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ABSTRACT

This paper applies a model for distributed databases and transactions with a distinction between global and local
correctness criteria. The global requirements per system are weaker than the local requirements per site. The paper
presents an application which suits such a two-level division. The main motivation for our investigation is based on the
fact that the commonly used correctness criteria for concurrency control and recovery, serializability and total recov-
erability, are very strict criteria. The use of more relaxed criteria (allowing more true parallel behaviour and more true
partial behaviour) is therefore very appealing - as long as this can be achieved without compromising safety or
applicability. The main paradigm in our approach is based on the observation that relatively little knowledge about the
databases and transactions can lead to major gains in system throughput. This allows specific systems to have more tailor-
made correctness criteria.
We analyse a specialized type of distributed database, the skeleton-database, and a specialized type of distributed
transaction, the wander-transaction. Wander-transactions accessing a skeleton-database allow breaks with both the
common serializability criterion and the common total recoverability criterion. Our main emphasis here is on the non-
serializability aspect. The primary goal of this work is to designate correctness criteria for controlling local and global
parallelism. The secondary goal is to specify priority rules for handling local and global criteria breaks. Wander-
transactions accessing a skeleton-database experience dynamic priorities. Our resulting concept, priority serializability,
gives increased parallelism without compromising safety.

INTRODUCTION

Background:

For many distributed databases the type of global integrity constraints implied by the databases collectively is
under discussion. Any such constraints come in addition to the local integrity constraints implied by the
databases separately. By integrity constraints we mean any associated rules which couple the given database
items in some way. Likewise, for many distributed transactions the type of global semantic requirements
induced by the transactions per system is under discussion. Any such requirements come in addition to the local
semantic requirements induced by the transactions per site. By semantic requirements we mean any overall
information describing the assumed transaction results in some way. See for example Elmagarmid (1992),
Breitbart (1992) and Bhargouti (1991). It is a fact that in some distributed databases global integrity constraints
do exist but are weaker than the local integrity constraints. It is also a fact that in some distributed transactions
global semantic requirements do exist but are weaker than the local semantic requirements. This opens up for
non-serializability globally and partial recoverability globally - on top of serializability locally and total
recoverability locally.

Context:

A knowledge of the concurrency control material in Bernstein (1987) and Papadimitriou (1986) will benefit the
reader but it is not a prerequisite.

Contents:

The "Alternative Database And Transaction Types" chapter presents the skeleton-database and wander-
transaction concepts - and investigates the new notions from a general viewpoint. The "Relaxed Correctness
Criteria" chapter then designates the correctness criteria for concurrency control and specifies the priority rules
for criteria break handling, while the "Mechanisms And Examples" chapter investigates corresponding
mechanisms and examples.
The skeleton-database represents sets of close substitutes for diverse articles. Effectively we investigate an
organized coupling of cooperating databases. Each specific database contains a complementing set of article-
offers - and the different databases contain substituting sets for these article-offers. Further, the databases may
be accessed simultaneously in the sense that article-offers in one database may be "held" while article-offers in
another database are checked - and the accesses to all participating databases in a skeleton-database will be
collectively controlled. Our approach allows non-serializability and partial recoverability. We arrive at multi-
level correctness criteria with respect to both consistency preservation and atomicity assurance.
The wander-transaction traverses a skeleton-database trying to seize an optimal set - complying with any
combined conditions on the attribute-values - of specific articles. Actually we discuss a traversing race among
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competing transactions. A transaction may require diverse articles of several types - and several articles of a
single type. And a transaction/buyer may acquire articles directly - i.e. it corresponds to an on-line read-and-
write service and not only an off-line read-only service. Further, a buyer may consider more static attributes like
quality and price - as well as more dynamic attributes like no-left and who-purchased. Our concept allows
transactions to build up priority during their traversing race. Acquiring an article-offer early may increase the
priority of the corresponding buyer - while checking an article-offer later may decrease the priority of the
corresponding buyer.

ALTERNATIVE DATABASE AND TRANSACTION TYPES

Skeleton-Databases

Imagine a collection of separately run department stores selling similar types of articles. The current available
qualities, prevailing prices, remaining quantities and confirmed reservations of articles naturally vary among the
department stores. Their article information will have to exist in n variants and may have to be stored at n sites.
A typical database corresponding to three department stores offering three specific articles is illustrated in Fig.
1.
Here x, y and z signify different occurrences of sites, while a, b and c signify different types of items. So ya, yb
and yc represent different item-types available as article-kinds at a unique site or department store. We talk
about a complementing set of article-offers. Further xb, yb and zb represent a unique item-type available as
article-variants at different sites or department stores. We talk about a substituting set of article-offers.

Types

Sites

Figure 4. Complementing Sets of Article-Offers at single sites &
A Substituting Set of Article-Offers of a specific type

Consider the article-information in the previous figure as a distributed database consisting of a set of local
databases. Each set of items connected with horizontal lines corresponds to the intra-base view, while the set of
items encircled by a vertical oval corresponds to an inter-base view. The different local databases of this non-
replicated global database are not interrelated by normal integrity constraints. But within each local database
there may be any kind of integrity constraints relating the local items in some way. The general picture will be
as in Fig. 2.
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Global Database

Collection of
Non-Interrelated
Local Databases

Figure 5. Lacking interrelations in the Alternative Distributed Database

We are actually specifying an alternative database type where some integrity constraints (i.e. those between the
separate local databases in a global database) are completely missing. Hence we have complete knowledge
about a well-defined part of the integrity constraints. The non-existence of integrity constraints between clearly
identifiable database parts is easy to represent and manipulate. We choose to call a global database of this type a
skeleton-database.
In a skeleton-database there are no inter-site integrity constraints. This means that the substituting set of article-
offers of for example type B (i.e. xb, yb and z,,) has no attached rules restricting the sets of possible attribute-
values that may coexist. But there may be some intra-site integrity constraints. This means that the
complementing set of article-offers at for example site Y (i.e. ya, yb and yc) may have some attached rules
restricting the sets of possible attribute-values that may coexist.
Examples of such integrity constraints are:

value(attributei(yb)) > value(attributei(yc))

value(attributej(yb)) + value(attributej(yc)) < value(attributej(ya))

Note that a typical database item may have more attributes than the four we have introduced.

