
A REVIEW OF OBJECT ORIENTED DATABASE CONCEPTS
AND THEIR IMPLEMENTATION.

Narciso Cerpa
School of Computer Science and Engineering

Faculty of Engineering
University of New South Wales

P.O. Box 1, Kensington
Sydney, NSW

Australia

Roy Dean
School of Information Systems

Faculty of Commerce and Economics

ABSTRACT

Object Oriented design and databases has attracted a great deal of attention in recent years. This article

outlines and discusses the semantic data principles used inter alia in understanding Object Oriented

concepts. To illustrate and lend substance to this discussion a list is presented of OODBMS

implementations. Their weaknesses and strengths are analysed. And their suitability for specific

applications is assessed. Finally we offer some conclusions about research in this area and the directions in

which further development should proceed.

INTRODUCTION

There is a twofold purpose to this paper. Firstly to present an insight into Object-Oriented Database
technology in both research and commercial arena. Secondly, to provide a view of Object-Oriented
Database Management Systems (OODBMSs). The range and breadth of industrial and commercial
needs today are beyond the technological grasp of the more traditional Data Base Management
Systems. Most of these older systems were developed for commercial applications, traditionally in
accounting, administration, resource exploration and financial support systems. Today's applications
are wider in scope.
These newer applications include Computer Aided Design (CAD), Computer Aided Software
Engineering (CASE) and Hypertext applications. They have specific characteristics and requirements
and they require a different DBMS with capabilities honed to their needs. There have been a number
of approaches to this problem. For example Stonebraker, et al (1990) in their third generation
manifesto of DBMS attributes, suggest a Darwinian view. They opine that the contemporary
evolution of relational technology provides equally efficient solutions. Consequently they propose a
contemporary view of relational technology as an alternative to the "newer" generation of DBMS.
Others refute this proposition. Khoshafian et al (1986), Jackson (1991) and Garvey et al (1989) all
argue that even though some extensions have been made to the relational model,(to overcome some
of its limitations) more flexibility is still needed. They propose the Object-Oriented DBMS approach
as an alternative to contemporary relational technology. Because Object-Oriented Database
technology is based on the Object-Oriented Programming Languages, some of the language and its
terminology, is presented within this paper. This paper also highlights the importance of OODBMS
components, analyses some of the OODBMSs currently available and presents an overview of their
implementation. The expectations of OODBMSs in the commercial marketplace, highlighting the
areas which require further research, are discussed. In addition some major problems in OODBMS
technology are presented. Finally, some conclusions on the results from the last decade of research on
OODBMSs are given, outlining the achievements and presenting directions for the future.

September 1993
13



THE OBJECT-ORIENTED APPROACH

The newer applications require:
• a flexible abstract data typing approach
• the capability to encapsulate data and
• the operations on this data by using the message metaphor.

A combination of the object-oriented capabilities with the traditional storage management functions,
will result in a system which keeps the capabilities of the traditional approach, but includes an
extensible data typing facility. This facility enables the storing of information usually not suited for
normalised relations (Maier et al, (1986)). In object-oriented systems, all conceptual entities are
modelled as objects. A simple integer or string is as much an object as is a complex assembly of
parts. An object has value and/or attributes. More complex objects contain instance variables. The
behaviour of an object is encapsulated (caught) in methods (processes). (Banerjee, et al, 1987A).
According some researchers and practitioners, (for example Khoshafian et al (1986), Jackson (1991)
and Garvey et al (1989)) an OODBMS should fulfil all the functions which are expected of data base
systems, plus others features which are typical in object-orientism. These can be described as
follows:

Object Identity: For an object to exist in its own right it requires the characteristic of
uniqueness. In OODBMS terms uniqueness is called identity. Khoshafian et al (1986),
Jackson (1991) and Garvey et al (1989) all say that identity is that property of an object
which distinguishes each object from all others. When real world objects are modelled, it is
usually with some particular purpose in mind. A subset of that object's description relevant
to the purposes of the model is included in the model
This subset is not always complete. To reflect the object's uniqueness sometimes artificial
identifier is required. The relational model introduces the notion of user-defined identifier
keys to represent the identity of an object. These researchers suggested implementing the
object identity by a substitution method called surrogates. In this way the unique identifiers
are generated. Each system has its own set of surrogates. Surrogates are completely
independent of any physical location. Each object of any type is associated with a surrogate at
the moment it is instantiated. This association will internally represent the identity of its
object throughout the lifetime of the objecifrom creation to deletion.

