
TOWARDS THE DEVELOPMENT OF
EFFECTIVE AND FLEXIBLE INFORMATION SYSTEMS

Aphrodite Tsalgatidou, Dimitris Gouscos, Constantin Halatsis
Dept. of Informatics, University of Athens, TYPA Buildings,

Panepistimiopolis, Ilisia, GR-157 71 Athens, Greece
email: {afrodite, gouscos, halatsis} @ uranus.di.uoa.ariadne-t.gr

ABSTRACT

The development of Information Systems which are effective (i.e. satisfy users' needs) and flexible enough to incorporate
future changes of user requirements basically depends on the importance given to the requirements analysis stage and to
the techniques employed for their development This paper presents a new approach to requirements analysis through an
environment called VENUS. The VENUS environment provides a set of tools to support the requirements capture and
analysis process so that design and development is more effective and flexible. The construction of user requirements
starts by first constructing an Entity-Relationship Model which is then transformed to an Object-oriented Rule-based
Model (ORM) where rules are used for the definition of the behaviour of each object class. ORM is then mapped to a
graphical Petri-net based model and is validated by employing graphical animation and exploiting formal properties of the
underlying Petri-net formalism.

INTRODUCTION
Two desirable characteristics of Information Systems are effectiveness and flexibility. Effectiveness
refers to the satisfaction of users' needs and is primarily related to the production of valid and
complete requirements specifications. Flexibility refers to the ability of Information Systems to easily
incorporate any future changes of user requirements; flexibility depends on the techniques employed
for the development of information systems starting from the initial requirements analysis phase to the
final implementation and integration stage.
The importance of requirements specifications in the information systems development process is not
a recently identified need (Endres, 1975). Boehm (1975) has denoted that incorrect requirements
specifications result in serious errors in the information system development process, where the cost to
fix them increases as the development process progresses. However, there is still a lack of
methodologies and tools which would focus on the capture and validation of requirements
specifications and the work reported by Reubenstein and Waters (1991), Zave (1991) and Fickas and
Finkelstein (1993) are among the few examples that can be found in this area. The large number of
existing methodologies for systems analysis and design produce specifications which are inherently
static. Furthermore, CASE tools play a passive rather than active role in requirements specifications. A
developer, in order to validate the captured requirements, tries to derive a system's behaviour from a
static description.
What is needed is an approach and a set of tools that enables a developer to obtain a 'working' model
of a system at the early requirements phase, so that the system's behaviour can be better understood
and appreciated by end users. This may be achieved if the produced requirements specifications are
executable. An executable specification is a formal model of the system with the ability to simulate the
system's behaviour when executed by a suitable interpreter, thus, such a specification can be thought
of as a prototype of a proposed information system and therefore it should be comprehensible,
modifiable, easy to check for internal consistency and free from bias toward particular implementation
strategies.
To this end, this paper presents an integrated environment called VENUS which offers a number of
tools to support the requirements engineering process. The tools offered by VENUS assist a system
analyst to elicit, specify, analyse and validate executable requirements specifications within an object-
oriented framework. Petti nets (Murata, 1989) are used as the underlying formalism for expressing
object-oriented requirements specifications in a graphical manner. Prototyping, animation and
execution are some of the mechanisms used by VENUS for validating object-oriented executable
requirements specifications.
Previous studies (Tsalgatidou et al, 1994) found the object-oriented approach appropriate for
developing requirements specifications in the VENUS system for a number of reasons such as:

- the uniform modelling of various real world objects
- the provision of useful abstractions, such as generalisation, aggregation and specialization,
which facilitate the extension of the model and the incorporation of new types of information

May 1994 74

- the easy construction of executable specifications.
This paper concentrates on the production of models, in particular of the Entity-Relationship Model
and the Object-oriented Static Model and the validation of the produced specifications through
graphical animation, and begins by presenting the VENUS environment together with its various
components. The stepwise construction of requirements specifications is discussed. These
specifications may firstly be expressed in an Entity-Relationship Model (ERM) which is subsequently
automatically mapped to an Object-oriented Static Model (OSM). The OSM is further enhanced so as
to incorporate the dynamic behaviour of the system under study and produces an Object-oriented
Rule-based Model (ORM). The ORM is validated by being either translated to C++ executable
specifications or mapped to a graphical Petri-net based model, called an RBN, which is then executed
and graphically animated. The RBN model is formally defined and briefly introduced. Validation of
the ORM by graphically animating the resultant RBN and showing that, given an initial marking of the
RBN, certain markings are reachable, is also discussed. Finally, the VENUS approach is compared to
related work and conclusions are drawn.

