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ABSTRACT

A method to quantify operational complexity of direct manipulation tasks in a windows
environment is discussed. The method utilises a formula from communication theory due
to Shannon and Weaver which describes the uncertainty H(p1,p,...p,) in outcome of an
event which is the result of a Markov process where the individual events have
probabilities of occurrence pi,p.,..pn. A taxonomy of basic windows operations is
developed for Microsoft Windows and used to show that a windows dialogue can also be
described as a Markov process. The H formula is then applied to determine the total
complexity of a sequence of basic windows operations and thus provide some measure of
the complexity of a given task as seen by the user. An estimate of the total entropy of a
Microsoft Windows language source is obtained, indicating that the redundancy of
windows dialogue is about 28%.

INTRODUCTION

Guidelines for graphical user interface (GUI) and screen designs are reasonably
numerous (Galitz 1989; Rivlin, Lewis and Davies-Cooper 1990; Powell 1990; Marcus
1992; Mayhew 1992; Schneiderman 1992; Hix and Hartson 1993). Most of these
guidelines appear sound and are clearly constructive in helping eliminate aspects of poor
interface design, but they are all qualitative and are in general directed towards the
interface design process. Some formal methods do exist for analysing and documenting
user actions and operations: these include the Keystroke-level model (Card and Moran,
1980), Command Language Grammar (CLG) (Moran, 1981), the Goals, Operators,
Methods and Selection (GOMS) model (Card, Moran and Newell, 1983), Task Action
Grammar (TAG) (Payne and Green, 1986) and User Action Notation (UAN) (Hartson,
Siochi and Hix, 1990); however, these methods are also in general directed towards the
design process. Neither the guidelines nor the formal methods listed above can provide a
quantitative method of analysis of interface design which will enable different interfaces
to be compared on the basis of their complexity, usability and efficiency, as seen by the
user when performing specific tasks.

In this paper, we attempt to address this problem for GUISs, firstly by describing a

windows dialogue as a Markov process and secondly by utilising a formula from
communication theory, originally derived by Shannon and Weaver (1949), in order to
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describe the complexity of a GUI. Specifically, we will choose the Microsoft Windows
interface for our analysis and assume that the interface is directly manipulated using the
usual one or two button mouse pointing device.

THE WINDOWS USER AS A LANGUAGE SOURCE

We begin by describing the nature of the communication process between a user and a
GUL. In order to complete a task in a windows environment, a user has to sequentially
undertake a series of actions and operations. This sequence is similar to transmitting a
series of symbols down a half-duplex communication channel and waiting for a response
after each symbol has been transmitted: in the case of a GUI, the interface will respond
after each operation is transmitted by changing its state.

The messages transmitted to the interface from the user in this way are the result of user
actions and operations. Thus we can consider the user as the source of a sequence of
actions and operations which we will refer to as basic windows actions (BWAs) and
basic windows operations (BWQOs). BWAs are the actions undertaken by the user on the
mouse and/or keyboard, with which the user manipulates instances of windows object
classes (WOCs) in a WIMP GUI. BWOs are the operations performed on the interface
which are necessary in order to complete a task, such as copying a file, cutting and
pasting text, or creating a document with a word processor. Thus Title bar is an example
of a WOC, click is an example of a BWA and open window is an example of a BWO. In
constructing a sequence of BWOs, the user is bound by the rules of the windows
language in the same way that an author is the source of an English sentence and is
bound by the rules of the English language. We will thus refer to the user as a language
source for the particular GUI being utilised.

Any language source can be considered as a stochastic system and thus be analysed as a
Markov process in which the occurrence of a future state depends upon the probability of
transition from an immediately preceding state. By assigning a symbol of the English
language to each state S; of a communication system, Shannon and Weaver (1949) use a
Markov process to describe the transmission of a message which consists of a series of
such symbols, where a symbol can be either a letter or a word unit. The transition
probability for each state (i.e. the chance of occurrence of each symbol) is determined as
a series of approximations: in the zero-order approximation, each symbol in a message is
independent and has an equal probability of occurrence; in the first-order approximation,
the symbols are independent but occur with the frequency of English text; in the second-
order approximation, the probability of occurrence of each symbol depends upon the
previous symbol in the message according to the structure of English text (this is known
as a digram structure); in the third-order approximation, the probability of occurrence of
each symbol depends upon the previous two symbols in the message according to the
structure of English text (trigram structure); etc. In order to use the same technique to
describe a windows dialogue, it is necessary to define the equivalent of alphanumeric
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and special symbols (or word units) in a windows system. We approach this problem by
first describing user actions at their most primitive level using the User Action Notation.

