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ABSTRACT 

Task performance data and subjective assessment data are widely used as usability 

measures in the human-computer interaction (HCI) field. Recently, physiology has also 

been explored as a metric for evaluating usability. However, it is not clear how 

physiological measures relate to traditional usability evaluation indexes. In this paper, 

we investigate the relationships among three kinds of data: task performance, subjective 

assessment and physiological measures. We found evidence that physiological data 

correlate with task performance data in a video game: with a decrease of the task 

performance level, the normalized galvanic skin response (GSR) increases. In addition, 

physiological data are mirrored in subjective reports assessing stress level. The research 

provides an initial step toward using physiology as a complementary or an independent 

usability measure for HCI evaluation. 

 

 

INTRODUCTION 

 

Usability is implicit in a design and manifests itself through interaction with a product. It may be 

measured by the extent to which the product affords an effective and satisfying interaction to the 

intended users, performing the intended tasks at an acceptable cost. In traditional usability evaluation 

methods, task performance is measured as an important element, yet user cost is often neglected. 

Performance-based measures usually use the end results to infer the continuous interaction process, 

but they can not reflect how tasks impact upon users physically. Although users are able to complete 

many tasks at the same performance level, they still may have different opinions about the usability 

because of different user costs. Some may feel almost no discomfort, while others report that they 

experienced considerable stress. Therefore, user cost should also be considered as an important 

element in usability evaluation methods. In 1993, a study has proposed a human-computer 

interaction (HCI) evaluation framework of task performance, user satisfaction and user cost 

(Sweeney, Maguire and Shackel, 1993). Recent studies assessing multimedia quality also revisited 

the framework (Wilson and Sasse, 2000a; Wilson and Sasse, 2000b). Task performance and user 

satisfaction were employed to determine the levels of user effectiveness and satisfaction. The user 

cost referred to the level of user investment required to achieve and maintain high levels of the task 

performance and satisfaction, and it may be demonstrated in terms of the level of physiological and 

/or mental effort or stress incurred. At present, subjective approaches to measure the user cost have 

been proposed, but they have a fundamental problem. When used in isolation, they may not be 

reliable due to the cognitive mediation. For example, Wilson and Descamps reported that users rate 

video quality lower when performing a difficult task than when performing an easier one (Wilson 

and Descamps, 1996). This evidence suggests that contextual variables may influence users 
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assessment. Knoche et al. also argued that subjective assessment is fundamentally flawed, as it is not 

possible for users to register what they do not consciously perceive (Knoche, De Meer, and Kirsch, 

1999). In addition, as the scale of an experiment becomes larger, accurate subjective results require a 

larger number of subjects and more time for analysis, with greater associated costs. 

 

As HCI researchers, we recognize that task performance and subjective assessment are essential 

methods of usability evaluation, but they are not enough. An objective method for measuring the 

user cost should be integrated into the traditional usability evaluation framework. The ultimate goal 

of our research is to create a new usability evaluation method based on traditional usability 

evaluation indexes (task performance and subjective assessment) and physiological data for 

measuring user costs. 

 

The evidence from physiology has suggested that physiological measures (e.g., skin conductance, 

heart rate, pupil size, respiration, blood volume pulse) reflect reactions of autonomic nervous system 

(ANS) and are therefore difficult to ‘fake’ (Andreassi, 2000). Physiologists have used these 

measures as objective identifiers of human emotions such as anger, grief and sadness (Ekman, 

Levenson and Friesen, 1983), while researchers in human factors have used them to determine 

mental effort and stress (Vicente, Thornton and Moray, 1987). Moreover, recent improvements in 

technology have made it possible to provide continuous, high-resolution data sources for HCI fields. 

Physiological measures are being explored in several studies as an independent or dependent 

usability metric. They show potential, for example, in assessing multimedia quality and measuring 

presence in a virtual environment. We believe that physiological data will be a valuable complement 

to traditional usability evaluation measures. However, there is still a lack of investigation into 

relationships between physiological data and traditional usability indexes.  