Wander-Transactions

Imagine a simple but interesting operation requiring the cheapest article-variant of type B. The specification of
the corresponding transaction will be:

TI: Acquire Onee: Lowest-Price

The meaning of such an access-predicate is that the corresponding transaction should, after first checking (i.e.
retrieving) some or all of the available article-offers, then acquire (i.e. update) the one article-offer fulfilling the
given condition in the best way. This is illustrated in Fig. 3. Here the operation checks the current offers by
retrieving all existing variants of the specified article-kind, finds one cheapest offer by comparing the prices and
consulting the quantities, and acquires the best offer with at least one instance left by updating this variant of
the article-kind.

3) Retrieve All

0 Designate One

Update This

Figure 6. Actions of the Alternative Distributed Transaction
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To check an offer means to retrieve its quality, price, no-left (i.e. quantity) and who-purchased (i.e. reservation-
list) attributes. A reservation-list reflects the sequence of reservations already made. To acquire an offer means
to decrement the quantity (> 1) by one and add the buyer-identity to the reservation-list. The who-purchased
attribute will produce a delivery-list for the department store, so the sequence of buyer-identities is important.
The execution result with the article-offer at site Y designated as best will be:

We are actually specifying an alternative transaction type where the relationship between the read- and write-
sets of the transactions is known (i.e. a reads-before-write case) - and where the functional objective of the
transactions is fixed (i.e. to acquire articles). Hence, we have both some high-level information about the syntax
of the transactions and some overall information about the semantics of the transactions. We are particularly
concentrating on a specific type of transaction. We choose to call a transaction of this type a wander-
transaction.
In a wander-transaction there are no inter-site value-dependencies. This means that values read among several
sites are only used to decide which subset of items to update - and will not be used to calculate which values to
write to this subset of items. But there may be some intra-site value-dependencies. This means that values
read within a single site may have to be applied to calculate which values to write to its designated subset of
items.
For example, assume that all the nine database items in Fig. 1 in the "Skeleton-Databases" section are checked,
and assume that yb is both the only database item acquired of type B and the only database item acquired at site
Y. Then the values read from the substituting set of article-offers of type B (i.e. xb, yb and zb) are only used to
decide that yb is to be updated. In contrast, the values read from the complementing set of article-offers at site Y
(i.e. ya, yb and yc) have to be applied to calculate which value to be written to this yb.

Initial Illustrations

Now we only consider the simplest case - i.e. with one item per site. In general there are several items per site,
and the different sites must not necessarily have entries for exactly corresponding sets of items.

Let us imagine a skeleton-database containing the following three item-variants:

x:

Quality =

Price =

No-Left =

85%

5$

1

Who-Pur. = -

Quality = 90%

Price = 10 $

No-Left = 1

Who-Pur. = -

z:

Quality =

Price =

No-Left =

95%

15$

2

Who-Pur. = -

The item-variants represent the one and only item-type occurring at the three different sites. Or to put it another
way: each specific quadruple corresponds to a specific department store's offer of the single article-kind.

We look at the following two wander-transactions:

TI: Acquire One: Lowest-Price & Quality > 85 %
+ Acquire One: Lowest-Price & Quality > 80 %

T2: Acquire One: Lowest-Price & Quality > 75 %

Recall that a buyer may be interested in more than one article-instance - as T] is here. The item-variants that the
two wander-transactions will acquire if executed in isolation are TV x + y and T2: x.

A possible schedule corresponding to the two wander-transactions being executed in parallel is:

H,=
T,: Ri(x)W,(x)
T2: R2(z,R2(y)

R,(y)Ri(z)W,(z)
R2(x)W2(y)

The description of a schedule is split among the involved transactions. Thus, the horizontal axis represents
"time", while the vertical axis represents "space". That the wander-transactions access the item-variants in
different sequences is not important. It has only been employed for simplicity reasons. One reason for not
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checking all article-offers before acquiring an article (as T! does with x here) is that a very good offer should be
acted upon as soon as possible. Note the possible race-situation among wander-transactions for a favourable

offer.6

The results stem from the facts that initially there is only one instance left of both item-variant x and item-
variant y. When T2 would like to acquire x, there is none left and it has to settle for y. Further, when T, would
like to acquire y, there is none left and it has to settle for z. The item-variants that the two wander-transactions
will acquire if executed in the Hrschedule are T,: x + z and T2: y.
Observe that these are not the same as in the isolated cases. In the "Initial Evaluations" section we shall see that
the Hi-schedule will not be allowed by the designated correctness criteria. Typical examples of schedules that
will be allowed by these correctness criteria shall be shown in the "Concurrency Control Examples" section.

