  X such that Y is  promoted border. 
Proof : Let Y be a minimal cardinality subset of X , which is frequent in T whole , but not in T 

old.  So all proper subsets of Y are frequent in T whole.  However, by minimality of Y, none of 

these subsets is a new frequent set in  T whole.  So Y is a border set in  Told.  

Given L old and B old, the task of the  Borders algorithm is to find L whole  and   B whole. The 

algorithm (addition) is presented in   Figure  2 . The algorithm assumes that L old  and Bold   

are known with their respective supports.    L old  and Bold  can be found by any association 

rule mining algorithms like  Apriori. The algorithm starts by making one pass over the new 

database T  new and counts the supports of the itemsets of  L old  ∪ Bold  for Tnew .  
During this pass the algorithm calculates B and L whole.   If B is null, then L whole  contains all 

the frequent sets of Twhole. However, if there is at least one promoted border (i.e. B is not 

null), then the algorithm generates new candidate sets Ci+1  (steps 8-10 ) and scans over the 

entire database to count the support of  them (steps 11-13 ).  Then it finds the frequent 

itemsets Li+1 based on the support count and updates Lwhole and B whole. This process 

continues as long as new candidates can be generated.  So the algorithm scans the whole 

database, if there is some promoted border set. Otherwise, it does not require scanning the 

whole database.  

 

An example 

 

Let us take Told and  Tnew as  given in Table 2 and  Table 3  respectively  and the support be 

40%.  

A1 A2 A3 A4 A5 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 
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Table 2 : Told 

 

A1 A2 A3 A4 A5 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

0 

Table 3 : Tnew 

 

Then,  Lold  is  {(A1,A2,A3,A5), (A1A3), (A1A5), (A3A5), (A1A3A5)} and  Bold  is { (A4), 

(A1A2), (A2A3), (A2A5)}.  Next, T new is added with T old.  Now, T new is scanned to 

calculate B, Lwhole and B whole.  

B = {(A4)} 

L whole =  {A4 , A1 , A5, A1A5)} 

B whole  = {(A1A4), (A4A5), (A1A5)}  

 

Here, we have got one promoted border  (A4). So, we have to generate new candidate 

itemsets.  New Candidates are generated in level-wise fashion as in  Apriori. 

Candidate 2-itemsets are C2  = { (A1A4) , (A4A5)} 

Candidate 3-itemsets are C3 = { (A1A4A5) } 

Now the whole database T whole is to be scanned to update L whole and B whole. 

 

Discussion :  

 

The  Borders algorithm is robust enough to find the frequent itemsets in a  dynamic 

database. However, from our experimental study, it has been observed that 

• With the increase in the volume of the Told and T new, the cost of the 

scanning of T whole in the every iteration becomes too expensive.  

• It suffers from scalability problem.  

 

To overcome the above problems, this paper proposes two enhanced versions of the present 

Borders (addition) algorithm. These are Modified Borders and Distributed Borders.   

Modified Borders has used two border sets to reduce scanning of entire database. On the 

other hand, Distributed Borders is the extension of Borders in distributed environment. 

 

MODIFIED BORDERS ALGORITHM 
 
As it is mentioned above, Borders has to scan entire database when there are some 

promoted borders.  However, scanning entire database is very expensive, particularly, when 

the database is large.   Scanning entire database can be avoided if new candidates are not 

generated frequently.   New candidates are generated, if there is even one promoted borders 

because borders are not included to generate candidate in the old database.  So, if borders 

are included to generate candidates in the old database, then there will be no new 

candidates. However, it will be infeasible to include all the borders to generate candidates 

in the old database.  This concept led us to include some of the borders, which are likely to 

become promoted border, to generate candidate sets in the old database so that if those 

borders become promoted, no new candidates will have to be generated. New candidates 
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will be generated only when some borders, which were not included to generate candidates 

in the old database, becomes promoted.   Based on the above discussion,  Borders has been 

modified by including two border sets.  The first border set is Bold
/ 
and the second border set 

is Bold
//
. Bold

/
 is calculated as  

{ X | ∀ x ∈ X, X-{x} ∈ (L old  ∪ B old
 
/ ); S(X)  ≥  β and S(X) < α }.  Bold 

// 
 is calculated as   

{X  |  ∀ x  ∈ X,  X-{x}∈  (L old   ∪  B old
/
 ) ;  S(X) <  β }.   Bold 

/ 
   and Lold  take part in 

candidate generation, whereas the elements of Bold
//
    are not used in candidate generation. 