THE 'VENUS' ENVIRONMENT

The tools offered by VENUS, the interaction of the analyst with these tools, as well as the models used
as input or produced by these tools are shown in fig. 1, which depicts the sequence of steps usually
followed by an analyst during the requirements development process. The tools provided by VENUS
are:
(a) A Graphical Editor & Text Generator for Entity-Relationship Models (ERMs), called GERM-

TG. Using GERM-TG, an analyst can develop a graphical ERM which captures details about
the data of the application under study. A textual description of the developed graphical ERM is
automatically generated by GERM-TG (Avdis & Karpodinis, 1993).

(b) A Mapping tool, called MEROS, which takes as input ERM specifications and produces object-
oriented specifications, hence constructing an Object-oriented Static Model (OSM); the OSM
specifications are static since they are produced from ERM specifications which are static by
definition. Thus, the OSM needs to be enhanced in order to incorporate the dynamic behaviour
of the identified object classes. This is accomplished with the use of the next tool.

(c) A Syntax Directed editor, called SDORM, for enhancing OSM specifications with dynamic
aspects expressed in a rule-based manner and thus producing specifications expressed in an
Object-oriented Rule-based Model (ORM).

(d) A C++ generator, which takes as input ORM specifications and produces executable
specifications in C++. The execution of these specifications greatly facilitates the process of
validating the requirements described by an ORM.

(e) A Mapping tool, called MORBN, which takes as input ORM specifications and produces
graphical RBN (Petri-net based) specifications.

(f) A Graphical Editor/Animator for the RBN model, called GEA-RBN. This tool may be used by
an analyst to edit and animate graphical RBN specifications in order to validate them against
certain validation criteria. This validation process is discussed in the relevant section of this
paper.

Depending on the analyst's preferences and experience, the development of specifications may start at
different points of the VENUS-based development process. Furthermore, the VENUS architecture
allows more than one analysts to be involved in the VENUS development chain, each one working on
a different phase.

THE ENTITY-RELATIONSHIP MODEL (ERM)

Many analysts are used to constructing ERMs as one of the first steps of the requirements analysis
stage. Thus, although VENUS aims at producing object-oriented requirements specifications for the
various reasons mentioned in the introduction, it also provides GERM-TG, thus giving to analysts the
opportunity to construct a graphical ERM. Fig. 2 shows an example of a graphical ERM and its
corresponding textual description. This textual description is automatically produced by GERM-TG
after the graphical ERM is constructed. The BNF definition of the language for textual description of
ERMs can be found in (Gouscos & Tsalgatidou, 1992).

75 AJIS

m«

Imfe

Fig 1 The VENUS Environment

Fig. 2 An example of an ERM (Graphical & Textual Representation)

May 1994 76

An ERM is a binary Entity-Relationship Model enriched with inheritance and constructed on the basis
of a linguistic approach (Tsalgatidou & Loucopoulos, 1991). The main concepts of an ERM are: entity
types, entity subtypes, label types and relationship types. Entity types describe entities with the same
properties (e.g. ASSISTANT, ESSAY). Label types describe labels (i.e. values) of a certain type.
Relationship types can be of two kinds: they can either associate entity types to label types, in which
case they are called reference type relationships (e.g. COURSE has Name) or they may be confined to
associating entity types, in which case they are called fact type relationships (e.g. ASSISTANT assists
PROFESSOR). A fact type relationship may be expressed in more than one ways, showing the various
roles of the involved entity types. For example: 'ASSISTANT assists PROFESSOR' and PROFESSOR
assisted_by ASSISTANT, where 'assists' and 'assisted_by' are the roles of the entity types
ASSISTANT and PROFESSOR respectively in this relationship. Cardinality constraints are also
modelled by ERM, for example 'ASSISTANT assists 1:1 PROFESSOR1 and PROFESSOR assisted_by
1:N ASSISTANT.