Inherent Freedom

We will consider some consequences of defining and using skeleton-databases and wander-transactions. We will
specifically look at the possible needs for serializability and total recoverability.
The normal correctness criterion for concurrency control corresponds to the one-after-the-other effect. This is
illustrated in Fig. 4. Such serializability means that the effect of handling several transactions being run in
parallel should be as if they where executed in some, unknown, serial order. This is a very limiting criterion. Its
necessary strength stems from the difficulty in knowing, representing and manipulating both general integrity
constraints of databases and general semantic requirements of transactions.
The lack of some integrity constraints in a skeleton-database leads to a certain degree-of-freedom in
synchronizing accesses to such databases. The existence of some semantic information about a wander-
transaction then fixes a particular point in this solution span for synchronization of such transactions. Consider
for instance using locking as a concurrency control mechanism. Is 2PhaseLock synchronization then necessary
for wander-transactions accessing a skeleton-database? The answer is no! It is quite adequate to always hold the
best offer currently found and constantly free already obsolete offers. Holding corresponds to locking and
freeing to unlocking. Carrying out this principle recursively means that eventually an article is locked after
another is unlocked. Hence 2PhaseLocking is violated.

<]
T2

|R2W2R2W2

n"n"n"nl^7

Tk

- -*• RiWiRjWi

Timing of
Transactions Execution

Effect of
Transactions Execution

Figure 7. The One-After-The-Other effect of transactions execution

Relaxed concurrency control has been used in for instance Garcia-Molina (1982) (allowing special
arrangements for read-only transactions in centralized systems) and Du (1989) (allowing special arrangements
for local-only transactions in distributed systems). Our aim is to arrive at relaxed concurrency control for all
wander-transactions. Effectively, true parallel behaviour may still give sensible results. This will be the main

theme of the "Relaxed Correctness Criteria" and "Mechanisms And Examples" chapters.^
The normal correctness criterion for recovery corresponds to the all-or-nothing effect. This is illustrated in Fig.
5. Such total recoverability means that the effect of dealing with a transaction being interrupted in the middle
should be as if it was finished totally - or as if it was not started at all. This is again a very limiting criterion. Its

6. Hence "Lowest-Price" or "Highest-Quality" is not always to be interpreted literally - as might be
indicated in the "Wander-Transactions" section. See also later examples.

7. Note that we require normal serializability between the group of "selling transactions" and the group of
"buying transactions" - and within the group of "selling transactions". It is within the group of "buying
transactions" that we may allow some non-serializability.
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necessary strength once more stems from the difficulty in knowing, representing and manipulating both general
integrity constraints of databases and general semantic requirements of transactions.

RW RW !

Halting of
Transaction Execution

Effect of
Transaction Execution

Figure 8. The All-Or-Nothing effect of transaction execution

Wander-transactions accessing a skeleton-database may apply partial commitment instead of total commitment.
This means that at particular points during its execution a specific transaction may commit its hitherto
purchased items - instead of having to commit all its purchased items together at the end. Each purchase
corresponds to a single write, so committing a set of purchases corresponds to committing a set of writes. A
reason for applying partial commitment instead of total commitment is that at particular points a specific
transaction may be able to live with the items acquired by then - without necessarily having to get hold of the
remaining required items. Allowing such step-wise committing transactions does not mean that corresponding
subtransactions become totally independent. Actually these will be priority-connected: early writes in a specific
transaction build up priority for later writes in the same transaction. Further, early commits secure purchases
from being aborted if the transaction waits too long.
Partial commitment has been applied with nested transactions, and this context has been analysed in Bancilhon
(1985), Beeri (1986) and Korth (1988). Our point is not that partial commitment is to be used but rather to
discuss how it should be controlled. Effectively, even true partial behaviour may still give sensible results.
Nygard (1994b) has covered this.

RELAXED CORRECTNESS CRITERIA
Basic Concurrency Control

We must first look at the transaction conflict patterns that may occur corresponding to two transactions
accessing a single item-variant. Here wr, rw or ww indicates a write-read, read-write or write-write conflict
respectively - see Bernstein (1987) or Papadimitriou (1986). One or more "&"s couple a set of conflicts that
have to occur together in a specific schedule. In contrast, one or more "/"s separate sets of conflicts that have to
occur alternatively in a specific schedule. Further, a conflict marked with an "*" contributes in the reverse way
of a non-marked conflict. Hence, if a non-marked conflict contributes TI— »T2, then a *-marked conflict
contributes T2— >Ti. Each separate alternative is accompanied by a corresponding example schedule.
The set of possible results is as follows for the reads-before-write case:

Both read-only => <none>
Ha =

T,:R,(y)
T2: R2(y)

One reads-only, one reads-and-writes => rw / wr
Hb =

T,:R,(y)
T2: R2(y)W2(y)

T,:R,(y)W,(y)
T2: R2(y)
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Both read-and-write => wr & rw & ww / rw & nv* & ww*
Hd =

T,: R,(y)W,(y)
T2: R2(y)W2(y)

T,: R,(y) W,(y)
T2: R2(y) W2(y)

The alternative with "-marked conflicts exactly represents the possible lost update situations. The
corresponding schedule has been marked with a ^-symbol.
• With respect to the synchronization of typical wander-transactions, which of these transaction conflict

patterns should we pay attention to and which should we not? An asymmetric assumption is that
whenever a transaction acquires an item-variant, the corresponding article-offer can become only less
attractive and never more attractive to later transactions. This means that the lower the current quantity
and the longer the current reservation-list, the less interesting the article-offer appears. For simplicity
reasons we have also anticipated that each wander-transaction only needs one instance of an article. In
the following, a reads-and-writes block being changed into a reads-only action further means that another
variant of the corresponding item will/must be acquired instead.