USER ACTION NOTATION

User Action Notation (UAN) (Hartson, Siochi and Hix, 1990) can be used to describe
GUI operations in a high degree of detail. Its purpose is to enable such operations to be
explicitly detailed so that they can be unambiguously implemented by an interface
programmer. By way of example, we will use it here to analyse a simple task with
Microsoft Windows: that of copying a file from a directory on one drive to a directory on
another. We will imagine that the task is carried out by a user with a specific Microsoft
Windows set up in which the File Manager icon is minimized and that the user performs
the steps described in Table 1 and illustrated in Figures 1 through 6.

Steps BWO Operation Description
Step 1 (Figure 1) | [xi] | Execute the file manager by double clicking on file manager
icon.
Step 2 [mw] | Maximise the file manager window by clicking on the

maximise button.

Step 3 (Figure 2) [of] | Open the folder files in the C:\ drive directory tree by
double clicking on the files folder icon. This operation
makes visible the icon of the file which is to be copied to
A:\ drive, which is ass4.xls.

Step 4 (Figure 3) | [vd] | View the directories of drive A:\ by double clicking on the
drive icon and opening a new window. This operation
obscures the file icon ass4.xls which is to be copied.

Step 5 (Figure 4) | [mo] | Move the A:\ window out of the way of the source file,
ass4.xls

Step 6 (Figure S) | [mo] | Drag the ass4.xls icon from the C:\FILES window to the A:\
window. This operation makes the target window inactive.
It also completes the file copy task. All future operations are
to restore the system to its original state.

Step 7 (Figure 6) | [ma] | Make active the A:\ window again so that it can be closed.

Step 8 [cw] | Close the A:\ window.

Step 9 [nw] | Minimise the file manager window. The system is now back
in its original state, as represented in Figure 1.

Table 1: 9 steps of a file copy task
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A Windows user will have noted that the above file copy task could have been completed
in fewer operations: instead of opening a new window for the A drive (as in step 4,
Figure 3), the user could have simply dragged the source file icon to the A drive icon.
However, we will imagine in this case that either the user did not know that this was
possible, or that the user wanted to check the contents of the disc in drive A before
performing the copy. It is also of interest to note that the move object operation of step 6
(Figure 5) makes and leaves active the C drive window which consequently overlaps the
A drive window. Not only this, but Windows immediately repositions the dragged icon
to the top left of the right hand partition. In this case, the icon and accompanying text
turns out to be totally obscured by the source window, as shown in step 7 (Figure 6), thus
denying the user any feedback as to the result of the copy process.

A UAN description of the file copy task is given in Table 2, using the symbols
recommended by Hix and Hartson (1993). As can be seen, the UAN details tasks at the
user action level: the actions specified are primitive user actions (PUAs), so called
because they cannot be broken down into sub-components. These actions include a
mouse button press (Mv), a mouse button release (M”) and a mouse move (~). In UAN,
the typographic symbols are chosen to symbolically represent the actual action; thus v is
similar to a down arrow, " to an up arrow, while ~ gives the indication of movement and
* is used to indicate repetition. A prime (‘) is used to indicate a specific instance of an
object, such as a particular file. Other symbols to depict the interface feedback to the
user include > to represent follow the cursor and ! to represent highlighting. The UAN
symbols used in this example are summarised in Table 3.

It is seen that the analysis of even a simple task like copying a file can reveal design
defects in the interface. In the task just described, at least one unnecessary action is
required of the user because of step 4. If the destination window had been tiled with the
source window, rather than cascaded, then the source file icon might still be visible, thus
removing the need for step 5. If UAN were used by an interface designer to design an
interface for copying a file, then the lines in Table 2 which depict step 5 would
presumably not have been included. Such a design might not then have explicitly
specified exactly how the secondary windows were to be arranged. This illustrates an
important difference between using a notation for design and using it for analysis: when
used for analysis, the notation can emphasise poor design because it explicitly requires
the analyst to document all user actions; when used for design, however, the notation
cannot compensate for any omissions of the designer. Thus certain user operations may
be dictated by the nature of the interface rather than chosen by the user as direct steps
towards goal accomplishment.