Inheritance:According to Paton, et al (1991) inheritance can be supported in three ways. The
first kind of inheritance support, occurs when the structure of a superclass is inherited by its
subclasses. The second kind occurs when the behaviour is inherited. The third kind is a
combination of both. In Object-Oriented data bases, inheritance is possible by the modelling
of IS_A relationships which are implemented by the OODBMS. (For a more extensive
coverage of semantic data modelling see Elmasri and Navathe (1989), Hull and King (1987)).
Inheritance reduces the need to specify redundant information, and simplifies updating.
(Garvey, et al (1989)) Information about many object instances can be changed in a single
update action.

Abstract Data Types are defined by Garvey, et al (1989) as data types which allow users to
define new data structures. The object-oriented approach enables objects to possess
attributes which are themselves objects (Jackson (1991)). This is achieved by using the ADT
facility and building objects from existing data structures. ADTs provide a set of methods
which may be used to manipulate the attributes of the object, but hiding the physical storage
representation of the information.

Method and Message: a message is defined as the way in which objects communicate and
perform all their computations (Garvey, et al (1989)). A message can be divided into the
object, the method and the list of arguments It represents the interaction between objects,
message can also be a request for an object to carry out one of its operations. Message
sending supports data abstraction. The calling program does not make any assumptions
about the implementation and data type used.

14 AJIS



Overloading: occurs when the same operator can be used for the same operations on
different data types. (Garvey, et al (1989)) So, distinct methods can be given the same name
for two different classes of objects. Overloading is also related to the term polymorphism
described above.

Late Binding: is a run-time interpretation of message passing, also called dynamic binding
(Thomas (1989)). The language is interpreted, instead of compiled. (Garvey et al, (1989))
This allows features to be added to a method without affecting existing programs. The "how
to do it" question, is resolved at run-time.

Encapsulation An object consists of an encapsulated representation or state and a set of
messages which can be applied to that object (Thomas (1989)). This concept is also called
data abstraction or modular programming. The data is packaged together with the
procedures for accessing the data. This data can only be accessed by using the methods or
messages provided by the implementer (Zdonik, et al (1990)).

Complex/Composite Objects: are built by applying constructors to basic objects (Jackson
(1991)). Oxborrow, et al (1991) state that composite objects represent one kind of complex
object whereas Kim, et al (1987) define a composite object as an object with a hierarchy of
exclusive component objects. The instances which constitute a composite object belong to
classes that are also organised in a hierarchy. This hierarchical collection of classes is called
a composite object schema. Composite objects augment the semantic integrity of the object-
oriented data base model through the notion of dependent objects. To implement a complex
object, requires clustering and locking support.

Object Oriented Summary

A definition of OODBMSs was presented by Atkinson et al (1990) at the First International
Conference on Deductive and Object-Oriented Data Bases. This definition included the features
mentioned by researchers and practitioners as discussed above. To this definition Atkinson et al
(1990) add the concept that the data manipulation language of the data base should allow the user to
express any computable function. This is in sharp contrast with the current SQL approach in
relational data bases where computational characteristics are very limited.
Other functions, which are described by some researchers include:

• the graphical interface for supporting the interaction with complex objects
structures,

• and a version schema feature.

TECHNICAL FUNCTIONALITIES FOR OODBMS IMPLEMENTATIONS

There are technical functionalities which are critical to the success of all DBMSs including
OODBMS. These functionalities include:

Persistence: Persistent data is described by Khoshafian (1990) as data which is stored outside
a transaction context and so survives transaction updates. There are two principal strategies to
determine whether objects should become persistent. These are persistence extensions and
persistence through accessibility. The former incorporates the notion of a class extension to
make the instances of a class persistent. The latter enables one or more persistent data base
roots and every object, reachable from these roots, persistent.