• The rw & rw* & ww* alternative embedded in the He*-schedule represents a lost update situation. To
disallow such a pattern guarantees that a transaction which, after having checked an article through a
read, decides to acquire the article through a write, actually gets an instance of this article. In contrast, to
allow such a pattern does not guarantee this property. This pattern is termed ap - for parallel acquiring.

Actually, a tentative serialization of the corresponding transactions has two typical results:

R2(y) R.(y) W2(y) W,(y) => R,(y) W,(y) R2(y) W2(y)
R2(y) R.(y) W2(y) W,(y) => R,(y) w,(y) R2(y)

The first outcome occurs when there are article-instances enough for both buyers, and the second buyer does
not mind that the first buyer gets the article before him. In contrast, the second outcome occurs if there are not
article-instances enough for both buyers - or the second buyer does mind that the first buyer gets the article
before him.
• The wr & rw & ww alternative embedded in the Hd-schedule reflects a situation where two transactions

in turn check and decide each to acquire an instance of a specific article. To take notice of such a pattern
means that the sequence in which instances of a specific article are acquired does matter. In contrast, not
to take notice of such a pattern means that the sequence does not matter. This pattern is termed a, - for
sequential acquiring.

Actually, a tentative reversal of the corresponding transactions has two typical results:

R.(y) W,(y) R2(y) W2(y) => R2(y) W2(y) R,(y) W,(y)
Ri(y) W,(y) R2(y) W2(y) => R2(y) W2(y) R,(y)

The first outcome occurs when the first buyer does not mind that the second buyer gets the article before him.
In contrast, the second outcome occurs if the first buyer does mind that the second buyer gets the article before
him.
• The wr alternative embedded in the He-schedule indicates that a transaction, after having checked an

article through a read, decides not to acquire the article. This may be because the article is not the
optimal choice - or because the conflicting transaction has acquired the last instance of it through a write.
The last possibility makes it important to pay attention to such patterns. If the transaction conflict had
been reversed, the original transaction could have acquired the last instance of the article instead. This
pattern is termed ca - for checking after.
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Actually, a tentative reversal of the corresponding transactions has three typical results:

Ri(y) W,(y) R2(y) => R2(y) R,(y) W,(y)
Ri(y) W,(y) R2(y) =» R2(y) W2(y) R,(y) W,(y)
Ri(y) W,(y) R2(y) => R2(y) W2(y) R,(y)

The first outcome occurs when the second buyer's negative decision is not related to the first buyer's positive
decision. Further, the second outcome occurs when/if only the second buyer does mind that the first buyer gets
the article before him, and not also vice versa. In contrast, the third outcome occurs if there are not article-
instances enough for both buyers - or each buyer does mind that the other buyer gets the article before him.
• The rw alternative embedded in the Hb-schedule again indicates that a transaction, after having checked

an article through a read, decides not to acquire the article. This may only be because the article is not
the optimal choice - as there is still at least one instance left. This makes it unimportant to pay attention
to such patterns. If the transaction conflict had been reversed, the results would have been the same for
both transactions anyway. This pattern is termed cb - for checking before.

Actually, a tentative reversal of the corresponding transactions has a single typical result:

R,(y) R2(y) W2(y) =» R2(y) W2(y) R,(y)

The single outcome occurs as the first buyer's negative decision cannot be related to the second buyer's positive
decision.
Thus, the cb-patterns should not be included in the synchronization, while the ca-patterns should. Further, it is
most natural to disallow an ap-pattern - i.e. to have it forced into either an as- or a ca-pattern. Also, it is quite

natural to take notice of an as-pattern - i.e. to let the acquiring-sequence of article-instances matter.^ Note that
the ca- and as-patterns will be included in the synchronization by paying attention to all occurring write-read
conflicts - i.e. irrespectively of whether each is accompanied by corresponding read-write and write-write
conflicts or not. Hence, we will require full local serializability (per item - or per site) but allow some global
non-serializability (per system).
We can now illustrate these statements with reference to Fig. 1 in the "Skeleton-Databases" section. Basically
we consider having only one item per site.
In the following schedule reflecting a double check-after situation,

T,: R,(x)W,(x) R,(y)...
T2: R2(x)R2(y)W2(y)

there are two ca-patterns embedded contributing in reverse ways. The x-accesses contribute Ti-»T2, and the y-
accesses contribute T2-»Ti. As indicated above, we can neither reverse the x-accesses nor reverse the y-
accesses without possibly changing the decisions. Hence, there is no way to obtain an "equivalent" serial
schedule here, and we cannot allow such a schedule.
In the following schedule reflecting an inconsistent retrieval situation,

T,: R,(x)W,(x) R,(y)W,(y) ...
T2: R2(x)R2(y)

there is one ca-pattern and one cb-pattern embedded contributing in reverse ways. The x-accesses
(corresponding to the ca-pattern) contribute T]— >T2, and the y-accesses (corresponding to the Cb-pattern)
contribute T2— >T]. As indicated above, we cannot reverse the x-accesses but we can reverse the y-accesses
without possibly changing the decisions. Hence, here there is a way to obtain an "equivalent" serial schedule,

T,T2,
and we can allow such a schedule.