Another requirement in the algorithm is that all the subsets of an itemset    X  ∈ (Bold
/
  ∪ 

Bold
 //
 )  must be   ∈ ( Lold ∪   Bold

/ 
).   Obviously, Bold 

/
 contains the itemsets with higher 

probability of becoming promoted when new transactions are added. New candidate sets 

will be generated only when any of the elements of the    Bold 
//
 becomes promoted. If new 

candidate itemsets are generated, one scan over the whole database is required to find 

supports of the new candidates.  

 

The algorithm 

 

The algorithm works as follows. Lold, Bold 
/ 
  and Bold

//
   are assumed to be known  with their 

respective support counts. The algorithm starts by making one pass over the new database 

Tnew  and  updates supports of the elements of   Lold  ∪  B old 
/
 ∪  Bold 

//
.  During the pass, the 

algorithm generates four categories of itemsets -   B
/ 
,   B

 //
,  B

///
 and B 

////
 . If B

// 
 is null, then  

no  new candidate set is required to be generated. If  B
//
 contains at least one itemset, then 

new candidate sets are required to be generated.   If new candidate sets are generated, the 

algorithm makes one pass over the entire database to count the support of the new 
candidate sets. At the end, the algorithm generates Lwhole, Bwhole 

/ 
and  Bwhole 

// 
, which are 

counterparts of the Lold , Bold
/ 
 and Bold 

//
  respectively, for the whole database Twhole. The 

algorithm is presented in the Figure 3. 

 

Input :  Tnew ,  Told ,  α,  β , Lold and Bold
/ 
,
 
 Bold

//
 

Output :  Lwhole  and Bwhole
/ 
,  Bwhole 

//
 

Scan Tnew  and increment the support count of  X ∈ (Lold  ∪ Bold 
/ 
   ∪ Bold

 //
 )
 
 

B 
/ 
= {X | X  ∈ Bold 

/
 and  S(X)T whole  ≥  α} 

 B
// 
=  {X | X   ∈  Bold 

// 
 and S(X)T whole ≥  α  } 

Lwhole = B 
/ 
  ∪ B //  ∪ {X | X  ∈  L old and S(X)T whole  ≥  α } 

B
///  
= {X | X  ∈  Bold 

// 
;  ∀ x  ∈ X, X -{x} ∈ Lwhole;  S(X) Twhole ≥ β  and S(X)Twhole  < α } 

B
////
  = {X | X ∈Bold

/
   ∪ Lold ;   ∀ x ∈ X, X -{x} ∈ Lwhole ; ( S(X)Twhole  ≥ β  and  S(X)Twhole < α 

)} 

 Bwhole
 /
 = B 

///   
  ∪  B

 ////
 

Bwhole 
// 
 =  {X |  ∀ x   ∈ X,  X -{x}  ∈ Lwhole  and  S(X) < β  } 

If  B 
//   ≠   φ then 

  m = max {i | B
// 
(i)  ≠   φ  } 

 Candidate-generation: 

L0 =  φ , B0 =  φ,  k=2 
While (Lk-1   ≠

 
 φ  or  Bk-1  ≠  φ or  k  ≤ m+1) do 

  Ck  =   φ 
  L = B

//  
( k-1)   ∪ Lk -1  ∪ B

/// 
(k-1) ∪ B k-1 

  M =  L k-1   ∪    L whole (k-1)  ∪  B whole 
/ 
(k-1)  

  For all  itemsets in  l1  ∈  L do begin 
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    For all itemsets in l2  ∈   M do begin 

    If  l1 [i] = l2[i]  ( 1 ≤ i ≤ k-2 ) and l1[k-1] < l2[k-1] then 
     C =  {l1 [1],  l1[2], …l1[k-2], l1[k-1], l2[k-1]} 

    Ck = Ck ∪  C 
   End for 

  End for 

  Prune Ck  :  All the subsets of Ck  of size k-1 must be present in  M ; 