Transaction Management and Concurrency Control: Garza et al (1988) present a good
analysis of transaction management. They show how the transaction subsystem provides a
concurrency control mechanism to allow interleaved execution of multiple concurrent
transactions (serializability). The two-phase locking protocol is used. The granules for
locking are the data base, the index, the class, and the instance levels.
Composite object locking is used for defining and manipulating a set of objects as a single
entity. It also delivers semantic integrity. To achieve class lattice (network), and composite

September 1993 IS



object locking, new lock modes have been added to the conventional compatibility matrix
for granularity locking. The aim is to increase efficiency of storage and retrieval functions.

Recovery: Garza et al (1988) describe a recovery process which supports recovery only
from soft crashes (leaving the content of the disk intact). When this occurs user-initiated
transactions abort. This does not support recovery from disk head crashes. The implemented
approach uses the Undo from log procedure. This procedure requires that pages containing
updated objects are forced to disk at the end of a transaction.

Security: is both mandatory and vital in OODBMSs. (Thuraisingham (1989)) It is
largely based on subjects (processes) and entities (objects) with
assigned security levels. The following rules apply:

. A subject has read access to any entity if the subject's security level
dominates the security level of the entity.

. A subject has write access to an entity, if the subject's security level equals
the security level of the entity.

. A subject can execute a method if the subject's security level dominates
both the security level of the method and the type on which the
method is defined.

. A method executes at the security level of the subject who initiated the
execution.

. During the execution of a method Ml, if another method M2, is executed,
then M2 can execute only if the execution level of Ml dominates
both the security level of M2 and the security level of the type on
which M2 is defined.
. If a new object is created as a result of executing a method, the object is
created at the security level of the subject who initiated the execution of
the method.

This security system is the multi-level security system on which the subjects are assigned a level of
security (e.g. unclassified < confidentiak secret < topsecret) and the security is enforced based on the
level of security of the subject and the object as created or accessed.

Data Access Performance

Effective clustering can have a significant impact on performance particularly when accessing data.
Chang et al (1989) discuss effective clustering in an OODBMS based on a prototype object-oriented
data manager developed by the UC-Berkeley CAD group. They propose using inheritance and
structure semantics for achieving such improved performance, in the same way that the relational
query optimiser uses the table cardinality and indexing information for producing efficient access
plans. They also propose a run-time clustering algorithm, which, under high structure density and
large read/write ratio conditions, can greatly improve system response time. A simulation study
conducted by Cheng et al (1991) showed an application where a high read/write ratio justified a fully
dynamic reclustering strategy. Conversely, when the ratio is not high enough, the reorganisation
overhead degrades the overall performance.
Performance enhancement by using data replication has been proposed by Shekita, et al (1989). Here
replicated data eliminates the use of functional joins that would otherwise be required during query
processing. This technique is also called, field replication, and this should only be specified on
reference paths which are frequently accessed although infrequently updated. Two strategies are
proposed. They are:

• in-place replication, where the replicated values are stored directly in the
objects that cause replication to take place, and

• separate replication when replicated values are stored in different objects that are
shared within the set.

One of the issues is the propagation of updates for both strategies (in the same way as replication in the
relational model). Kemper, et al (1990) propose creating redundant, and separate structures (access

16 AJIS



support relations) to store frequently traversed object references in data base queries. This access
support relations technique is combined with a query optimiser to transform queries into expressions.
This addition is needed to take full advantage of access support relations.

Query Facility

A proposed query model (Kim 1989) restricts the query target to a single class or a class hierarchy
rooted at that class. This model excludes operations comparable to relational joins and set operations.
It reflects the semantics of the class hierarchy. In an object-oriented data base, the operand and the
result of the set operation may be a heterogeneous set of instances.

DEVELOPMENTS IN OBJECT-ORIENTED DBMSs

There are a number of implementations of OODBMS with both research and commercial
applications. Each implementation differs. This is mainly due to the differences between the OOL
which forms their genesis.
A list of OODBMSs follows with a short discussion outlining their weaknesses and strengths. The list
is largely but not exclusively chronological in development. Languages and OODBMSs named in this
list are proprietary. The characteristics of each item on the list correspond to the date of the research
conducted by the cited researchers.