8. Its importance may be based on the specific buyer-identities in who-purchased - or only on the number
of buyer-entries in who-purchased.
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In the following schedule reflecting another inconsistent retrieval situation,

H/R2 =

T,: R,(x) R,(y)...
T2: R2(x)W2(x)R2(y)W2(y)

there is one cb-pattern and one ca-pattern embedded contributing in reverse ways. The x-accesses
(corresponding to the cb-pattem) contribute Ti-4T2, and the y-accesses (corresponding to the ca-pattern)
contribute T2-»T,. As indicated above, we can reverse the x-accesses but we cannot reverse the y-accesses
without possibly changing the decisions. Hence, here there is a way to obtain an "equivalent" serial schedule,

T2T,,
and we can allow such a schedule.
In the following schedule reflecting a double check-before situation,

HDCB =
T,: R,(x) Ri(y)W,(y)...
T2: R2(x)R2(y)W2(x)

there are two cb-patterns embedded contributing in reverse ways. The x-accesses contribute Ti-»T2, and the y-
accesses contribute T2-»T|. As indicated above, we can reverse either the x-accesses or the y-accesses without
possibly changing the decisions. Hence, here there are two ways to obtain an "equivalent" serial schedule,

T2T, I T,T2,
and we can allow such a schedule.
Note that if x and y had belonged to a unique site instead of to two different sites, the situations reflected in
both H/R;/H//j2 and HDCB could not have been allowed in general. This difference stems from the lack of inter-site
integrity constraints but existence of intra-site integrity constraints. The ban on intra-site inconsistent retrieval
and double check-before situations is the local generalization of the ban on single-item lost update situations.
(Both inter-site and intra-site double check-after situations are also prohibited).

Formal Correctness Criteria

Based on our initial discussion in the "Basic Concurrency Control" section we get:
• In the special cases where we have only one item per site - or where we have several items per site but

no intra-site integrity constraints, we require local serializability per item plus a global condition of non-
serializability type.

• In the general case where we have several items per site and some intra-site integrity constraints, we
require local serializability per site plus the global condition of non-serializability type.

In any case, our 2-level total requirement corresponds to the following class of schedules:

C =C nC
WR G WR L: WR-RW-WW

To explain these designated criteria we have to introduce some extra notions.
The binary relation WRD(H) contains the set of ordered pairs of transactions corresponding to the write-read
conflicts in the schedule H related to items in the whole global database D. WRD(H)* represents the transitive
closure of WRD(H). Further, the binary relations WR-RW-WWY(H) and WR-RW-WWy(H) contain the sets of
ordered pairs of transactions corresponding to the write-read, read-write and write-write conflicts in the
schedule H related to items at the local site Y and the single local item y respectively. WR-RW-WWY(H)* and
WR-RW-WWy(H)* represent the transitive closures of WR-RW-WWY(H) and WR-RW-WWy(H) respectively.
For a schedule H to be a member of class CG:WR the binary relation WRD(H)* has to be a partial order. Further,
for a schedule H to be a member of class CL:WR.RW-WW all the binary relations WR-RW-WWY(H)* or WR-RW-
WWy(H)* (corresponding to each particular site or each single item) have to be partial orders. Hence, for a
schedule H to be a member of our designated class of schedules CWR it has to be a member of both CG:WR and
CL:WR.RW-WW, where L for local means either S for per site or I for per item. (G for global means per system).
A schedule being a member of the CWR-class has one serialization which complies with the write-read conflicts
for the global system - plus N serializations each of which complies with the write-read, read-write and write-
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write conflicts for one of the N local subsystems. All these piecewise serializations" can be separately pursued,

and the 1+N resulting serial schedules^ may thus all be inconsistent with respect to their sequencing - see the
example schedules in the "Concurrency Control Examples" section.
The basic lack of/?/? in the local part of our class specification means that only the following reversal type

Ri(y)...R2(y) => R2(y)-..Ri(y)

is allowed in the pursuit of equivalent serial schedules for the different local subsystems. The extra lack of RW
in the global part of our class specification means that also the following reversal type

R,(y)...W2(y)=>W2(y)...R1(y)

is allowed in the pursuit of an equivalent serial schedule for the single global system.
That the ca-patterns should be included in the synchronization while the cb-patterns should not, is reflected in
the global part. Further, that an ap-pattern is not allowed, is reflected in the local part. Effectively, while we do
not allow a transaction's basis with respect to a local decision to be invalidated by one or more other
transactions - e.g. by not allowing any lost update situations, we do allow a transaction's bases with respect to a
global evaluation to be influenced by one or more other transactions - e.g. by allowing some inconsistent
retrieval situations.
The resulting effects of our combined local and global requirements may be termed

Final-State Consistency
+

Final-Choice Serializability.

The "Final-State Consistency" effect stems from the local requirement's ability to preserve the integrity
constraints in the local databases, and the "Final-Choice Serializability" effect stems from the global
requirement's ability to observe the overall goals of the global transactions. The basic goal of wander-
transactions is to acquire articles. It is also anticipated that if a first transaction manages to acquire a specific
article before a second transaction manages to check the same offer, the first transaction should not have to
check another offer after the second transaction has already acquired that article. Hence, the reads-from relation
from Bernstein (1987) and Papadimitriou (1986) has to be maintained as a partial order, and the final choices of
the wander-transactions will thus be serializable. This means that there will exist a corresponding serial
schedule in which their final choices will be the same.
We will achieve effects that may be considered a variant of so-called final-state Serializability in the special
cases where we have only one item per site - or where we have several items per site but no intra-site integrity
constraints. This takes into account the lack of inter-site value-dependencies. In contrast, we will not even
achieve this variant of final-state Serializability in the general case where we have several items per site and
some intra-site integrity constraints. This is due to the existence of intra-site value-dependencies. For a
discussion of normal final-state Serializability, see Papadimitriou (1986).
To exemplify these statements, consider the following schedule:

T,:R1(xa)W1(xa) R1(yb)W1(yb)
T2: R2(xa)R2(yb) R2(yc)W2(yc) ... ,

9. Piecewise serialization means only paying attention to the transaction conflicts and the region indicated
by the name of the corresponding binary relation.