THE OBJECT-ORIENTED MODEL

The Object-oriented Static Model (OSM)

OSM is an object-oriented model (Gouscos, 1992) which encapsulates only the static aspects of
requirements and is automatically derived from ERM using the MEROS tool. Fig. 3 contains part of
the OSM specifications which were generated by applying the MEROS tool to the ERM of fig. 2. It
can be seen that entity types have been mapped to object classes, whereas relationship types have been
mapped to properties of the corresponding object classes.

object schema ESSAYS
value classes

ESSAYSTATUS values [submitted, underjnitjeview for.revision]

end value classes
object classes

object class PROFESSOR subclass of PERSON
instanrp properties

Teaches 1:1 COURSE
AssistedBy 1:N ASSISTANT

end instance properties
end object class PROFESSOR

end object classes
end object schema ESSAYS

Fig. 3 An example of an OSM specification

This is a first-cut object-oriented model which must be subsequently enchanced by a systems analyst
so as to incorporate the dynamic aspects of the identified object classes (reflecting the business policy)
and any new object classes that may be needed. The SDORM tool provided by VENUS is a syntax-
directed editor which assists the analyst in this enhancement of OSM. The output of this process is an
Object-oriented Rule-based Model (ORM) which is briefly described in the following.

The Object-oriented Rule-based Model (ORM) v

ORM is an extension of OSM incorporating the dynamic aspects of the identified object classes using
the concepts of behaviour units (BUs), signals and rules. The concept of BUs is used to partition the
behaviour of an object class. Each BU belongs to one class of the object-oriented model and is
associated with a specific triggering signal type. The receipt of individual signals of this type activates
the behaviour described in this BU. A BU may be either class BU or instance BU and has the
following general structure:

class I instance BU class_name.BU_name triggered by signal_name(signal_parameters)
BU body

end BU BU_name

77 AJIS

The body of a BU is a set of dynamic rules having the form:

[IF preconditions THEN] actions

The preconditions of a rule are expressed by a boolean formula and have to be satisfied before the
actions described in the rule's THEN part can be executed. The receipt of a triggering signal by a BU
activates all the dynamic rules of that BU. The preconditions of rules of the same BU are mutually
exclusive, so that exactly one of the rules will always fire. A rule with no preconditions executes its
actions every time an appropriate triggering signal is received. Actions in a rule may
modify/create/delete object instances and/or produce some signals sent to other BUs or to the external
environment of the modelled system. A rule cannot be part of more than one BU and a BU belongs to
exactly one class; therefore the dynamic behaviour of each object class is modelled as a collection of
rules grouped in the BUs specified for that class and triggered by specific signals.

object class PROFESSOR subclass of PERSON
instance properties

Teaches 1:1 COURSE
AssistedBy 1:N ASSISTANT

end instance properties

instance behaviour
instance BU PROFESSOR.DecideForEssay triggered by DecideForEssay (Essay.Review)

nile Rl hac PROFESSOR lac {PROFESSOR}
If signal.Review.Mark in {Aplus, A, B} then

produce signal SetStatus(accepted) for signal.Essay;
produce signal NewPass(signal.Essay.WrittenBy, signal.Essay.WrittenFor, signal.Review.Mark) for

PASS;
produce signal EssayAccepted(signal.Essay, signal.Review) for signal.Essay.WrittenBy;

rule R2 hac PROFESSOR lac {PROFESSOR}
If signal.Review.Mark in {D.E} then

produce signal SetStatus(rejected) for signal.Essay;
produce signal EssayRejected(signaLEssay, signal.Review) for signal.Essay .WrittenBy;

rule R3 hac PROFESSOR lac {PROFESSOR}
If signal.Review.Mark = C then

execute DefineDeacfline(signaLEssay, signal-Review .Deadline);
produce signal SetStatus(waiting_for_revision) for signaLEssay;
produce signal SetDeadline(Deadline) for signal.Review;
produce signal EssayForRevision(signal.Essay, signal.Review) for signaLEssay.WrittenBy;