        Scan Twhole and obtain support S(X)  for all X  ∈ Ck 

       Lk = {X | X  ∈ Ck and  S(X) ≥ α } 
  L whole=Lwhole   ∪  Lk 

   B k = {X |X  ∈ (Ck - Lk );  ∀ x  ∈  X,  X-{x}  ∈ L whole; S(X)  ≥  β   and S(X) <  α) 
   Bwhole

 
/  = Bwhole 

/ 
 ∪  Bk  

   Bwhole 
//
 =  Bwhole 

//    
 ∪  {X |X  ∈  (Ck - Lk);    ∀ x ∈  X,  X-{x} ∈  Lwhole ; S(X) <  β  ) 

  k = k+1 ; 

Enddo  

 

Figure 3: Modified Borders Algorithm 

 

 An example 
  

Let us consider Told  as given in  Table 4   and assume    α  = 40% and   β  = 30%. 
 

 

A B C D E 

1 1 0 0 1 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 1 0 

0 1 0 1 0 

1 1 1 0 0 

1 0 0 0 0 

0 0 0 0 0 

1 1 0 1 0 

Table 4 : Told : Sample market -basket database 

 

Now,  Lold, Bold 
/
 , Bold 

// 
  are obtained as given  below. 

Lold   = {A, B, D , (AB)} 

Bold  
/  

 = {(C)}  

Bold 
 //  
= {(E), (AD , BD, AC, BC, CD} 

Suppose,  Tnew (Table 5 )  is  added to the T old  ( Table 4 ).  When Tnew is scanned,  B
/
, B

//
, B 

///  B////, Lwhole, Bwhole 
/ and Bwhole 

//   are  obtained as  {C}, {E}, φ,  φ,  {A, B, D, (C), (E),  (AB) 
},  φ  and  φ respectively.  Since B//  is not null, new candidate itemsets will have to be 
generated.  New candidate itemsets, after pruning, will be {(AE,BE,CE,DE), (ABE) }. Then, 

entire database is scanned to find the support count of the new candidates. 
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A B C D E 

0 0 1 1 1 

1 1 0 0 1 

1 1 1 0 1 

0 0 1 0 1 

Table 5 : Tnew 

 

Experimental results 

 

We compared Modified Borders with Borders algorithm using two synthetic databases and 

one real database. Both the algorithms were implemented on a Intel PIV based WS (with 

256 MB SDRAM). Lold, Bold , Bold
 /
 and  Bold 

// 
had been computed separately.  

Test Data : We used  synthetic databases, which were generated using the technique  given 

in [Agarwal(1996)], and the Connect-4 dataset, which were downloaded from UCI machine 

learning repository(www.ics.uci.edu).  All the synthetic datasets contained 100K records 

and dimensionality of each record is 255. Other parameters for synthetic databases are 

shown in the  Table 6 . For all the experiments, initial sizes of the synthetic databases and  

Connect-4 were taken as 80K records and 47557 records respectively. 

 

Data Set   |T|  [I]  |D|  

T20I4100K   20  4 100K  

T20I6100K 20 6 100K 

Table 6 : Parameters used for synthetic data generation 

 

We executed each of the experiments several times. Tables 7 through 9 show average 

number of full database scan required in  Borders and  Modified Borders as the value of  β  
increased from 3.5% to 4.5% and size of incremental database is increased from 5K records 

to 20K records.  The value of α (minimum support) was taken as 5 % for all the 
experiments. Average execution times over all increments are given in  Figures 4 through  

6. 

 

Table 7 : Database:T20I4100K 

 

Table 8 : Database:T20I6100K 

Increment Borders Modified 

(β =3.5%) 
Modified 

(β =4%) 
Modified 

( β =4.5%) 
5K 1 0 0 1 

10K 3 0 1 2 

15K 2 0 0 2 

20K 3 1 1 3 

Increment Borders Modified  

(β=3.5%) 
Modified             

(β =4%) 
Modified   

(β =4.5%) 
5K 0 0 0 0 

10K 3 0 0 2 

15K 2 1 1 1 

20K 3 0 1 2 
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Table 9 : Database:Connect4 

 

 
Figure 4 : Average Execution Time 

 

 

 

 

Increment 

Borders Modified  

(β = 3.5%) 
Modified  

(β=4%) 
Modified  

 ( β =4.5%) 

5K 0 0 0 0 

10K 1 0 1 1 

15K 1 0 1 1 

20K 2 1 1 1 
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Figure 5 : Average Execution Time 
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Figure 6 : Average Execution Time 

 

Observations 

 

Following are some observations made from the experimental results. 