10. Note that any topological sort of the acyclic directed graph corresponding to a specific partial order
gives a serial schedule which is a piecewise serialization of the original schedule.
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Assume also that the first of the integrity constraints indicated in the "Skeleton-Databases" section applies. The
H/vtts-schedule (which is a variant of the HW;-schedule from the "Basic Concurrency Control" section) will be
allowed by our concurrency rules, and the topological ordering of WRD* gives:

T,T2

But the value that T2 would write to yc in this serial schedule might differ from what it will write to yc in the
H/vra-schedule as it retrieves yb there before yb is updated by TV Hence the mentioned variant of final-state
serializability is not observed.

Extra Priority Rules

Wander-transactions accessing a skeleton-database correspond to a reads-before-write case. This means that a
write on a specific item by a specific transaction will always be preceded by a read on the same item by the
same transaction.
As in the "Formal Correctness Criteria" section the binary relations WRD(H) and RWD(H) contain the sets of
ordered pairs of transactions corresponding to the write-read conflicts and the read-write conflicts respectively
in the schedule H related to items in the whole global database D. Further, WRD(H)* and RWD(H)* represent
the transitive closures of WRD(H) and RWD(H) respectively.
Observe the high dominance of reads over writes and the high dominance of late writes over early writes
inherent in the semantics of wander-transactions. This would for instance make a global requirement which
corresponds to the binary relation RWD(Any H)* being a partial order very limiting with regard to allowing
possible race-situations for favourable offers. Likewise, this makes the global requirement which does
correspond to the binary relation WRD(Any H)* being a partial order also suitable as a priority mechanism in
controlling actual race-situations for favourable offers.
A global WR-order (i.e. the sequencing implied by WRD(H)*) may thus be used in solving breaks with the local
requirement per item/site.
• When a local break is about to occur, the WR-order is consulted. If the involved wander-transactions

(two or more) are ordered, any latest ordered wander-transaction among these is selected for abortion. In
contrast, if they are not ordered, any of these wander-transactions may be chosen for abortion.

This implies that quickly making decisions with respect to items (i.e. acquiring a specific article through a write
after having checked the corresponding offer through a read) can give high priority to a wander-transaction with
respect to avoiding its selection for abortion.
Hence wander-transactions accessing a skeleton-database experience dynamic priorities. These are not based on
when transactions are started but on when actions are executed. Further, they are only based on the write
operations - and only on specific write operations being followed by corresponding read operations. A write
operation may thus give a transaction priority over some particular transactions but not over some other
transactions.
Such a use of the binary relation WRD(Any H)* as a priority mechanism also requires that it has to be
maintained as a partial order.
• When a global break is about to occur, the wander-transaction whose write is pan of the write-read

conflict about to close a cycle in the graph corresponding to the global WR-relation is selected for
abortion. Hence, among the involved wander-transactions (two or more) the one issuing the latest
corresponding write will normally be chosen for abortion.

This means that quickly making decisions with respect to items can even give high priority to a wander-
transaction with respect to it getting hold of other attractive offers.
Maintaining a global WR-order may thus even be used to influence the local WR-RW-WW-order - i.e. the
sequencing implied by WR-RW-WWy/Y(H)*. The final-choice serializability mentioned in the "Formal
Correctness Criteria" section will depend on the dynamic priorities of wander-transactions, and the resulting
concept may be termed priority serializability.
So our designated criteria for concurrency control induce direct reactions on rule breaks. This means that when
an access operation is requested which would lead to a global or local break an appropriate abortion is invoked
immediately. The reasons are that a later access operation cannot fix the break which is about to occur as we
employ conflict based concurrency control, and a later abort operation by a transaction itself is not normally to
be expected. This corresponds to a pessimistic concurrency control. For discussions of conflict based versus
view based concurrency control and pessimistic versus optimistic concurrency control, see Bernstein (1987).
Just as a later abort operation by a transaction itself is not normally to be expected, a later commit operation by
a transaction is not to be allowed totally uncontrolled. This important topic is the main theme of Nygard
(1994b). Actually, there we have specified a set of reliability rules which may be combined in an orthogonal
way. Note that there is a trade-off between reliability (with regard to guaranteeing recovery properties) and
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concurrency (with regard to allowing parallel activities). Our reliability rules will be linked to the priority rules
with which our designated criteria for concurrency control have been extended. Finally, the result will be n-level
recovery criteria in addition to our 2-level concurrency control criterion - requiring full local serializability but
allowing some global non-serializability.