end BU DecideForEssay

end instance behaviour

end object class PROFESSOR

Fig. 4 An ORM specification

ORM supports single inheritance as follows: object classes inherit all the static properties of their
superclasses and may introduce new ones. They also inherit the BUs of their superclasses without any
changes and/or redefine (some of) them by changing (some of) their existing rules or by adding new
ones. Object classes may also introduce new BUs describing behaviour not specified by their
superclasses. For each rule R, the rule model provides two fields: highest acceptor class (hac(R))
containing the name of the class where rule R is defined and lowest acceptor classes (lac(R))
containing the names of the lowest subclasses of hac(R) that still inherit rule R.
Fig. 4 contains part of the ORM that resulted from the enhancement of the OSM of fig. 3. More
specifically, fig. 4 depicts the part of object class PROFESSOR which specifies what an instance of
this class has to do in order to decide for an Essay that was Reviewed. This is described in terms of a
BU (called PROFESSOR-DecideForEssay) triggered by a signal (called
DecideForEssay(Essay,Review)). The body of this BU is a group of three rules which, depending on
the satisfaction of certain preconditions, execute appropriate actions. The hac and lac fields of all
three rules in this example are set to PROFESSOR and {PROFESSOR} respectively, meaning that
these rules have been defined in this class and apply only in this class, i.e. they are not inherited by any
other classes. The rules which have been inherited by class PROFESSOR from class PERSON (not

May 1994 78

shown in this figure) have their hoc and lac fields set to PERSON and {PROFESSOR} respectively. In
case that a rule of class PERSON is also inherited by classes ASSISTANT and STUDENT, then its
hoc field is again set to PERSON, whereas its lac field is set to {PROFESSOR, ASSISTANT,
STUDENT}.
Therefore, the dynamic behaviour of an information system is modelled as a sequence of firings of
rules, grouped in BUs and triggered by specific signals. All the rules of a BU are triggered by the same
signal. The firing of each rule, may result in the activation of other BUs by generating appropriate
signals. The interaction of an information system with its external environment is modelled by the
receipt and sending of signals by BUs. Thus, signals serve as the means of communication between the
various parts of an information system and between the system and its external environment More
about ORM may be found in (Tsalgatidou et al, 1993).
The dynamic behaviour of an ORM can be validated by executing the resultant specifications. VENUS
offers a C++ generator tool which is used for transforming ORM specifications to C++ executable
specifications (Tsalgatidou et al, 1994). Furthermore, VENUS offers a tool called MORBN, which
produces a graphical Petri-net representation of an ORM, called RBN. RBN is a formal, graphical and
executable model. The dynamic behaviour of a RBN can be demonstrated by employing the graphical
animation and execution facilities provided by the GEA-RBN tool of VENUS. Furthermore, system
behaviour can be observed at a number of abstraction levels. The mapping of ORM to RBN and the
formal definition of the latter are presented in the following section.

THE RULE-BASED NET (RBN) MODEL

A Rule-Based Net is a Petri net-based model which is used for a graphical modelling of the ORM. An
RBN resembles a Predicate-Transition (PrT) net (Genrirch & Lautenbach, 1981), augmented with
additional information. The basic constituents of an RBN are places, transitions and arcs connecting
places and transitions. Each place is inscribed with a signal type and may hold tokens which represent
signals of this signal type. Each transition has a unique input place and is inscribed with rules which
are triggered when the corresponding input place holds a token, thus denoting that a signal is present
When the IF part of a triggered rule is satisfied, the rule executes its actions. Each arrow is inscribed
with the number and type of signals that can flow through it in order to activate a rule or to collect
signals into a place. An RBN also contains an underlying textual structure which describes information
used in the various inscriptions.
An analyst may interactively produce RBNs at different abstraction levels using the MORBN tool.
Five distinct abstraction levels may be produced:
1st abstraction level -> 'context RBN';

this RBN contains only one transition corresponding to the behaviour of the entire modelled
system; places represent signals sent to and from the external environment

2nd abstraction level -> 'high-level RBN';
here, the unique transition of the 'context RBN' is decomposed in other transitions and places
corresponding respectively to the object classes of ORM and to the signals exchanged
between these classes.