Although UAN provides a method of describing primitive user actions in detail, its
analysis is at too low a level for our purposes. We require to describe a GUI dialogue in
terms of more coarse actions and operations, such that each “symbol” in the dialogue is
the equivalent of a word in a natural language. Towards this end, we look at
classifications of basic windows actions and operations.
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GUIL: Microsoft Windows

TASK: copy file

USER ACTIONS INTERFACE FEEDBACK | INTERFACE
‘ STATE

~[icon’]

Mv* (t<n) Mv~ display(primary window’’)

display(secondary window’)

~[folder icon’]

MvA (t<n) MvA

folder icon!
display(folder tree)
display(folder contents)

selected = folder’

~[disk icon’]

Mv” (t<n) Mv* display(secondary window’’) | selected = title bar”’
~[title bar’]

Mv

~[x,y]* ~[x’.y’] outline(title bar’) > ~

M~ @x’,y’ redisplay(secondary

window’’)

~[secondary window’]

MvA

selected = title bar’

~[file icon’]

Mv file icon! selected = file icon’
~(X,y)* ~(x’,y"") file icon > ~
MA

~[secondary window’’]

Mv#A

file icon-! -

selected = title bar’’

~[close icon’’]

MvA (t<n) MvA

selected = title bar’

~[minimise icon’]

MvA

minimise(primary window)

Table 2: UAN sequence for a file copy operation in Microsoft Windows

move the cursor

the context of the object X

depress

release

mouse device

specific instance of an object

iterate

v*»z><§z

follow cursor

(t<n)

within a specific time

!

highlight object

Table 3: some common UAN Symbols
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BASIC WINDOWS ACTIONS

We will define a BWA as an action commonly associated with manipulating a pointing
device (such as a mouse), or with manipulating a key on the keyboard, and use the
symbols < and > to denote a specific BWA. With a mouse, there are three basic actions
that can be undertaken: these are a click, a double click and a drag. These actions can be
defined using the UAN in the following way:

<c> « MvA
<cC> « MvA (t<n) Mv?
<d> «<Mv ~(x,y)* ~x'y)M*

Thus a click is the action of both pressing and releasing a mouse button, a double click is
the action of doing this twice within a set time period, and a drag is the action of
pressing a mouse button, moving the mouse to a specific position, and then releasing the
mouse button.

With a keyboard, there are two basic actions that can be undertaken: these are a single
key press and holding down one key whilst pressing and releasing another (as when
using the SHIFT, ALT or CTRL keys, for example). These actions can be defined in the
UAN as follows:

<k> « Kv*
<kk> «KvK'vr K'A

Note that the actual motion of a mouse prior to selecting a target is not defined as a
BWA, although it is normally represented in UAN. Moving a mouse prior to target
selection is here considered similar to moving a hand over a keyboard before deciding
which key to press. Although such actions, known as homing, are considered in some
models such as the Keystroke Level Model (Card, Moran and Newall, 1980), they are not
relevant to the GUI language we are trying to develop, which does not include time as an
independent variable. Neither have we included the symbols for motion (x,y)* etc. in the
definition of <kk>, even though, strictly speaking, a finger (perhaps on the same hand)
will be moved to a different key.

Finally, an action can be performed similar to <kk> which requires a key to be pressed
and held down whilst a mouse button is pressed and released. This action can be

represented in UAN thus:

<kb> « KvMv?r KA
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BASIC WINDOWS OPERATIONS

The Windows interface consists of a number of objects each of which is an instance of a
particular windows object class (WOC). These objects can be manipulated by basic
windows operations (BWOs) which in turn are performed using BWAs. There are some
problems in defining and identifying window operations and a decision must be made on
the granularity of the dialogue analysis. For example, should scroll up be a single
operation, or should it be a goal (or sub-task) which can be achieved by a variety of
different operations? If we consider scroll up to be a BWO, then it can be achieved by
using a variety of BWAs; if we consider it to be a goal, then it can be achieved by using
a variety of BWOs.