Initial Evaluations

Let us again look at the example from the "Initial Illustrations" section. Here we get the following results:

H^ { (r,

) = { (r2,7j) }

Hence, WR-RW-WWx(Hi)*, WR-RW-WWy(HO* and WR-RW-WWZ(H,)* are all partial orders, but WRD(H,)*
is not a partial order. According to the criteria in the "Formal Correctness Criteria" section we must conclude:

H e c
1 WR

F
urther, the read of x by T2 contributing to the (Ti, T2)-entry in WRD(Hi) occurs before the read of y by T]
contributing to the (T2, T^-entry in the same binary relation. According to the rules in the "Extra Priority
Rules" section the intermediate result is Aborting T2, and this shall be enforced when Ri(y) occurs. After later
Rescheduling T?, the final schedule is:

T,:RI(x)W,(x)R,(y)R,(z)W,(y)
T2: R2(z)R2(y)R2(x)W2(z)

An underlying assumption is that when Ri(y) is requested and thus invokes an abortion of T2, Ri(y) itself is not
granted until the rollback of T2 is completed. Now we get the following results for this serial schedule:

WR-RW-WW (HZ) = [ (r.

Thus, WR-RW-WWX(H2)*, WR-RW-WWy(H2)*, WR-RW-WWZ(H2)* and WRD(H2)* are all partial orders.
According to the criteria in the "Formal Correctness Criteria" section we may conclude:

H e C
2 WR

The item-variants that the two wander-transactions will acquire as executed in this schedule are TI: x + y and
T2:z.
Observe that these are neither the same as in the isolated cases nor the same as in the Hrschedule. The Hr

schedule reflects a double check-after situation, see the "Basic Concurrency Control" section.
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MECHANISMS AND EXAMPLES
Concurrency Control Mechanisms

We have for our combined local and global criteria:

H e C iff
WR

• V(YisaSite)\WR-RW-WWr(MyH)* is a Partial Order]

• WR (Any )* is a Partial Order
D \ H i

Thus, it would be most natural and direct to employ a concurrency control mechanism based on graph-testing
both locally and globally. Recall that for any binary relation there is a corresponding directed graph. That the
relation is a partial order corresponds to the graph being acyclic. Further, for an acyclic graph there are one or
more corresponding topological sorts, while for a cyclic graph there is no corresponding topological sort. Let us

denote the graphs corresponding to the relations WRD) WR-RW-WWY and WR-RW-WWu1' PSG, CSGY and
CSG respectively. Note that CSG and CSGy are abbreviations for global and local conflict serialization graph
respectively, while PSG is an abbreviation for priority serialization graph. These graphs have been integrated in
the later illustrations. Each arc has labels of type a^ indicating a £c-conflict on item a. The dashed and non-
dashed arcs together constitute the full CSG. The non-dashed arcs alone constitute the PSG part. Each CSGY

part, Y is a Site, appears as the projection of the full CSG on all a^-arcs where a e Y.
Let us once more look at the example from the "Initial Illustrations" section. From Fig. 6 we have the following
topological sorts:

CSG: None PSG: None
CSG :TT

x 1 2
CSG : T T

v 2 1
CSC : T T

: 2 I

Thus we must conclude:

(H^CSR) and (tf.e

Our figure clearly illustrates that there is no way to obtain an "equivalent" serial schedule here.

2RW i VWRi
\

XWR

Figure 9. PSG(H,) vs. CSG(H,)

From Fig. 7 we have the following topological sorts:

CSG.TT PSG: 7T

CSG :TT
x 1 2

CSG :TT
v 1 2

CSG :TT
t I 2

11. The binary relation WR-RW-WWD(H) contains the set of ordered pairs of transactions
corresponding to the write-read, read-write and write-write conflicts in the schedule H related to items in
the whole global database D. See the "Formal Correctness Criteria" and "Extra Priority Rules" sections.
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Thus we may conclude:

and

Our figure clearly illustrates that there is no need to obtain another "equivalent" serial schedule here.

XWR yWR

Figure 10. PSG(H2) vs. CSG(H2)

These deductions are of course in accordance with the conclusions in the "Initial Evaluations" section.
We will also indicate how lock-setting could be used as a concurrency control mechanism.
First, we only consider serializability per item as the local criterion.
Before a transaction may check an item, it has to request a read-lock. And if the transaction decides not to
acquire a specific item, it may release the read-lock as soon as this fact becomes apparent. This may happen
immediately if the current offer is not in accordance with the access-predicate - or if it is worse than an already
known offer. Alternatively this may not happen until later when a better offer is found. This allows breaks with
the normal 2PhaseLock/LockUntilEnd-rules for all items globally.
But if the transaction decides to acquire a specific item, it has to upgrade the read-lock to a write-lock. This
leads to observation of the normal 2PhaseLock/LockUntilEnd-rules for each item locally. After the transaction
has acquired a specific item, it may release the write-lock. But this must happen at a global locked-point or at
global end.
Hence, the items which are both retrieved and updated need ZPhaseLocking/LockingUntilEnd among
themselves - and "upgrade-locking" within each. Further, the items which are only retrieved have to observe a
"chain-locking" technique - i.e. the currently best offer has to be kept locked until any better offer is found. This
is a double-restricted version of long write-locks and short read-locks, see Gray (1976). It is much too restrictive
compared to the graph-testing mechanism.
This mechanism will naturally disallow the Hrschedule in the "Initial Illustrations" section and allow the H2-
schedule in the "Initial Evaluations" section.
Second, we even consider serializability per site as the local criterion.
Again, the write-locks have to be held until a global locked-point or until global end. Further, the read-locks not
upgraded to write-locks have to observe the "chain-locking" technique - and have to be held until a local locked-
point or until local end. This is once more much too restrictive.
The global locked-point occurs when all the locks in the whole system are set, while a local locked-point occurs
when all the locks for that site are set. The global end occurs when all the accesses in the whole system are
terminated, while a local end occurs when all the accesses at that site are terminated.