• Experimental results (Tables 7, 8 & 9) show that Borders algorithm 

requires whole scan of the database several number of times, whereas   

Modified Borders requires whole scan of database a few number of times.  

• The value of β   has a great effect on the performance of  Modified 
Borders algorithm. As the value of β increases, number of whole scan 
also increases. In our experiments, we found that when β =4.5%,  number 
of full scan of the database is almost same in both the algorithms. 

• As far as execution time is concerned, Modified Borders takes much less 

time than that of Borders when β is small (Figures 4, 5 & 6 ). As the 
value of β increases, Modified Borders tend to take little more time. This 
is because   number of full scan tends to increase with the increase of 

value of β. 
 

On the selection of the value of  ββββ :   
 

Value of β plays an important role in the algorithm. When  β  → α, the algorithm tends to 
become  Borders algorithm.  With the decrease in value of β, performance of Modified 
Borders becomes better than  Borders algorithm in terms of execution time. However,  
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with the decrease in value of β ,  the memory requirement increases due to the additional 
candidate sets. So value of β cannot be decreased too much.   This cost of additional 
memory requirement is quite negligible in comparison to the requirement of full database 

scanning, particularly when database is very large. So there should be some trade off in 

choosing the value of β . If there is not enough memory and the database is dense, the value 
of β can be set to a higher value.  For sparse databases, β can be set to a lower value.   Here 
is one simple method to adjust the value of β. For the first increment of the database, β can 
be set to a lower value.  In the subsequent increments, β can be increased a little until 
number of candidates is manageable and gives desired result.  

 

DISTRIBUTED BORDERS ALGORITHM 

 

The Borders algorithm is sequential in nature and  meant for centralized database. 

However, most of the databases are distributed in nature.  Distributed Borders  algorithm is 

basically meant for distributed dynamic databases. However, it can also be used in a 

centralized database by partitioning the database and placing the partitions in different 

nodes of distributed systems. This process reduces the number of candidate sets to a great 

extent resulting in high flexibility, scalability and low cost performance ratio 

[Cheung(1996),31-42]. Distributed algorithms posses some problems such as locally 

frequent or border sets may not be globally frequent or border sets. Again, message passing 

being a costly affair, processing should be confined in the local sites as much as possible. 

To explain the algorithm, it is assumed  that databases of similar structure are distributed in 

different sites which are networked. Let us consider a transactional database, where each 

record is a transaction in a supermarket made by the customers. Each transaction is of the 

form <TID,1 ,1 ,0...0, 1> . Here TID is the transaction id, which is unique for each 

transaction. 1 and 0 represents the corresponding item has been bought and not bought 

respectively in the transaction. It is also assumed that the database is horizontally 

partitioned and allocated in n sites Si (i=1, 2, 3...n) in a distributed system.  Now, the task is 

to maintain the global frequent itemsets and global border sets in this distributed 

environment when the database is updated.   

  

Distributed algorithm for maintaining frequent itemsets in  dynamic database 

 

Here, we have examined the Borders algorithm in the distributed environment.  Let Told be 

the old transaction database distributed in n sites. Told 
i
 is the old transaction database at the 

site i (i =1, 2, 3...n).  Tnew and  Tnew 
i
 are the new transactions to be added to  the whole 

database  and  to the transactions at the site i respectively.   X.sup and X.sup 
i
   are the 

global support count and local support count at the site i respectively of  the itemset X. For 

a given minimum support threshold α , an itemset X is  globally frequent in the old 
database(updated database) if      X. sup  ≥ α |Told| ( X.sup   ≥ α  |Twhole| ).  Similarly, an 
itemset X is  locally frequent in the old database(updated database) at some site i,  if X.sup