We will choose to consider scroll up to be a goal because it can be achieved by
manipulating one or more of a variety of different WOCs. Let us represent goals by
using curly braces, so that scroll up is written {scroll up}. Given this starting point, it is
then clear that in Microsoft Windows the goal of {scroll up} can be reached by
performing one of the following operations:

1. click on the scroll up icon at the top of the scroll bar;
2. slide (by dragging) the elevator on the scroll bar in the up direction;

Let us identify each of these operations by using two letter mnemonics in square
brackets. Thus we will let [su] stand for the BWO scroll up icon and [ve] stand for the
BWO slide vertical elevator. Using this nomenclature, the relationship between basic
windows operations, basic windows actions and primitive user actions for these two
methods of reaching the goal {scroll up} is as shown in Figure 7. Each method shown
requires a different BWO and each BWO requires various combinations of PUAs. In the
first method, the mouse is clicked upon the scroll up icon; in the second method, the
vertical elevator is dragged upwards.

[su] &<c> ¢« ~[scroll up icon] Mv”

{scroll up} {[ve] «<d> «~[vertical elevator] Mv ~ (x,y)* ~(x',y') M?

Figure 7: decomposition of the goal {scroll up}

Proceeding in this manner, we identify 26 basic window operations as listed in Table 4.
This list 1s clearly not exhaustive and is subject to addition and refinement through
further investigation.

The window object classes and the basic window operations required to manipulate
window objects to perform tasks are listed in Table 4. The basic window action or
actions necessary to perform each operation are given in the last column of this table. In
this column, alternative BWAs for the same BWO are indicated by the | symbol. Thus
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[d]i[c] indicates that the desired BWO can be achieved by either dragging or by a single
click. This particular alternative occurs for the BWO [so], where the operation can be
performed by opening the menu and then dragging the mouse pointer to the required
option in a single operation, or by clicking on a menu option of an already open menu.

BWO BWO code BWO BWO code
close folder [cf] scroll down [sd]
close window [cew] select icon [si]
scroll left/right [he] scroll left [sl]
make active [ma] select option [so]
move object [mo] scroll right [sr]
maximize window [mw] select text [st]
minimize window [nw] scroll up [su]
open folder [of] type text [tt]
open menu [om] view directories [vd]
open window [ow] scroll up/down [ve]
position cursor [pc] execute icon [xi]
resize frame [rf] execute option [x0]
restore window [rw] execute task [xt]

Table 4: basic window operations

Different BWOs can be performed on the same WOC. For example, a program group
icon can be moved [mo] or opened into a window [ow]. In this case, these different
operations require different basic window actions: to perform [mo] a <d> must be
executed; to perform [ow] a <cc> must be executed. But this is not always the case. For
the program group icon, both [mo] and [rw] can be performed with the same basic
window action, that of <d>. However, the action is performed in different ways. In order
to move the group icon, the drag must be performed on the icon itself; in order to restore
~ the program group window, the drag must be performed on the program group menu.

Note also that different BWOs can be performed to achieve the same functional goal and
obtain the same response from the GUI. For example, it is possible to execute a program
from the Program Manager by performing any one of 3 different operations: [xi], or the
combined operations [si] + [so] or [so] + [tt] + [xt]. Itis possible to execute a program
from the File Manager by performing the operation [xo], and in the case of an
application such as Microsoft Office, it is also possible to execute a program by
performing the operation [xt]. It is not altogether clear at this stage how different BWOs
should be selected and classified; this is still the subject of on-going research.

Given that we can identify a finite number of basic window operations, it becomes
possible to record the sequences of such operations which are necessary to perform
specific tasks. Thus the sequence of operations of the file copy task described in steps 1
through 9 and depicted in Figures 1 though 6 is
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[xi}[mw]{of][vd][mo][mo][ma][cw][mw], as detailed in Table 1. This includes those
operations required to return the system to its original state.
In order to analyse the complexity of this task, it is necessary to know the initial and
digram frequencies which dictate the structure of a Windows dialogue.

wWOC Possible | Required wOC Possible | Required
BWOs BWAs BWOs BWAs
title bar [ma] <c> program icon [xi] <ce>
[mo] <d> [s1] <c>
close button [cw] <ce> [mo] <d>
[om] <c> scroll up icon [su] <c>
[so] <d>l<c> | scroll down icon [sd] <c>
minimize button [nw] <c> scroll left icon [s]] <c>
maximize button [mw] <c> scroll right icon [sr] <Cc>
restore button [rw] <c> hor. elevator butn. [he] <d>
window [ma] <C> ver. elevator butn. [ve] <d>
window frame [rf] <d> disk icon [vd] <c>l<ce>
active menu item [so] <c> folder/file icon [of] <c>l<ce>
prog. group icon [si] <c> [cf] <c>l<ee>
[om] <Cc> [mo] <d>
[so] <d>l<c> | tool icon [xt] <>
[ow] <ce> document [pc] <c>
[mo] <d> text [st] <d>
[rw] <d> [x0] <ce>l<c+c>
{mw] <d> keyboard [tt] <k>