Gemstone

This data base system resulted from a project where the objective was to merge object-oriented
language concepts with data base systems concepts. (Described in Maier, et al (1986)). Gemstone
was mainly based on the Smalltalk-80 language, and its data definition and manipulation language,
called Opal, was also based on Smalltalk-80 capabilities and features. Gemstone attempts to permit
variations in structured objects, arbitrary data items as values and modification of data base schemes
without physical data base restructuring.
Gemstone also provides a mechanism for accessing an entity as a unit. Gemstone provides most of
the object-oriented features, but not totally. The implementation of Opal as the data definition
language for Gemstone, had as an objective to implement a computationally complete data
manipulation language. All data base access and operations use only Opal.
According to Dittrich (1986) there are three levels of object-orientism definition, namely structural,
operational, and behavioural. Gemstone supports complex objects, and allows the definition of
abstract data types. Therefore it is labelled as having behavioural object-orientism. However it does
not supply multiple inheritance.
The Gemstone architecture, presented by Maier, et al (1986), provides most of the features of data
base systems, such as secondary storage management, concurrency control, authorisation,
transactions, recovery, and support for associative access. Concurrency is supported by providing
each user with a workspace area. This area contains a shadow copy of the object derived from the
most recently committed object table. The concurrency control schema used, is the optimistic
schema, in which conflicts are checked at commit time, rather than prevented from occurring through
locking. This schema ensures that read-only transactions never conflict with other transactions.
The recovery process is based on the use of the shadow and shared copy, not making use of logging
files, but the important part of recovery is the garbage collection, when removing detritus of the
transactions which had not committed before the crash. The authorisation access and ownership are
based on segments, which are the areas assigned to users for the creation of new objects. A user can
grant read or write permission on a segment to other users, being the grantor (i.e. the original owner).

Postgres

Postgres is described and defined by Rowe, et al (1987), as a relational model extended to include
features such as abstract data types, relation attribute of type procedure, and attribute and procedure
inheritance. These features can be used to simulate object-oriented modelling constructs such as
aggregation and generalisation, complex objects with shared subobjects, and attributes which are able
to reference tuples in other relations. Postgres has a relational database, taking the best features and

September 1993 17



concepts from the relational approach (in this specific case, from Ingres) It includes new objectives to
add semantic capabilities to the relational model.
Postgres provides better support for complex objects, extensibility for data type, operators and access
methods. It also gives facilities for active data bases and inferencing, providing support for forward
and backward chaining.This data base system provides a collection of atomic and structured types,
where all atomic data types are defined to the system as ADTs. These ADTs are defined by
specifying their names, lengths, input and output procedures, as well as their default values. The
input and output procedures are written in a conventional programming language such as C. Although
this ADT mechanism is provided by Postgres, it is limited in comparison with some implementation
of abstract data types in some object-oriented programming languages. There is no inheritance
mechanism for ADTs in Postgres.
Based on Dittrich (1986) object orientism definition, Postgres has some elements of both structural
and operational object-orientism; particularly in the way that it implements ADTs and complex
objects. However these characteristics are not combined. Its features agree with the third generation
manifesto of Stonebraker, et al (1990). The Postgres architecture supports transaction management,
but does not use the conventional write ahead log. (Stonebraker (1987)). The main characteristics of
the approach used, are a collection of modules which provide transaction management. No recovery
code is used. All updates are turned into insertions, and take advantage of specialised hardware. It is
assumed that non-volatile main memory exists in some reasonable quantity
Concurrency control is implemented by the conventional two-phase locking protocol and using a
main memory lock table. Postgres also keeps archival records on an archival medium by having an
archival storage system compatible with WORM (write once - read many) devices. Postgres provides
housekeeping to maintain the archive system free of invalid records. While Postgres is not classified
as an OODBMS by its creators. However it is in this analysis for its capabilities in simulating some
semantic and object-oriented features. All the features of Postgres agree more with the third
generation manifesto, than with the object-oriented approach. But its variety of features could
classify it as a very interesting multi-featured data base system.