i
   

≥ α  |Told 
i 
| (X.sup

i
  ≥ α |Twhole

i
 | ).  Like the  Borders  algorithm, this algorithm also uses the 

concept of border set and  promoted  border set. The only difference is that all the concepts 

have been used in the context of the distributed environment.  An itemset  X is a  global 

border, if X is not  globally frequent, but all its subsets are globally frequent. An itemset X  

becomes  globally promoted border on adding the new transactions, if X is a  globally 

border in the old database and globally frequent in the updated database.   Lold is the global 

frequent itemsets in the old database and Bold is the global border sets in the old database. 
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Given Lold and Bold, the problem here is to find updated frequent itemsets Lwhole and border 

sets Bwhole for the updated database Twhole.   

The main purpose of the  Distributed  Borders algorithm  is to reduce the number of 

candidate sets and in  turn reduce the number of messages to be passed across the network  

and execution time. To reduce the number of messages, we used polling technique as 

discussed in DMA [Cheung(1996,911-921)].  Some interesting observations, which are 

listed below, can be made relating to frequent, border and promoted border sets in large 

database in distributed environment. Some of these observations were discussed in  

[Cheung(1996,911-921)]. 

1.     Every global frequent itemset X must be frequent in at least one site Si.   

2. If an itemset X is locally frequent at some site Si, than all its subsets are     also 

locally frequent in  the site Si.  

3. If an itemset X is globally frequent at some site S i, then all its subsets are also 

globally frequent at the site Si. 

4. If  an itemset X is globally frequent or promoted border, then X must be 

frequent in at least one site i. 

Proof:  This is obvious because if an itemset X is small in all the sites, it 

cannot be frequent in the whole database.  
5. If an itemset X  is a global  promoted border set, then X must be frequent in 

Tnew 
i
  for some site Si. 

Proof: Let an itemset X is a promoted border set in the updated database 

Twhole. Then S(X) <  α  |Told |  and  S(X)  ≥ α |Twhole|. Since Twhole =  Told  ∪ Tnew , 
S(X) ≥ α |Tnew|. Therefore S(X)  ≥ α  ∑ |Tnew

i
.| . Hence, S(X)  ≥ α |Tnew

 i
|  for  at 

least one site  Si.   

6. If X is global border set, then there exist a Y  ⊂  X so that Y is local border in 
some site Si. 

Proof: If X is a global border set, then X must be small/infrequent in at least 

one site Si. Therefore, there exist at least one subset of X, which is a local 

border set in the site.   

7. If a new candidate set c ∈ Twhole has to be frequent or border in Twhole , then 
either c or one of its immediate proper subsets must be locally frequent in one 

Tnew
i
. 

Proof : If c is a  new candidate set there can be two possible cases:  

a) c is frequent in the updated database Twhole  : In this case c must be 

frequent in Tnew i.e. c must be frequent in Tnew
i
  for some i. 

b) c is a border set  in the updated database Twhole :  In this case  c 

will be small and all of its subsets will be frequent in the updated 

database Twhole. So there exists at least one  c 
/ ⊂  c, which was  

small in the old database Told. Otherwise, c would have been 

generated in the old database Told. This c
 /
 will be frequent in the 

updated database Twhole.  So c
/
  must be frequent in the Tnew i.e. c

 / 

must be frequent in Tnew
i 
 for some i.     

8. If a candidate set X in the updated database is either frequent or border set, all 

of its immediate proper subsets must be either ∈  (F ∪ B)  or frequent in  at 
least one site. 

Proof: There can be two possible cases: 

a) X is frequent in the updated database:  If X is frequent, then all the 

subsets of X must also be frequent in the updated database. Let Y  ⊂ X. 
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Then, Y is either a candidate set or Y  ∈ F  ∪ B .  If Y is a candidate and Y 
is frequent, then  Y must be frequent in at  least one site because   Y 

cannot  be frequent if it is small in all the sites.  

b) X is border in the updated database: In this case, all the subsets of X must 

be frequent in the updated database.  So, by first option, all the subsets 

are either ∈ ( F  ∪ B ) or frequent in at least one site.    
 