3rd abstraction level -> 'medium-level RBN';
each 'class transition' of the 'high-level RBN' is further decomposed here into other
transitions and places, corresponding respectively to the BUs of this object class and to the
signals exchanged between these BUs.

4th abstraction level -> 'low-level RBN';
in this RBN, each 'BU transition' is decomposed into transitions corresponding to the rules
contained in this BU. These new transitions are inscribed with the corresponding rule names.

5th abstraction level -> 'detailed RBN';
this RBN does not contain more transitions or places than the 'low-level RBN'; the difference
is in the inscription of transitions which now contain the 'body' of rules (namely the hoc, lac,
preconditions and actions of each rule). This 'detailed RBN' is always accompanied by its
structure S.

A RBN of the lowest abstraction level, i.e. a 'detailed RBN' is formally defined as a tuple

R = < P, T, F, K, N, _ , sig, insc, hac, lac, MO >

79 AJIS

where P, T and F are sets corresponding respectively to RBN places, transitions and arcs; K and N are
functions which respectively map each place and each arc to an integer number denoting the capacity
of the place or the multiplicity of the arc; _ is the underlying structure of an RBN which denotes the
domain of signal parameters, of the properties of object instances, of objects of the RBN and the
signal domain of the RBN; sig, insc, hac and lac are functions which relate the various RBN elements
to appropriate elements of ORM and finally MQ is an initial marking that assigns token to places.
A detailed definition of an RBN as well as examples for RBNs of various levels may be found in
(Tsalgatidou et al, 1994). Fig. 5 depicts an example of a 'low-level RBN', i.e. an RBN where
transitions are inscribed with rule names and places are inscribed with appropriate signals which are
produced by and/or trigger rules.

Fig. 5 A low-level'RBN

Thus, an RBN is a simple formal model high-lighting control flow within a system and hiding at the
same time, in the corresponding transitions, information concerning what is happening in the system.
One of the advantages of using RBNs for modelling the dynamic behaviour of information systems is
that the resulting graphical representation facilitates validation, as well as analytical study of system
behaviour by exploiting certain properties of the nets; this topic is discussed in the next section.

May 1994 80

VALIDATION OF REQUIREMENTS SPECIFICATIONS

Validation of user requirements is a hard process. It refers to the production of specifications which
are complete and consistent without ambiguities and vagueness. One way of validating the ORM
requirements is by executing the generated C++ prototype, as has already been mentioned. Another
way of ORM validation is through the constructed RBN model due to the executable nature and the
potential for graphical animation of the latter. Animation has proven a valuable validation tool, and the
results of early animation are very promising way for reducing errors during requirements
specifications and ensuring that the intended system behaviour has indeed been properly captured and
modelled.
Fig. 6 is an example of validation through graphical animation of a 'high-level' RBN, i.e. an RBN
where transitions correspond to object classes of the modelled application and places represent the
signals exchanged between object classes. In this example, a student creates a new essay and this is
shown by a token in the signal place called NewEssay (T,S,C,B) (see fig. 6(a)). This signal is directed
to an appropriate instance of class ESSAY, triggers the corresponding BU and the rule of this BU
which has its IF part satisfied will fire, i.e. execute its actions. In the next snapshot (6(b)), there are
two tokens assigned to places SetReviewer(A) and ReviewEssay(E); this means that the appropriate
rule of class ESSAY has already fired, and a signal of type AssignEssay(E) has been generated and
sent to an instance of class PROFESSOR triggering the appropriate BU. Subsequently, an appropriate
rule of the triggered BU has fired and has generated two signals of type SetReviewer(A) and
ReviewEssay(E) which are represented by the two tokens shown in fig. 6(b).Tbe signal of the
SetReviewer(A) type is directed to the appropriate instance of class ESSAY whereas the signal of the
ReviewEssay(E) type is directed to the appropriate instance of class ASSISTANT and triggers the
rules that deal with the process of reviewing an essay by an assistant
The snapshot of fig. 6(c) shows two tokens at the places SetReview(R) and EssayReviewed (E,R)
which are output places for the ESSAYREVIEW class. This means that the appropriate assistant has
reviewed the essay and sent a signal of type NewEssay Review(E,M,C) to the object class
ESSAYREVIEW in order to activate the rule which generates a new instance of this class and
subsequently produces the two signals shown in this snapshot (fig. 6(c)). At the last snapshot (fig.
6(d)), depicts three tokens, in places EssayRejected(E,R), SetStatus(S) and SetReviewData(M,C)
respectively. This marking means that a professor, taking into account the comments and the marks
assigned to the essay by his/her assistant, decided to reject the essay. Thus, a signal of type
EssayRejected(E,R) is sent back to the student in order to inform him/her about the results of essay
revision; furthermore, the appropriate instances of classes ESSAY and ESSAYREVIEW receive a
signal of type SetStatus(S) and SetReviewData(M,C), respectively, in order to update the information
held about the status of the essay and its review data. This is the final marking of the review process of
an essay submitted by a student