 

This paper investigates relationships between task performance data, subjective data and 

physiological data. It is important to disentangle the relationships to testify the efficacy of 

physiological measures for HCI evaluation and understand user states during interactions. It provides 

an initial step toward establishing a new usability evaluation method that uses physiology as a 

complementary measure or as an independent measure for HCI evaluation. In addition, we examine 

physiological responses to frustrating events for clues to help explain the differences between 

physiological and task performance data. In our experiment, we created a video game environment 

to elicit task performance, subjective assessment and physiological data, and analyzed the links and 

correlations among them. 

 

 

STRESS AND PHYSIOLOGICAL MEASURES 

 

In the study, stress was measured as user cost by physiological measures. Historically, stress has 

been defined as a reaction from a calm state to an aroused state (Cannon, 1927). The reactions are 

described as “fight or flight” not “fight or joy”. Some researchers made distinction between 

“eustress” and “distress”, where eustress is a positive type of stress, such as joy, and distress is a 

negative type of stress (Eisenhofer and Goldstien, 1988). The definition of stress in the present study 

will only cover “distress” or stress with a negative bias. Based on previous research, we chose the 

physiological properties of galvanic skin response (GSR), blood volume pulse (BVP) and heart rate 

(HR), because they can be measured non-invasively and are good indicators of arousal. The GSR 

signal is an indicator of skin conductance. In 1956, Seyle linked GSR to stress and ANS arousal 

(Seyle, 1956). Recent research also showed that skin conductance varies linearly with the overall 

level of arousal and increases with anxiety and stress (Picard, 1997; Healey, 2000), and can also 

reflect both emotional response and cognitive activity (Boucsein, 1992). The BVP signal is an  
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indicator of blood flow. BVP increases with negatively valenced emotions such as fear and anxiety, 

and decreases with relaxation (Picard, 1997; Healey, 2000). Heart rate is also considered to be a 

good indicator of overall activity levels, with a high heart rate associated with an anxious state and a 

low rate with a relaxed state (Frijda, 1986). Heart rate was automatically calculated from BVP with 

the Biograph software in our experiment.  

 

 

RELATED STUDIES ON USING PHYSIOLOGY AS A METRIC OF HCI EVALUATION 

 

Several studies reported by Wilson and Sasse show a novel method for assessing multimedia quality 

in the context of networked applications: physiological responses to degradations in media quality 

(audio and video) are taken as an objective measure of user cost (Wilson, 2001). They found 

significant increases in GSR and HR, and significant decreases in BVP for video shown at 5 frames 

per second versus 25 frames per second (Wilson and Sasse, 2000a), even though most subjects didn’t 

report noticing a difference in media quality. Another main finding of this research is that subjective 

and physiological results do not always correlate with each other (Wilson and Sasse, 2000b). These 

discrepancies between physiological and subjective assessment support the argument for a 3-D 

approach to evaluating multimedia quality and other HCI evaluation areas.  

 

Ward et al. used several physiological measures (HR, BVP, and GSR) to assess users’ responses to 

well-designed and poorly designed web pages. No significant differences were found between users 

viewing the two types of web pages, in part due to large individual differences. However, distinct 

trends were seen between the groups when the data were normalized and plotted. Participants using 

the poor interface showed higher levels of arousal (Ward and Marsden, 2003; Ward, Marsden, Cahill 

and Johnson, 2002). Their study also provides an example of how physiological data can be fit into 

usability evaluation. 

 

Meehan et al. used physiological measures (GSR, HR, skin temperature) to evaluate presence in 

stressful virtual environments. The experiments found that the change in HR can satisfy the 

requirements for a reliable, objective measure of presence, and that change in GSR does to a lesser 

extent; change in skin temperature does not (Meehan, Insko, Whitton and Brooks, 2002). 

 

In the domain of entertainment technology, an experiment was conducted to test the efficacy of 

physiological measures as evaluators of collaborative entertainment technology (Mandryk and 

Inkpen, 2004). Their results suggest that there are different physiological responses when a user is 

playing against a computer than when playing against a friend. These results are mirrored in the 

subjective reports provided by the participants. Ravaja et al. examined phasic psychophysiological 

responses indexing emotional valence (i.e., facial electromyography) and arousal (i.e., inter-beat 

intervals and GSR) to different game events in a video game and suggested that information on the 

emotion responses elicited by game events and event pattern may be applied in the game design 

(Ravaja, Saari, Laarni, Kallinen, and Salminen, 2005). 