Iris

Iris is a research prototype. Its main purpose is to meet the needs of current data base applications
(e.g. CASE tools, CAD, etc) (Fishman, et al (1987)). Iris provides a different facility to other
OODBMSs. It was designed to be accessible from any number of programming languages. Two
lexically oriented interfaces are also supported. They are OSQL, an object-oriented extension to
SQL, and Inspector, an extension of a LISP structure browser.
The Iris object manager provides the support for schema definition, data manipulation, and query
processing. The data model is mainly based on constructs such as objects, types, and operations,
providing support for inheritance, constraints, complex objects or normalised data, user defined
operations, version management, inference and extensible data types.
Iris architecture is built over conventional relational storage manager, supporting transactions,
concurrency control, logging and recovery, archiving, indexing and buffer management. The
transaction management is based on the conventional two-phase locking protocol. Research is being
conducted to improve concurrency, to provide prolonged access and to manipulate data base objects.

Vbase

Vbase is a commercially available data base system. It was built with a schema definition language
concept where objects are defined as data types. These data types have attributes also defined as
being of a specific type (Andrews et al (1987)). The main purposes of Vbase are to combine a
procedural language with support for persistent objects. It also has the strong typing inherent in
object systems for both language and data base.
Vbase has the most important influences from CLU, a programming language developed at MTT.
Vbase is based on the abstract data typing paradigm, rather than the object/message paradigm. In
Vbase object behaviour is required by a combination of properties representing static behaviour, and
operations representing dynamic behaviour.
The Vbase architecture is based on a four layer approach, namely language layer, abstraction layer,
representation layer, and storage layer. The language layer consists of the compilers for defining and
implementing the behaviour of objects. The abstraction layer provides support for inheritance,

18 AJIS



operation, dispatching, method combination, and property manipulation. The representation layer is
the basis for the reference semantics. The storage layer is responsible for the management of objects
and their persistence. Vbase provides features such as clustering objects on disk and in memory,
triggers implementation, customised types, but very little time is given in this paper by the authors, to
data base features, such as transaction management, concurrency, recovery, and others.

Orion

Orion is a prototype Object-Oriented data base system, used for supporting the data management
needs of Proteus (an expert system). There are two versions of Orion, a single-user and multi-task
system called Orion-1, and a multi-user and multi-task system called Orion-lS, in which a single
server provides persistent object management on behalf of several workstations. Orion supports
functions such as version and change notification, composite objects, dynamic schema evolution,
transaction management, associative queries, and multimedia data management. Orion has been
implemented in Common LISP, to produce the integration of a programming language with a data
base system.
The Orion architecture consists of:

. a message handler receiving all messages sent to Orion objects,

. an object subsystem providing high-level functions, schema evolution,
version control, query optimisation, and multimedia information management,
. a transaction subsystem providing concurrency control and recovery
mechanism to protect data base integrity, while allowing the concurrent
execution of multiple transactions. The conventional two-phase locking
protocol is used for concurrency control. A logging mechanism is used for
recovery from system crashes and aborts.
. a storage subsystem providing access to objects on permanent storage (disks). It
also finds and places objects on pages and also manages the movement of pages to
and from permanent storage.

Encore

Encore is described by Hornick (1987) as a data base system in which all objects are considered
instances of some type which describe the behaviour of its instances. Types, operations, and
properties are all objects in their own right and as such have a type that describe their behaviour.
Types can be related to each other by means of the property IS_A, which induces an inheritance
relationship between types. Encore supports multiple inheritance. Operations are active objects which
are supported by programming code, and operation types correspond to a procedure definition, while
the instances of operation types correspond to procedure activations. Properties are objects used to
relate other objects. These properties are called association in semantic terms, and can also be used
for expressing part-of relationships when modelling composite objects. Encore also allows dealing
with changes, by providing a version control mechanism.

Other Implementations

O2 is based on the framework of a set-and-tuple data model. O2 was designed with the purpose of
integrating data base technology with the object-oriented approach, all in one system (Lecluse, et al,
1988). This language is also data model where objects may have a tuple or set structure, or be atomic.
These objects form a directed graph with potential cycles. Consistent sets of objects are used to
interpret domains for type structures and method signatures. Types consist of a type structure and set
of methods.
Cactis was built from scratch. The focus is on deriving values from both attributes within the object
itself and in other objects (Heintz (1991)). Relationships are defined to allow accessing of
information external to the object. Cactis does not support abstract data typing, except when an
object refers to others through a relationship link. This system supports the specification of
constraints and class/subclass hierarchies, also given capabilities for rolling back and recovering the
effect of a change.