Concurrency Control Examples

The Hrschedule in the "Initial Illustrations" section was an indication of what is not allowed by our
concurrency control criteria, while the schedules in this section will be indications of what is allowed by our
concurrency control criteria. Hence, the "Initial Illustrations" section focused on the limitations inherent in our
specifications, while this section will focus on the freedom inherent in our specifications. Again we consider
having only one item per site.
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Let us imagine a skeleton-database containing the following two item-variants:
x: y:

Quality = 95%

Price =10$

No-Left = 3

Who-Pur. = -

Quality = 90%

Price = 5 $

No-Left = 3

Who-Pur. = -

We look at the following three wander-transactions:

TV Acquire One: Lowest-Price & Quality > 85 %
T2: Acquire One: Price < 15 $ & Highest-Quality
T3: Acquire One: Price <, 15 $ & Highest-Quality
+ Acquire One: Lowest-Price & Quality > 85 %

A possible schedule corresponding to wander-transactions TI and T2 is:

T,: R,(x) R,(y) W,(y)
T2: R2(x) R2(y) W2(x)

This schedule reflects a double check-before situation, see the "Basic Concurrency Control" section. From
Fig. 8 we have the following topological sorts:

CSG: None
CSG :TT

x 1 2

PSG: TT2 I 77

CSG : T T
y 2 1

(H^CSR) but (tf

Thus we may conclude:

Our figure illustrates that there are two ways to obtain a globally equivalent serial schedule here - i.e. either
through y-access reversal or through x-access reversal. Schedule H3 may also be allowed by the lock-setting
mechanism.

VRW XRW

Figure 11. PSG(H3) vs. CSG(H3)

A possible schedule corresponding to wander-transactions TI and T3 is:

T,: R,(x) R,(y)W,(y)
T3: R3(x)R3(y)W3(x)W3(y)
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This schedule reflects one inconsistent retrieval situation, see the "Basic Concurrency Control" section. From
Fig. 9 we have the following topological sorts:

CSG: None

CSG :TT
i 1 3

: r r
CSG : T T

y 3 1

Thus we may conclude:

(H^CSR) but
Our figure illustrates that there is one way to obtain a globally equivalent serial schedule here - i.e. through x-
access reversal. For schedule H» even to be allowed by the lock-setting mechanism the specification of
transaction TI has to be changed into for instance:

T,: Acquire One: Price < 7.5$ & Highest-Quality

VRW.WW

Figure 12. PSG(H,) vs. CSGCH,)

A possible schedule corresponding to wander-transactions Tb T2 and T3 is:

T,:R,(x) Ri(y)W,(y)
T2: R2(x)R2(y) W2(x)
T3: R3(x)R3(y)W3(x) W3(y)

This schedule reflects two inconsistent retrieval situations and a double check-before situation, see the
"Basic Concurrency Control" section. From Fig. 10 we have the following topological sorts:

CSG: None

CSG :TTT
x 1 3 2

PSG:TTT ITTT

CSG :TTT
y 2 3 1

Thus we may conclude:

(HS e CSR) but
Our figure illustrates that there are two ways to obtain a globally equivalent serial schedule here - i.e. through y-
access reversal for T2 versus T3 and x-access reversal for TI versus T3, then through either y-access reversal for
T2 versus T! or x-access reversal for T! versus T2. But schedule H5 will not be allowed by the lock-setting
mechanism - irrespectively of any transaction specification changes.
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/ VRW.WWiVWR |XRW

VRW ;

VRW

*RW

WRJXRW,WW /

Figure 13. PSG(H5) vs. CSG(H5)

Once more, if x and y had belonged to a unique site instead of to two different sites, the situations reflected in
Hj, HI and H5 could not have been allowed in general. As indicated in the "Basic Concurrency Control" section,
this is the local generalization of not allowing the situation reflected in H/ from the same section.
Note that if no write could ever precede a read in any transaction, the global part of the membership
requirements for class CWR would be ensured for any schedule without any synchronization. Hence the binary
relation WRD(Any H)* would be a partial order per definition. This would for instance be the effects with our

criterion for a two-step model, see Papadimitriou (1986). Both the type of access-predicate' ̂  of a wander-

transaction and the type of item-distribution ̂  in a skeleton-database may lead to a write-precedes-read
situation. Observe that reads-before-write refers to a single item-variant, while write-precedes-read refers to
different item-variants.

CONCLUSION

To sum up, knowledge about some missing integrity constraints in a distributed database opens the way for
global non-serializability - and knowledge about some existing overall goals of distributed transactions leads the
way to the add-on to local serializability.
Wander-transactions accessing a skeleton-database correspond to a reads-before-write case. The specified
criteria are

C =C nC
WK G WR L WR-RW-WW

with the last part stemming from the need to preserve integrity constraints in the local databases - and the first
part stemming from the need to observe overall goals of the global transactions.
In Nygard (1993a) we have related and compared such total criteria (i.e. the combination of a global criterion
per system and the local criterion per item/site) to other known and proposed criteria. This includes the material
in Ibaraki (1987), Garcia-Molina (1988), Korth (1988), Gray (1976), Schlageter (1978), Garcia-Molina (1982)
and Du (1989). Our concepts are entirely new.
In Nygard (1994b) we have further elaborated on recovery criteria and mechanisms for wander-transactions
accessing a skeleton-database. The corresponding n-level model for partial recoverability in distributed
databases is combined with the 2-level model for non-serializability introduced in Nygard (1993a) and applied
in this paper. See also Nygard (1993b) and Nygard (1994a).
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