Local pruning 
 

Using the above observations many unnecessary candidates can be pruned locally.  If an 

itemset X is locally small in all the sites, then X cannot be frequent globally.  That is why, 

itemsets are first checked if they are locally frequent or not. Their global support are found 

only when they are locally frequent in at least one site Si.   Similarly some promoted border 

sets also can be pruned away locally using   Observation 4.  So, if a border set X is not 

frequent in any site, then it  is not tested for global promoted border.  Observation 7 is also 

very significant in pruning away candidate sets locally. After the candidate sets are 

generated, support of the candidate sets are counted in the incremental part Tnew
i
.  If any 

candidate set or at least one of its immediate proper subsets is not frequent in at least one 

Tnew
i
, it can be pruned away because by  Observation 7 it can be neither frequent  nor 

border.   Observation 8 is also helpful in pruning away unnecessary candidate sets. 

 

 Input: Lold , Bold, Tnew
i
,  Told 

i
 and α 

 Output:  Updated Lwhole and Bwhole 

Repeat the following steps at each site i  distributively. 

Scan Tnew 
i
 and count the support of all the itemsets X  ∈ ( Lold  ∪ Bold ) and find 

 B 
i
 = {X|X  ∈ Bold and S(X)T new

i
   ≥ α | Tnew

i 
| } 

 Lwhole 
i
 = B 

i
 ∪ { X | X  ∈ Lold and  S(X)Twhole 

i
  ≥ α |Twhole  

i 
| } (by  observation 4) 

 

 Broadcast   X  ∈  Lwhole 
i  
to other sites along with their supports. 

Prune Lwhole
  i
  :   Lwhole 

i
  = { X  |  X  ∈ Lwhole

i
 and S(X)Twhole  ≥ α |Twhole| } 

 Compute  B = ∪Bi and  Lwhole  =  ∪ Lwhole 
i
 

Bwhole = {X |  ∀ x  ∈ X,  X-{x}  ∈ Lwhole } 
 

 Generate   candidates: 

 

m = max { i | B(i)  ≠ φ } 
i=1 

While (Li  ≠ φ    or  i   ≤ m) do 
  Ci+1 = { X = S1  ∪  S2  |  (i)  |X|=i+1, 

       (ii)  ∃  x ∈ S1,   S1- {x}  ∈ B(i)   ∪ Li , 

      (iii)   ∀ x ∈ S2,  S2-{x}  ∈  L whole (i)  ∪ Li } 

   Scan Tnew 
i
 and  compute  X.sup.new

i
 for all X  ∈ Ci+1. 

  Remove any candidate set X  ∈  Ci+1, which is or at least one of its immediate 
proper subsets is not frequent in  Tnew 

i   
(by observation 7). 

  Scan Told 
i
 and find the support X.sup 

i
 for all X  ∈ Ci+1  ( Tnew 

i  
has already been 

scanned) 

  Ci+1 = {X  ∈ Ci+1 | ∀ x ∈ X,  Y= X-{x}, Y ∈ Lwhole or  Y.sup 
i
  ≥ α |Twhol e 

i
| } (by 
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observation 8) 

  Find the global support for all X ∈ Ci+1 as  X.sup = ∑ X.sup
i
 

  Li+1 =   {X | X  ∈  Ci+1 and  X.sup  ≥ α } 

  Lwhole  = Lwhole ∪  Li+1 

  Bwhole = Bwhole  ∪ (Ci+1 - Li+1)  
   i=i+1 

Enddo 

Return Lwhole  and Bwhole 

Figure 7 : : Distributed Borders Algorithm 

 

Explanation of the algorithm 

 

It is assumed that the Lold and Bold are available with the local support to all the sites. The 

algorithm starts with scanning the incremental portion Tnew 
i
 and finds local support for all X 

∈ Lold  ∪ Bold. This is because   frequent sets and border sets, which are frequent locally in 
at least one site, can only be frequent globally.   Then comes the step 2, which finds the 

global support for Lwhole 
i
   This can be done by simply broadcasting the local support of  X 

∈ L whole
i
.  If all the items are broadcast to all the sites, then for each item X, O(n

2
) messages 

will be required, where n is the number of sites. So polling techniques as described in 

[Cheung(1996,31-42)] can be used. This technique reduces the number of messages to O(n)  

for each itemset. Step 3 prunes away all X  ∈ Lwhole  
i
 , which are not globally frequent.  