September 1993 19



Development Summary

Most of the implementations of OODBMSs discussed in this section, try to meet in some way the
object-orientism definition of Dittrich (1986). They do this by implementing different aspects of the
object-oriented approach. Varietal approaches are heavily influenced by a specific language and/or
the base framework taken for implementation. There are major differences in the physical
implementation of each model as well as in the number of features implemented. This varietal
approach is further compounded by major differences adopted by different researchers and
practitioners. Some emphasise the abstract data type paradigm, while others emphasise the message
and method paradigm. At this time there is no clear path for researcher or practitioner.

THE EXPECTATIONS OF OBJECT-ORIENTED DBMSs

From this discussion we can draw expectations of the OODBMSs. The aim is to make them more
powerful than the current Relational model, for certain specific applications. The quest is not for a
universal superiority. Nevertheless OODBMS need a strongly developed foundation if they are to
succeed in the commercial arena. From the implementations described in these preceding pages, we
believe that some of the issues which require solutions are:

. Rationalisation of Object-Query languages and programming languages

. Development of theory to support OODBMSs

. Include techniques from deductive and /or semantic data base technology

. Standardisation of implementation approaches.

. Keep or improve features of current data base technology

It is also expected that OODBMSs will be a good alternative to applications which require
management of unformatted data such as image, picture, and voice, as well as alphanumeric data. In
these applications, the implementation of the relation model is not feasible. Object-Oriented
databases can satisfy the needs of users whose applications have requirements such as a variety of
data types and type constructors, modelling accuracy, derived data, set value attributes, and the
ability to model actions.
Current researchers in Knowledge Data Base Management Systems and intelligent databases often
include OODBMS as a subset. These kinds of databases will represent a new technology for
information systems management. They are the result of the integration of traditional approaches to
data base systems, with new developments, such as Object-Oriented concepts, Expert systems,
Hypermedia and Information retrieval.
Although some research has been done on query model, languages, and optimisation, there are still
problems which must be resolved before OODBMSs can be commercially competitive. The current
problems in this area, are related to the complexity of the data structure in object-oriented data bases,
and to the lack of an equivalent of the simple and concise relational algebra used in the relational
model. The interfaces used by DBMSs in general lack friendliness and quality. Most of the work on
user interfaces has been related to specific implementations, or specific kinds of systems such as
Decision Support Systems, Window-Based systems, etc, but the user interface topic, deserves to be
treated as a separate technology.
In the case of OODBMSs the user interface plays an important role when representing complex
objects, by using graphical capabilities or hierarchical structures. Other problems such as the
representation of multimedia objects, manipulation of large objects and handling of active objects are
also a concern in OODBMSs user interfaces. We believe that most methodologies for designing data
bases cannot cope with object-oriented data base design. There are some object-oriented software
design methodologies extant, but they include very little about object-oriented data base design.
Computer aided software engineering tools in the same way as they exist for current data base models
is a reasonable expectation.
The class hierarchy and class composition hierarchies can make the logical and physical data base
design very difficult. The three level ANSI/SPARC architecture presented in the ISO standards,
describes the view mechanism as a powerful tool in data base design (ANSI/X3/SPARC (1978)). The
current implementation of OODBMSs does not support a mechanism for views, because of the lack
of a complete query language, and the difficulty presented by the object identity concept. Views
should have new object identifiers, but it is not clear if they should be persistent or transient. There

20 AJIS



are other problems with views, even in current data base systems implementations (relational), but
the powerful use of them made in the relational model indicate that they are necessary and that some
research in this area is required.
Most of the current implementations of an OODBMS, are based on specific object-oriented
programming languages (these languages in some cases are not compatible). This is very important,
because a standardisation of the programming languages, could provide interoperability. This
requires a common notion of object-oriented semantics, in aspects such as type, computation, query,
identity and inheritance.
The performance issue has been a problem with the transition from one data base technology to the
next, because making the programmer's job easier has resulted in performance cost This problem
was created with the transition to the second generation of data base systems (relational), because the
use of declarative queries implies the need for some sort of system or expert system, to optimise the
access path to the data base.
Object-Oriented data base research will also have to keep up to date with new researches in
technology for relational data bases. This will include technology used by distributed databases, tools
for data base design, etc. These new findings will require adoption to the object-oriented data base
approach.
Based on the literature review, as well as from practical experience in current data base environments
(hierarchical, network, and relational), the issues shown above are the main areas for research in
object-oriented databases. The basic building blocks are in place but there are still some important
areas which require improvement.