 

Affective computing is one of the active areas in HCI field, whose research are aimed at giving 

machines skills of emotional intelligence, including the ability to recognize, model, and understand 

human emotion, to appropriately communicate emotion, and to respond to it effectively. The new 

developments in the HCI field are narrowing the gap between the human and the machine and 

machines are increasingly to sense, or infer user attributes. To the extent that distinct emotions 

prepare the organism for distinct behaviour (e.g. approach vs. avoid, and fight vs. flee at the most 

fundamental level), they ought to be reflected in distinct physiological signatures. This is the basis 

for using specific signatures along these signatures to recognize a particular affective state. While  
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debate continues regarding the specificity of these signatures for particular emotions, and the degree 

of affective differentiation possible, particularly when only ANS signals are considered, some 

research has suggested that with sufficient data, appropriate baseline and normalizing procedures, 

and subsequent pattern recognition algorithms, it is possible to differentiate among a number of 

emotions (Davidson and Ekman, 1994; Picard, Vyzas and Healey, 2001). Scheirer et al. applied a 

pattern-recognition strategy known as Hidden MarKov Models to GSR and BVP data to detect states 

of frustration deliberately induced by a slow computer game interface (Scheirer, Fernandez, Klein 

and Picard, 2002).  

 

 

EXPERIMENT DESIGN 

 

To obtain task performance, subjective and physiological data, and investigate their links or 

correlations, we chose a video game as the experimental task. Participants were required to play a 

popular 3-D video game called Super Mario 64, which was manufactured by NINTENDO
®
. The 

GSR data were collected at 64 Hz; BVP and HR data at 128 Hz. Questionnaire data, including 

subjective assessment of stress, participants’ statistics and task performance data, were collected into 

a data file and analysed using SPSS 11.0 software. 

 

Participants  

 

Fourteen male and four female university students aged 19 to 31 participated in the experiment. 

Before the experiment, all participants were required to fill out a background questionnaire about 

their experience with the game, average game times and personal information such as sex, age and 

handedness. Nine of the 18 participants were experienced with the game, while the other nine were 

somewhat experienced or completely inexperienced.  

 

Task 

 

In our experiment, participants were required to play three parts of Super Mario 64 in a random 

order as quickly and accurately as possible. Task One was to run all regulated paths up to a mountain 

and defeat King Bo-Bomb, which took about 140 seconds for an average skilled player. Task Two 

was to pound a wooden post into the ground while avoiding an attack from a monster. It generally 

took 55 seconds to play that part of the game. In Task Three, participants were required to go 

through a snow slide without falling from it. This usually took about 50 seconds. Screen shots of the 

three tasks are shown in Figure 1. 

 

  

Figure 1: Screen shots of the experimental tasks (Task One, Task Two and Task Three) 

 

Participants played each task continuously for 10 minutes, regardless of results. That is, participants 

could repeat a task many times in ten minutes. In order to ensure consistent experimental conditions, 

game settings were not changed during the course of each experiment. 
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Experimental Apparatus and Protocol  

 

The experimental tasks were performed in an HCI laboratory. Super Mario 64 was played on a 

NINTENDO
64
 and viewed on a 25-inch television screen. Physiological signal data were collected 

with the ProComp Infiniti System and BioGraph Software from Thought Technologies
TM
. To 

measure GSR, two sensors were placed on the left fingers. BVP and HR were simultaneously 

measured using a sensor on the right fingers. The BVP sensor is sensitive to movement, which is the 

most likely cause for noisy data. Therefore, participants were required not to move the finger 

attached to the BVP sensor while playing. Additionally, game output was recorded in order to 

synchronize it with the screen showing physiological data. An experimental scene is shown in Figure 

2.  

 

 
 

Figure 2: An experimental scene 

 

The experiment was divided into four phases: a welcome phase, a practice phase, a game phase and a 

debriefing phase. During the welcome phase, participants signed a consent form with a detailed 

description of the experiment, its duration and its research purpose. Each participant also filled out a 

background questionnaire. 