Table 5: window object classes and corresponding operations and actions

CONSTRUCTION OF A TRANSITION PROBABILITY MATRIX FOR BASIC
WINDOW OPERATIONS

Comprehensive data has yet to be collected in order to determine initial and digram
frequencies of each BWO. However, a pilot study of 462 BWOs over several different
tasks was made by the author logging his own operations during normal work sessions
on a computer. The tasks included file management sessions and document production
using Microsoft Word, Excel and Powerpoint. The study yielded the frequency
information in Tables 6 and 7.

total
462

vd|vel{ xi
78 212{7]5]8

cf [cwi he no [mw|nw]| of [ om|ow
111401 3]8]S5|6]21]01]2

pc| of frw]sd| si| sl
103] 1 ] 0 |48] 1

sr|stisuftt
1]125]18

Gl8

Table 6: initial frequencies for basic window operations

39



The initial frequencies of occurrence of the various BWOs are as shown in Table 6. Note
that during these short sessions there are 3 operations that were never performed by the
user, these being [he], [om] and [rw]. This may be a reflection of the user’s windows
language style as well as a reflection of the very small sample size.

The digram transition frequencies are given in Table 7. In this table, the frequency of
occurrence of each BWO is dependent upon the previous BWO; thus each cell contains
the frequency of occurrence with which a BWO j follows a BWO i in the sample
sequence of 462 BWOs. The data can be normalised to produce a table of transition
probabilities by applying the condition

ZP.-,- =1 forall i
j

to each row.
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Table 7: digram frequencies from a sample of 462 basic window operations

THE ENTROPY EQUATION

We next require some method of quantifying the uncertainty in outcome at any point in a
Markov chain of BWOs. For this we utilise a formula from communication theory due to
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Shannon and Weaver (1949). Consider a message transmitted using a message alphabet
consisting of n different types of symbol, where at any given point in the message the
symbol types have the probabilities of occurrence p,, p,,...p,. Shannon and Weaver
proposed that the uncertainty in occurrence of a given symbol type at any particular
place in such a message is given by H(py, pa,...pn), Where

H = —Kipi In p, (1)

i=1
and K is a positive constant. This form of H is identical to that of entropy as defined in
statistical mechanics, where entropy is a measure of the disorder of a system which can
be arranged in a large number of different ways.

By considering a long sequence of N symbols, Shannon and Weaver also obtain an
expression for what they call the entropy of an information source. In the first-order
approximation of a message transmitted from such a source, there will be a high
probability that there will be p; N occurrences of each ith symbol. It follows that the
probability of the message will be approximately:

p:l:llp‘,iN

where there are n different possible symbols.

n
Inp= szi In p, (2)
i=l
Substituting for H from equation (1) and re-arranging gives
Klnp
s =~ N ..(3)

It is of interest to determine the maximum entropy that could be associated with the same
source. This will occur when all the p;s are equal and given by p; = 1/n. From equation
(1) this is:

1
H, =—K2,p,Inp, =—KIn—=Klnn )
n
The relative entropy of the information source is then given by:
H H  Inp
* W, Nln +(5)

ENTROPY OF A WINDOWS SCREEN DISPLAY

A modification of equation (1) has been utilised by Bonsiepe (1968) to provide a
measure of the complexity of a typographically designed page. Bonsiepe classified a
page of text and graphics in terms of objects of different sizes. Objects were classified by
width, height, and x and y spatial coordinates. By considering the proportion of objects
in each class Bonsiepe calculated an aggregate value for H; this was then interpreted as a
measure of the complexity of a given page layout. The same method has also been
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applied by Tullis (1983) to a layout of text on a computer terminal and by Comber and
Maltby (1994) to objects in a Microsoft Windows graphical user interface.

In order to demonstrate the approach used by these workers, and to further clarify the
nature of H, we will briefly consider how H might be calculated for a GUI screen which
consists of different classifications of on-screen objects. Setting K equal to unity for
convenience, the entropy of the screen display H, is given by:

c
H,=-2.pInp, .(6)
i=1
where C = number of different classes of screen objects, and
n;
pi - N

where n; = number of objects in class i and N = total number of objects in all classes. p;
now represents the proportion of screen objects in a particular class, rather than the
probability of their occurrence.