81 AJIS

(a)

Llfll)

RfcP*" ****"" TflP

Fig. 6 (a,b) (shaded transitions fire to produce next marking)

May 1994 82

(C)

Llffl)

Fig. 6 (c,d) (shaded transitions fire to produce next marking)

The Graphical Editor and Animator for RBNs (GEA-RBN) (currently under development on Unix
workstations using OSF/Morif, C++ & Prolog) provided by the VENUS environment, enables
animation in two ways: a) user-driven (guided by an analyst working together with end-users of die
modelled application) and b) automatic. In the former case, the user decides which rules will fire and
which will not, and comments on results. In the latter case, GEA-RBN is given an initial signal to

83 AJIS

evaluate all alternative paths (i.e. preconditions of all triggered rules), execute the corresponding
actions and produce various alternative markings. Thus, it is checked whether various markings are
reachable, i.e. whether all prescribed states can be reached and under which conditions. Furthermore,
missing rules, dead-end rules (i.e. rules which can never fire), wrong rules (i.e. rules producing wrong
results) or circular rules can also be identified. Animation feedback can be used to 'weed-out' any
errors discovered, thus helping in the interactive design of the rule base.
Therefore, using GEA-RBN one can prove that the produced RBN specification is valid, i.e. that it is
deterministic, complete, consistent and correct. An RBN specification is considered deterministic
when the behaviour of the modelled system is always predictable; this follows from the premise that
information systems are considered to be deterministic, i.e., certain things happen under certain
conditions. This means that whenever a signal arrives from the external environment or is generated by
the system, we always know what happens next. The RBN specification is complete, when there is
always something happening, whenever a signal arrives. The rule-based specification is consistent,
when there are no rules with the same triggering signal and the same preconditions but with
contradictory actions. Finally, the resulting requirements specifications are correct, when they do what
end-users want their system to do.

RELATED WORK

Requirements specifications are produced in the VENUS environment within a rule-based object-
oriented framework. There are many examples of the use of the object-oriented approach in systems
analysis and development in Van Baelen et al (1992), Booch (1991), Coad & Yourdon (1991),
Coleman et al (1992), Rumbaugh et al (1991). Furthermore, examples of the use of rules in
requirements specifications may be found in DHaenens et al (1991) and Loucopoulos et al (1991).
The VENUS environment combines both the object-oriented and rule-based approaches within a
uniform modelling framework for all system aspects.
VENUS also places a lot of emphasis on the production of executable specifications. The importance
of executable specifications has been realised by researchers and developers within the software
engineering community and a number of executable system models, executable specification
languages and tools contributing in this direction have appeared lately. For example PAISLey (Zave,
1991) is a language designed for real-time distributed systems which uses an operational approach for
building a requirements specification, emphasizing the definition of processes as the building blocks of
the system. VENUS differs from PAISLey in the sense that the requirements specifications are object-
oriented and the basic building blocks of the system are objects rather than processes.
Graphical animation and Petri nets are among the mechanisms and tools used by VENUS for
modelling and validation requirements specifications. Animation, on the one hand, has proven to be a
valuable validation technique; see, for example, the work reported by Finkelstein and Kramer (1992),
Dahler and his colleagues (1987) and Shand et al (1988). On the other hand, Petri nets are a powerful
formalism (Murata, 1989) and have been used as a modelling tool in various applications. For
example, in Lakos & Keen (1993) a language for object-oriented Petri nets (LOOPN) is used for
modelling a door controller protocol. Other examples may be found in Brinkkemper & der Hofstede
(1990) and Kappel & Schrefl (1991), where extensions of Petri nets are used for bridging the gap
between informal requirements engineering activities and the more formal system development
activities. VENUS introduces a rule-based extension of Petri nets for modelling and animating object-
oriented requirements specifications for validation purposes.
Therefore, the VENUS approach is related to object-oriented development, produces executable
specifications and uses Petri nets as the underlying formalism and graphical animation for modelling
and validating requirements specifications. The major advantage of VENUS over other approaches is
the integration of a number of paradigms into a uniform modelling framework.