 

During the practice phase, instructions were read to each individual, describing the game rules, as 

well as a brief tutorial on how to complete the game tasks. Participants were then allowed to practice 

for approximately three minutes for each game task.  

 

At the outset of the game phase, a 10-minute resting baseline (GSR, BVP, and HR) was gathered. 

Then, participants played three tasks, and each task lasted 10 minutes. After completing a task, each 

participant had about 15 minutes to rest and completed a questionnaire to assess levels of task 

difficulty and stress caused by the game. During the course of playing the game, their task 

performance data and physiological data were collected. Participants were neither encouraged nor 

discouraged to talk. 

 

At the end of the game, participants discussed their impressions of the experiment. 

 

 

RESULTS AND DISCUSSION 
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In this section, subjective data assessing stress and physiological data are first described and 

analyzed. Then the correlations between task performance and physiological data are investigated. 

Finally, physiological responses to frustration events are examined.  

 

Subjective Data and Physiological Data  

 

Participants’ stress was assessed subjectively on a unidimensional scale, which derived from the 

RSME (Rating Scale Mental Effort) (Zijlstra, 1993). Ratings of perceived stress are indicated by a 

cross on a continuous line. The line runs from 0 to 150 mm, and every 10 mm is indicated. Along the 

line, at several anchor points, statements related to perceived stress are given, for example, almost no 

stress or extreme stress. The scale is scored by the measurement of the distance from the origin to the 

mark in mm.  

 

Means for the stress scores were analysed using an ANOVA analysis to determine whether there is 

difference in stress perceived for the three tasks. The result shows significant differences (F=8.25, 

df=53, P=0.001) (see Figure 3).  

Task ThreeTask TwoTask One

M
e
a
n
 s
tr
e
s
s
 s
c
o
re

70

60

50

40

30

 
Figure 3: Mean stress score of three tasks 

 

Task Three caused the highest stress level, followed by Task Two and Task One. Although the 

difference in stress-score means has statistical significance, the pattern is not always consistent. All 

the participants stated consistently on the questionnaire that they perceived the least stress during 

Task One. However, four participants reported that Task Two caused the highest stress level. The 

questionnaire for evaluating task difficulty could provide partial reasons for the discrepancies. All 

participants reported that Task One was easy, and five participants thought that Task Two was the 

most difficult, including the four participants who perceived the highest stress level during Task 

Two. In addition, at the end of the tasks, when the four participants were asked why Task Two 

caused more stress than Task Three, they also explained that Task Two was very difficult to play. 

The results suggested that the discrepancy with the pattern could be attributed to task difficulty.  

 

We analysed physiological data across three tasks. The extremely individual nature of GSR (there is 

no “normal” baselines for people) makes it virtually impossible to directly compare GSR 

measurements across individuals (Bersak, McDarby, Augenblick, McDarby, McDonnell, McDonal 

and Karkun, 2001). To minimize the influence of individuals, we normalized GSR data using the 

formula (signal-baseline) / baseline and used the GSR change over a certain time period as our gauge 
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of stress during that period. We found that there were significant differences in mean normalized 

GSR among the three tasks by using an ANOVA analysis (F=11.6, df=53, P<0.001) (see Figure 4). 
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Figure 4: Mean normalized GSR of three tasks 

 

The results are mirrored in the subjective report for assessing stress levels. As previous research 

suggested, GSR data can indicate the different levels of stress caused by the tasks. Moreover, GSR 

data from all participants were consistent with the pattern: Task Three caused the greatest 

normalized GSR, followed by Task Two and Task One. The four participants who perceived the 

highest stress levels during Task Two in subjective report were not affected by the task difficulty.  

 

We also examined HR and BVP data but didn’t find significant differences among the three tasks. 

This may be caused by BVP signal with lots of noisy data. Most subjects could not avoid moving 

their fingers attached to the BVP sensor while playing. 