To demonstrate possible uses of equation (6), consider static displays of objects on a
windows screen which are classified by size and shape. Some examples are shown in
Figure 8.
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Figure 8: H, values for screens of objects classified by size and shape
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Each of the screens (a) to (f) in this figure contains a number of objects of different
classes. The Hy values are determined in the following manner. Screens (a) and (b)
contain only 1 class of object and so we have C = 1. In both cases n, /N is also 1 and so
Hy is zero: both of these screens thus have the same minimum entropy. In contrast screen
(c) has 2 classes, with 1 object in each. In this case Hy is given by
H,= {%ln%+ %ln%]= 0.693
This is the maximum value of H, possible with 2 classes; thus the entropy of a 2 object
screen such as screen (a) is considerably greater is than the entropy of a 20 object screen
such as screen (b). Clearly, if we add another class of object as in screen (d), the entropy
will further increase, thus:
111 111 ]_1
H,= 3ln3+ 3ln3+3 n3 =1.099
Since it is the proportion of objects in each class that is the determining factor, it is clear
that for screen (e) we will have some value of Hy which is between the values of H, for
screens (b) and (c), thus:
2.2 2 23
H, = 1—8‘1n§+§1n1—§ =0.349
The final example of screen (f) has equal numbers of objects in 2 classes; Hy is therefore

the same as for screen (c), i.e. 0.693.

In the context of a windows screen, we can interpret these figures in several ways; they
can be interpreted as a measure:

(a) of the degree of disorder of the screen;
(b) of the complexity of the screen in the context of different categories of information.
(c) in the uncertainty in choice of a windows object class by a user;

Interpretation (a) leads to the conclusion that Figures 8(a) and 8(b) have the same
amount of disorder, and that Figures 8(c) and 8(f) have the same amount of disorder.
Also, Figure 8(c) is more disordered than Figure 8(e), because there is a greater
proportion of one object than the other. Although these disorder rankings do not appear
to be intuitively the case, we shall see shortly that these interpretations may have validity
in the context of different classes of user.

In terms of interpretation (b), a user may well see a screen consisting of a large number
of uniform objects (such as icons) to be less complex than a screen consisting of a
smaller number of objects of a variety of types (such as icons, windows, scroll bars and
menus). Comber has suggested that a novice user would view all objects in a windows
screen as separate entities, thus seeing a complex screen, whereas an expert user would
be more likely to group items of a similar type (such as options of a menu) into an entity
which is seen as a single object. Thus an expert user may see Figure 8(f) as Figure 8(c),
which has the same H value. These assumptions need to be tested by collecting data on
different classes of users.
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Interpretation (c) suggests that it might be profitable to look at how entropy changes
along different task paths by comparing different options open to the user, such as
whether to perform an [xt] or an [so] operation.

We will now apply this method of determining display entropy to the file copy task
summarised in Table 1. The results are given in Table 8.

steps

wOC 1 2 3 4 5 6 7 8 9
title bar 0 2 2 2 3 3 3 3 2
close button 0 2 2 2 3 3 2 3 2
minimize button 0 2 2 2 3 3 3 3 2
maximize button 0 2 1 1 2 2 2 2 1
restore button 0 0 1 1 1 1 i 1 1
window 0 1 1 1 2 2 2 2 1
window frame 0 2 2 2 3 3 3 3 2
active menu item 0 8 8 8 8 8 8 8 8
program icon 2 1 0 0 0 0 0 0 0
scroll up icon 0 1 1 1 0 1 1 1 1
scroll down icon 0 1 1 1 0 0 1 0 1
scroll left icon 0 1 1 1 0 0 1 0 1
scroll right icon 0 1 1 1 0 0 1 0 1
horizontal elevator button 0 1 1 1 0 0 1 0 1
vertical elevator button 0 1 1 1 0 1 1 1 1
disc icon 0 3 3 3 6 6 3 6 3
folder/file icon 0 36 36 39 4 35 39 37 39
Total number classes C = 1 16 16 16 10 12 16 12 16
Total number objects N 2 65 64 67 35 68 75 70 59
Display entropy H, = 0 1.45]11.,75}11.,121.721.41(1.31{1.56]0.94