CONCLUSIONS

Object-Oriented data bases has become a major area of research. Early research results pointed the
way to serious scholarship and experimentation. From these activities the attention of practitioners
and researchers has become more focused. Data base technology has carried techniques from
previous data base generations, such as concurrency control, recovery techniques, storage
management, distributed data, and query optimisation. These techniques have been reused and
improved, with the purpose of implementation in the object-oriented model. The development of new
technology to support object-oriented databases, is also an important outcome of the research in this
field. Technologies, such as indexing techniques, clustering techniques, schema modification,
performance metrics, client/server architecture, etc., are in part, results of some research in object-
oriented databases.
There are several commercial implementations, research prototypes, which were described in this
review, and which were built with the purpose of experimentation and for evaluating the performance
and functionalities of these object-oriented data base implementations, as well as creating an
alternative to conventional DBMSs. Important definitions, such as the object-orientism by Dittrich
(1986) , and the manifesto for object-oriented data bases by Atkinson, et al (1989) have set up
touchstones. Greater formalisation of these standards at the level of international committees such as
ISO task groups, will be required for making OODBMSs the next generation of data base
management systems.
From the implementations described in this paper, Gemstone, Ontos (successor of Vbase), and Orion
are OODBMSs which have received better reception from practitioners. These products have reached
a level of maturity which make them very tempting in the marketplace. Another issue is the need for
migration paths from current data base systems to object-oriented data bases. This will be essential
for the success of OODBMSs in the commercial market. There is also a need for OODBMSs to
participate in heterogeneous distributed data base systems. This could imply that organisations, use
different kind of DBMSs for different purposes (e.g. relational for current or standard applications,
object-oriented for design databases, etc). Thus the migration path becomes easier and more reliable.
We draw the conclusion that research on object-oriented databases, has been highly successful,
contributing new technology for Information Systems, and improving current technology. Our
understanding of systems development and data storage is constantly undergoing change. OODBMS
are contributing to that change. These newer contributions are driven by commercial needs and
research findings. This heady mixture fuels the ongoing debate and fires a high level of expectations
for the next generation of DBMS s.

September 1993 21



REFERENCES

Andrews T. & Harris C., (1987) Combining Language and Database Advances in an Object-Oriented
Development Environment. Proceedings of International Conference on Object-Oriented
Programming Systems, Languages, and Applications, Orlando, Florida, 1987. Sigplan
Notices. 1987, Vol 22, No 12,430-440.

ANSI/X3/SPARC Study Group Data Base Management Systems, "Framework Report on Data
Base Management Systems" AFIPS Press, Montvale NJ, 1978

Atkinson M., Bancilhon F. & de Witt D. (1990) The Object Oriented Database System Manifesto.
Proceedings First Conference Deductive and Object-Oriented Databases. Kyoto, Japan.

Chang E.E. & Katz R.H. (1989) Exploiting Inheritance and Structure Semantics for Effective
Clustering and Buffering in an Object-Oriented DBMS. Proceedings of International
Conference on Management of Data, Sigmod Record., Vol 18, No 2, June, 348-357.

Cheng J R. & Hurson A R. (1991) Effective Clustering of Complex Objects in Object-Oriented
Databases. Proceedings International Conference on Management of Data. Sigmod
Record.Vol 20, No 2, June, 22-31.

Dittrich K. (1986) Object-Oriented Database Systems: the Notions and the Issues. Proceedings of
International Workshop on Object-Oriented Database Systems IEEE, Asilomar, CA,

Elmasri R. & Navathe S. (1989) Fundamentals of Database Systems. Sydney : The
Benjamin/Cummings Publishing Company, Inc.

Fishman D., Beech D., Gate H P, Chow E C, Connors T., Davis J W., Derret N., Hoch C G., Kent
W., Lyngbaek P., Mahbod B., Neimat M A., Ryan T A., and Shan M C. (1987) IRIS: an
Object-Oriented Database Management System. ACM Transactions on Office
Information Systems.Vol 5, No 1, January, 48-69.