 

Task Performance Data and Physiological Data 

 

Participants’ success times for a task were defined as their task performance index. The more 

successes participants got, the higher task performance level was. The sum of success times for three 

tasks was analysed as overall task performance. Among participants, participant 7, who had 22 

successes, reached the highest task performance level. In order to examine the relationship between 

task performance data and physiological data, we classified participants into three groups with 

different task performance levels according their success times: low (0-7 successes), middle (8-15 

successes) and high (16-22 successes). The mean normalized GSR across the three levels was shown 

in figure 5.  
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Figure 5: Mean normalized GSR across three task performance levels 

 

An ANOVA analysis showed that there were significant differences among the three groups with 

different task performance levels (F=3.72, df=17, p= 0.04). The group with low task performance 

level experienced the greatest normalized GSR, followed by the group with middle task performance 

level and the group with high task performance level. As Gilleade et al. suggested, skilled players 

responded less physiologically compared with inexperienced players (Gilleade, Dix and Allanson, 

2005). Yerkes-Dodson law (Yerkes and Dodson, 1908) also suggested that everyone has an optimal 

level of arousal for performance and going over this level will result in an impairment of task 

performance and possibly stress. There seemed to be an inherent amount of arousal in every task and 

the mismatch between task demand and user ability resulted in stress.  

 

We also analysed normalized GSR and success times for each task separately (see Figure 6).  

 

 
 

Figure 6: Mean normalized GSR across success times for three tasks 
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For Task One, there is a consistently decreasing trend in normalized GSR with an increase in success 

times. Normalized GSR shows statistically significant differences across different success times (1, 

2, 3 and 4 successes) (F=10.12, df=17, p=0.001). In addition, success times and normalized GSR 

also show a negative, statistically significant linear correlation (R=-0.77, P<0.01). For Task Two and 

Task Three, mean normalized GSR doesn’t decrease consistently with an increase in success times, 

but they still show an overall decreasing trend with an increase in success times. Correlation analysis 

for them shows that Normalized GSR of Task Two negatively and significantly correlates with its 

success times. (R=-0.60, p =0.005), and Task Three does not show significant correlations between 

normalized GSR and success times. There seem to be reasons for the inconsistencies in the trend and 

the lack of statistical significance in Task Three. The first is that the number of participants was not 

large enough to distinguish subtle task performance difference when tasks became more difficult. 

Moreover, there are larger differences in physiological responses between individual participants 

during difficult tasks than during easy task, which would also have contributed to the lack of 

statistical significance. 

 

Physiological Response to Frustration Events 

 

Stress is a subnet of emotion and often associated with negative emotional states, such as anxiety and 

frustration (Lazarus, 1993). In the study, we inspected physiological response to frustration by 

examining small periods of time surrounding frustration events. In Lawson’s theory of frustration 

(Lawson, 1965), frustration is described as “the occurrence of an obstacle that prevented the 

satisfaction of a need.” We examined frustration events during Task One and Task Two by 

reviewing the recorded tapes, which mainly included the following kinds of events: being attacked 

by enemies, accidentally falling from a mountain road or a bridge, and being hit by an unexpected 

bomb. We measured GSR of frustration events and when collected at 64 Hz, it provides fast-

response, high-resolution and continuous time-series data. There were 355 frustration events in all. 

GSR data were windowed 5 sec prior to the frustration events and 10 sec after. For 256 frustration 

events, participants experienced more than 5% increases in GSR when frustrated. An example of a 

frustration event and its corresponding GSR response is shown in Figure 7. 

 
 

Figure 7: A participant was frustrated when attacked and experienced a large increase in GSR 

 

We also investigated the relationship of frustration events and task performance. Figure 8 shows the 

distribution of frustration events across success times for Task One and Task Two. The results 

suggest a trend: with an increase in success times, the mean number of frustration events decreases. 

Participants with poor performance experienced more frustration. 
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Figure 8: Distribution of frustration events across success times 

 

We also analysed participants’ GSR response to their failures in Task Three, because once 

participants fell from the snow slide, they failed and had to start again. Ninety percent of 

participants’ failures produced more than a 5% increase in GSR. 