Table 8: Display entropies and number of objects in each class for steps 1 to 9

It is seen from these figures that the screen in step 1 (Figure 1) possesses the minimum
display entropy and that the screens in step 3 (Figure 2) and 5 (Figure 4) possess the
maximum. We can liken the screen in step 1 to Figure 8(a), in step 3 to Figure 8(f) and in
step S to Figure 8(d). This latter case is of interest, since it highlights that H, is a measure
of disorder or complexity of object class, the high value in this case being due to the
additional window which has been opened. We might postulate that a novice user would
find the screen in step 5 the most confusing, because it offers the most even distribution
of different object classes, thus demanding of the user the maximum amount of
knowledge about the interface. In contrast, the entropy of the screen in step 4 (Figure 3)
is significantly lower, even though it contains a greater number of different classes,
because of the uneven distribution of different object classes. In this screen there is a
predominance of one particular class, that of folder/file icon. We might deduce that there
is thus more certainty as to its purpose. This deduction leads us to consider ways in
which the entropy of basic windows operations can be determined.




ENTROPY OF BASIC WINDOWS OPERATIONS

The above determinations of screen entropy relate to static displays in a similar (but not
identical) manner to the work of Bonsiepe and Tullis. In this paper we further extend the
application of entropy to an analysis of the basic windows operations required to
complete a specific task, and hence determine what we will call the operation entropies
H, associated with each screen. We do this by substituting the initial and digram
probabilities from Tables 6 and 7 into equation (6). This enables us to determine the
entropy of a windows operation at any point in a Markov chain of basic windows
operations. Consider one again the file copy task described in Table 1 and depicted by
the screens in Figures 1 through 6. Given the sequence of BWOs necessary to complete
this task, it is possible to calculate the entropy H, of each operation by applying equation
(6) and hence, since entropy is an additive quantity, to determine the total entropy of the
task. The results of this determination are given in Table 9, which also includes the
values of the display entropies and the total the number of windows objects present in
each step. The entropy and object number data is plotted against step number in Figure
9. In this graph, the number of objects N has been normalised for comparison purposes.
Although there are some similarities in trend between all three parameters as we move
from screen to screen, the correlation between N and each type of entropy is low, being r
= 0.66 for Hy and r = 0.62 for H,. It is clear that entropy is measuring something more
significant than simply the number of objects on a given screen.

Step Task Number of Display Operation

Objects N Entropy Hy Entropy H,
1 [xi] 2 0 1.6138
2 (mw] 65 1.45 3.1192
3 [of] 64 1.75 2.8832
4 (vd] 67 1.12 3.2477
5 (mo] 35 1.72 1.7918
6 [mo] * 68 1.41 3.3286
7 (ma] 75 1.31 3.4012
8 (cw] 70 1.56 2.6701
9 [nw] 59 0.94 1.3108

Table 9: H values for each screen display and BWO in a file copy task
(At * file copy task is completed)

The arrow in Figure 9 indicates the last operation required to complete the task. The total
entropies of the operation up to this point are Hy = 7.45 and H, = 15.93. The operations
after this point are those required to return the system to its original state and the total
entropies of the complete task are Hy = 11.30 and H, = 23.32.
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Figure 9: H versus BWO for a file copy task

Figure 10 highlights the differences between the 3 parameters by plotting the change in
N, Hy and H, as a function of each transition as the user goes from screen to screen. The
greatest differences occur in the transitions between the screens of steps 4 to 5 and steps
5 to 6, where Hy and H, change in opposite directions. In the transition from step 4 to 5,
H, increases while H, decreases; in the transition from step 5 to 6, these changes are
reversed. Once again the key screen is that of step S: in terms of possible user operations,
Hj indicates that this is a complex screen; however, in terms of probable user operations,
H, indicates the opposite, because there is a high probability that having just opened a
window, the user will then move it to a new position. Perhaps Hy is an appropriate
measure of complexity for the novice user and H, is an appropriate measure of
complexity for the expert user.
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Figure 10: differences in N, Hy and H, as a function of screen
transitions
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We also note from both Figures 9 and 10 that the file copy task undertaken both starts
and finishes with low H values. The opening values of Hy and H, are a consequence of
the fact that we chose the simplest possible type of opening screen. However, H,
decreases as the task approaches termination because the sequence of BWOs is a
predictable one.

ENTROPY OF A WINDOWS LANGUAGE SOURCE

We can use equation (4) to determine to the first-order the entropy of a Windows
language source by using the BWO frequencies given in Table 6. The total number of
operations performed in the pilot survey is N = 462. From equation (3) we can also
calculate:

Inp = Nipi Inp, =10834

i=1
Substituting this and n = C = 26 into equation (5) yields a relative entropy of Hy =
72.0%.