Garvey M A and Jackson M S, (1989) Introduction to Object-Oriented Databases. Information and
Software Technology. Vol 31, No 10, December, 521-527.

Garza J F. and Kim W., (1988) Transaction Management in an Object-Oriented Database System.
Proceedings International Conference on Management of Data. Sigmod Record, 37-45.

Heintz T J, (1991) Object-Oriented Databases and their Impact on Future Business Applications.
Information & Management. Vol 20,95-103.

Hornick M F. and Zdonik S B., (1987) A Shared, Segmented memory system for an Object-Oriented
Database. ACM Transactions Office Information Systems. Vol 5, No 1, January, 70-95.

Hull R. and King R., (1987) Semantic Database Modeling: Survey, Applications, and Research
Issues. ACM Computer Surveys, Vol 19, No 3, September, 201-255.

Jackson M S. (1991) Tutorial on Object-Oriented Databases. Information and Software
Technology. Vol 33, No 1, January, 4-12.

Kemper A. and Moerkotte G., (1990) Access Support in Object Bases. Proceedings International
Conference of Management Data. Sigmod Record Vol 19, No 2, June, 364-374.

Khoshafian S., (1990) Insight into Object-Oriented Databases. Information and Software
Technology. Vol 32, No 4, May, 274-289.

Khoshafian S. and Copeland G., (1986) Object Identity. Proceedings of International Conference
on Object-Oriented Programming Systems, Languages, and Applications. Portland,
September. Sigplan Notices. 1986, Vol 21, No 11, November, 406^16.

Kim W., (1989) A Model of Queries for Object-Oriented Databases. Proceedings of the Fifteenth
International Conference on Very Large Data Bases, Amsterdam, The Netherlands, 423-
432.

Kim W., Banerjee J., Chou H., Garza J F., and Woelk D., (1987) Composite Object Support in an
Object-Oriented Database System. Proceedings of International Conference on Object-
Oriented Programming Systems, Languages, and Applications. Orlando, Florida, Sigplan
Notices. Vol 22, No 12, December, 118- 125.

Lecluse C., Richard P., and Velez F., (1988) 02, an Object-Oriented Data Model. Proceedings of
International Conference on Management of Data. Sigmod Record. 424-433.

Maier D., Stein J., Otis A., and Purdy A., (1986) Development of an Object-Oriented DBMS.
Proceedings of Object-Oriented Programming Systems, Languages, and Applications,
Portland, Sigplan Notices. Vol 21, No 11, November, 472-482.

22 AJIS



Oxborrow E., Davy M., Kemp Z., Linington P., & Thearle R., (1991) Object-Oriented data
Management in Specialised Environments. Information and Software Technology. Vol
33, No 1, January, 22-30.

Paton N.W., and Diaz O., (1991) Object-Oriented Databases and Frame-Based Systems :
Comparison. Information and Software Technology. Vol 33, No 5, June, 357-365.

Rowe L. and Stonebraker M. (1987) The POSTGRES Data Model. Proceedings of the Thirteenth
Conference on Very Large Data Bases, Brighton, England, 83-95.

Shekita E. J. & Carey M. J., (1989) Performance Enhancement through Replication in an Object-
Oriented DBMS. Proceedings of International Conference on the Management of Data.
Sigmod Record. Vol 18, No 2, June, 325-336.

Stonebraker M. R. (1987) The Design of the POSTGRES Storage System. Proceedings of
Thirteenth Conference on Very Large Data Bases. Brighton, England. 289-300.

Stonebraker M. Rowe L. A., Lindsay B., Gray J., Carey M., Brodie M., Bernstein P., and Beech D.
(1990) Third-Generation Database System Manifesto. Sigmod Record Vol 19, No 3,
September, 31-44.

Thomas, D., (1989) What's in an Object. Byte. March, 231-240.
Thuraisingham M. B., (1989) Mandatory and Discretionary Security Issues in Object Oriented

Database Systems. Proceedings of International Conference on Object-Oriented
Programming Systems, Languages, and Applications, New Orleans. 203-210.

Zdonik S. and Maier D., (1990) Fundamentals of Object-Oriented Databases. Readings in Object
Oriented Database Systems. Morgan-Kaufman, San Mateo, CA

September 1993 23