Then the Step 4  just broadcasts the Lwhole 
i  
to other sites and receives the same from other 

sites  to compute Lwhole and B. It can be noted that, all the sites will be having the same set 

of Lwhole and B.  Steps 6-11  are  responsible for generating the candidate sets. The 

candidate sets are generated in the step-wise method like  Apriori.   Some kind of pruning 

techniques are required to prune away some unnecessary candidate sets.  Observation 4 
helps prune away  some  candidate sets.   Steps 13-15 are basically pruning steps. It scans 

the Tnew 
i 
and finds the X.sup.new 

i 
for all  the candidate sets. According to Observation 4, a 

candidate X can  be neither frequent nor border, if  neither X is frequent nor at least one of 

its immediate proper subsets is frequent in any  Tnew 
i
.  So the candidates, which do not 

conform to Observation 4, can easily be removed from the candidate sets.   Step 16 finds 

the global support for all the candidate sets.  Polling technique as given in  [Cheung(1996)] 

can be used here also.  Steps 17-19 find frequent itemsets and border sets for the updated 

database. Finally, step 22 returns the global frequent itemsets and global border sets.                  

 

Experimental results 

 

We simulated the algorithm on a share-nothing environment. A 10/100 Mb LAN was used 

to connect six  PIII machines running Windows NT. Each machine had 20GB disk space 

and 256MB memory.  The dataset used in the experiments were T20I4200K and 

T20I6200K, which were generated using the technique given in [Agarwal(1996)].  Each 

datasets contained 200K tuples (transactions).  Each dataset was partitioned and 

corresponding partitions were loaded in the machines before the experiments started. 

 

Data Set |T| [I] |D| 

T20I42000K 20 4 200K 

T20I6200K 20 6 200K 

Table 10 : Parameters used for synthetic data 
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We carried out three experiments. In the first experiment, we used three machines (sites). 

The purpose of the experiment was to find the execution time and number of candidate sets  

for different minimum support. Each machine initially contained 63K transactions and 3K 

transactions were added to each machine as incremental database. The results are given  in  

Figure 8. 

The second experiment was the scale up experiment. The testbed of the second experiment 

was  same as that of first experiment. Here also we used three machines(sites). The purpose 

of the second experiment was to find the effect of the database size on the execution time. 

Three machines initially contained 30%, 30% and 25% transactions respectively. Size of 

incremental database was 5% for each of the machines and minimum support was 1%. The 

results are given in  Figure  9. 

The third experiment was the speedup experiment. The speedup factor is defined as 

S(n)=T(1)/T(n) and  efficiency is defined as S(n)/n, where  T(n) is the execution time with n 

sites.  Here, we increased the number of machines(sites) from 1 to 6. Sizes of  initial 

database and incremental database were taken as 80% and 20% respectively. Initial and 

incremental database were divided equally among the machines and minimum support was 

taken as 1% . When we used 1 machine(site), it was the sequential run time of the   Borders 

algorithm.  The results are given in  Figure  10. 

 

DISCUSSION 

 

The result of the first experiment was obvious and straightforward. In some cases execution 

time did not decrease significantly with the increase of minimum support. This was because 

whole scan of  the database might be required in some sites. It was evident from the second 

experiment that execution time increased with the increase of the size of initial database 

and incremental database. . However, it increased linearly. Third experiment measured 

speedup  and  efficiency of the algorithm.  We found average efficiency of  63% and 67%  

for T20I6200K and T20I4200K respectively, which  showed that  the algorithm achieved  

sub-linear speedup. However, as with other distributed algorithms, performance of this 

algorithm also depends on the  factors such as    database types, distribution of data,  

skewness of data, network speed and other network related problems. 

 

CONCLUSION 

 

This paper has presented two enhanced versions of the  Borders algorithm :  Modified 

Borders and  Distributed Borders. Modified Border tried to reduce the execution time by 

avoiding the full scan of the database in most of the cases. On the other hand, Distributed 
Borders is the modification of Borders algorithm to make it suitable for distributed 

dynamic databases.   
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Figure 8 : Execution Time 
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Figure 9 : Execution Time for Different Database Size 
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Figure 10 : Execution Time for Different  Number of Sites 
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