DISCUSSION

Shannon and Weaver (1949) classify communication problems into the following three
categories:

Category A: the accuracy of transmission of symbols in a communication

Category B: the precision with which the transmitted symbols convey their desired
meaning

Category C: the effectiveness with which the received meaning affects the receiver

If we consider our problem to be mainly that of quantifying the operational complexity of
a GUI and of also providing a measure of its usability, then all three of these categories
become relevant to GUI design and to a Windows dialogue. Category A involves issues
not only of software accuracy, but also of interface design. Category B relates to the
complexity and usability of an interface as seen by a user, quantities which are very
dependent upon the user’s interpretation of transmitted symbols (the windows object
classes). Category C relates to the efficiency of a windows dialogue, which is dependent
upon the effectiveness of a user’s response to these same transmitted symbols. To give an
extreme example, if a user mistakes a save icon for a close icon, and the application does
not warn the user that the file is unsaved, then it is possible to lose an unacceptable
amount of work.

In a discrete communication system, an information source is considered to select a
desired sequence of objects (such as alphanumeric characters, picture or sound entities,
or bits) in order to convey a particular message or amount of information. This sequence
of objects is transmitted by the source to a receiver. The receiver translates the sequence
into a form understandable by the information destination. If the destination is a human
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being, then the human being attempts to interpret the final presentation of objects. In this
context, the word information has a wider meaning than message content. In terms of an
information source, it relates to what can be transmitted rather than to what actually is
transmitted. For sequential objects in a Markov chain, what can be transmitted is
determined by the Markov transition probabilities. Thus when we determine an entropy
value H, at a particular point in a Markov process, we are obtaining a measure of the
uncertainty in the outcome of the next event in that process. This uncertainty can be a
reflection of the freedom of choice of outcomes available to the information source, or it
can be a measure of the predictability of outcomes as seen by the information
destination.

In the context of a Windows language source, the entropy H, at any given point in a
Markov chain of BWOs can be interpreted as a measure of the:

uncertainty in choice by the novice user of the next BWO to transmit
freedom of choice by the expert user of the next BWO to transmit
complexity of the task being undertaken, as seen by the user

ability of the Windows transceiver to predict the next BWO to be received

We have seen that the relative entropy of a Windows language source is Hg = 72.0%.
This figure can be interpreted as the amount of freedom experienced by the user in
choosing a Windows operation to perform when undertaking a particular task. The
complement of this quantity is the redundancy of the Windows destination, given by R =
1 - Hg = 28.0%. This quantity is the proportion of the sequence of Windows operations
which is determined by the statistical structure of the dialogue, and not by the free choice
of the user. It is interesting to compare the redundancy of a Windows language source to
the redundancy of the English language, which is about 50%. In other words, when
composing a meaningful English sentence, an author has around 50% freedom in the
choice of each successive word. Weaver notes that if the redundancy of the English
language were much higher, it would be difficult to construct crossword puzzles, whereas
if it was much lower, then it would be possible to construct three-dimensional crossword
puzzles.

According to the data from the pilot study reported here, a Windows user has about 72%
of freedom in the choice of each successive BWO. Whether we would expect a windows
language to have a lower redundancy than a natural language such as English is an
interesting question. In terms of freedom of choice of operations by the user, the
redundancy of Windows is a reflection of the versatility of the interface. We might
speculate that low redundancy is desirable for an expert user, who would wish for the
freedom to complete a task in a variety of ways. However, such freedom may be an
added complication for the novice user, because it increases the uncertainty in the choice
of each operation to be undertaken in order to complete a given task..
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CONCLUSIONS

A taxonomy of basic windows operations has been presented for the Microsoft Windows
interface, enabling interface dialogue to be described as a Markov process. A pilot study
has been undertaken to obtain a stochastic matrix for a Windows language source and
this matrix has been used to calculate the entropy H of a specific Windows task and of
the language source itself. It has been found that the relative entropy of the source and its
redundancy are Hy = 72.0% and R = 28.0% respectively. Various interpretations of
these parameters have been briefly discussed in the context of a GUI. It is concluded that
additional research is necessary to further clarify the meaning of H and to develop
methods by which the model can be applied to GUIs in general in order to quantify their
operational complexity.
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