 

The link between success times and frustration events provides a reason for explaining the 

correlation of task performance and physiological data, although it is not comprehensive. When a 

frustration event happened, participants had to invest extra time and effort to deal with it. 

Consequently, task performance decreased and GSR responses changed. 

 

 

CONCLUSIONS 

 

While the results of this study are preliminary and warrant further investigation, there are three 

findings that indicate the necessity and promise for using physiology to evaluate usability. The first 

is that physiological measures are consistent with subjective measures and show significant 

sensitivity to changes in stress levels. Another finding is that, while we have been not able to 

disentangle clearly the cause-effect relationship between task performance and physiological data, 

we did find a correlation between the two kinds of data. In the study, GSR data was used to measure 

stress as a non-specific response of the body and the finding suggests when an individual comes 

under stress, his performance may be adversely affected. Although stress may have a positive effect 

on performance in individual cases, the subjects reported that stress produced negative consequences 

on non-task performance dimensions. For example, high levels of stress led to emotional exhaustion. 

In addition, we found that most frustration events produced remarkable physiological responses, and 

the participants with poor performance tended to experienced more frustration. The poor task 

performance and greater physiological response could be attributed to these frustration events.  

 

These results show the potential value of physiological data as a data source for usability evaluation. 

Physiological data not only provide a real-time window into users’ state and make it possible to 

evaluate usability at a more detailed level, but also provide some clues to explaining differences in 

task performance. The study takes an initial step toward establishing a new usability evaluation  
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method using physiology as a complementary measure or as an independent measure for HCI 

evaluation.  

 

 

FUTURE WORK 

 

The ultimate purpose of our research is to establish a new usability evaluation method based on three 

kinds of data: user subjectivity, task performance data and physiological data, which not only 

evaluates the system’s effectiveness and efficiency, but also takes physiological reactions into 

account. This paper presents an initial examination of the correlation between physiological data and 

the traditional index of usability evaluation. More steps are required to create this new usability 

evaluation method.  

 

The experimental results showed that GSR data correlate to task performance data, but we don’t 

conclude that there is a cause-effect relationship between the two kinds of data. We need more 

rigorous experimental conditions and analytical methods to understand the correlation. In the 

experiment, BVP signal failed to index stress levels because of lots of noisy data. We will use more 

reliable EKG signal instead of the BVP sensor in the next step. There are also other physiological 

measures that may be useful for usability evaluation in HCI. For example, HR variability has been 

studied extensively. It has been used as an indicator of the extent of task engagement in information 

processing requiring significant mental effort (Sirevaag, Kramer, Wickens, Reisweber, Strayer and 

Grenell, 1993; Tattersall and Hockey, 1995; Wilson, 1993), and has been used to detect rapid 

transient shifts in mental workload (Kramer, 1991). 

 

Eye tracking is another well studied measure. A major use of eye-tracking technologies in HCI is to 

ascertain what is being processed based on what is being looked at. The use of eye tracking enables 

usability evaluation to be conducted at a more detailed level, pinpointing specific areas within a 

display that may be causing usability problems and indicating how such issues change over time. In 

our usability evaluation framework, we will synchronize physiological responses with eye 

movements and establish a connection between elements of the interface and a user’s current state, 

through which we are able to understand where usability problems are and how users react to them. 

In addition, eye tracking has potential to help explain task performance and to detect user fatigue and 

strain. For example, the number of fixations overall is thought to be negatively correlated with 

search efficiency, and longer fixations are an indication of difficulty in extracting information from a 

display (Goldberg and Kotval, 1999). It also has been found that pupil diameter decreases with 

fatigue (Hess, 1972; Lowenstein and Loewenfeld, 1964), and pupil diameter changes are related to 

positive effects (pupil dilation) and negative effects (pupil constriction) (Partal, Maria and Surakka, 

2000). In our experiments, different levels of task performance produced different physiological 

responses. Eye tracking could provide clues about explaining the differences in task performance 

and physiological responses.  

 

To create a new methodology, more subtle experimental manipulations should also be explored. For 

instance, experiments should be extended to different domains and a variety of tasks. Moreover, 

ensuring a sufficient number of participants is needed to increase the statistical power of the study.  
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