SUMMARY AND CONCLUSIONS

The development of effective and flexible information system starts from the production of complete
and valid requirements specifications. This paper presented the VENUS uniform framework which
demonstrates the combination of object-oriented and rule-based approaches, integrating all
information system aspects. Requirements specifications produced by VENUS preserve explicit
representation of application domain policy in terms of dynamic rules. These object-oriented rule-

May 1994 84

Kappel, G. & Schrefl, M. (1991) "Using an Object-Oriented Diagram Technique for the Design of
Information Systems", in (Sol & van Hee, 1991).

Lakos, C.A. & Keen, C.D. (1993) "Modelling a Door Controller Protocol in LOOPN, Proceedings of
the 10th International Conference TOOLS EUROPE 1993, Versailles, France, Prentice-
Hall, pp. 31-44.

Loucopoulos, P., McBrien, P., Schumacker, R, Theodoulidis, C., Kopanas, V. & Wangler, B. (1991).
"Integrating Database Technology, Rule-Based Systems and Temporal Reasoning for
Effective Information Systems: The TEMPORA Paradigm", Information Systems, vol. 1,
no. 1.

Loucopoulos, P. & Zicari, R. (eds.) (1992) Conceptual Modeling, Databases, and CASE, John Wiley
& Sons, Inc.

Murata, T. (1989) "Petri Nets: Properties, Analysis and Applications", Proceedings of the IEEE, April,
Vol. 77, No. 4.

Reubenstein, H. B. & Waters, R. C. (1991) 'The Requirements Apprentice: Automated Assistance for
Requirements Acquisition", IEEE Transactions on Software Engineering, March, Vol. 17,
No.3, pp. 226-240.

Rolland, C. (1992). "Trends and Perspectives in Conceptual Modelling", in (Loucopoulos & Zicari,
1992), pp. 27-48.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991) Object-Oriented
Modelling and Design, Prentice-Hall Int.

Shand, J et al. (1988) "An enviroment for the execution and graphical animation of JSD
specifications", in Procs. of International Workshop of KBS in S/W Engineering, UMIST,
Manchester.

Sol, H.G. & van Hee, KM. (eds.) (1991) Dynamic Modelling, North-Holland.
Tsalgatidou, A. & Loucopoulos, P. (1991) "An Object-Oriented Rule-Based Approach to the Dynamic

Modelling of Information Systems", in (Sol & van Hee, 1991).
Tsalgatidou, A., Gouscos, D. & Halatsis, C. (1993) "Rule-Based Behaviour Modelling of Information

Systems", Proceedings of the 26th Hawaiian Conference on Systems Sciences (HICSS-26),
Vol. IV, January, IEEE Computer Society Press, pp. 409-418.

Tsalgatidou, A., Gouscos, D. & Halatsis, C. (1994) "Specifying and Validating Requirements: The
VENUS system", to appear in the Proceedings of the llth International Conference on
Technology of Object-Oriented Languages and Systems - TOOLS EUROPE 1994, March,
Paris, Prentice-Hall, Int. Ltd., pp. 89-102.

Zave, P. (1991) "An Insider's Evaluation of PAISLey" IEEE Transactions on Software Engineering,
Vol. 17, No. 3, pp. 212-225.

May 1994 86

View publication statsView publication stats

https://www.researchgate.net/publication/30063059

