
AJIS Vol. 4 No. 2 May 1997

THE NEED FOR AN APPLIED COMPUTER ETHICS HANDBOOK

Daniel Salber
CLIPS-IMAG, University of Grenoble

B.204/BP53
38041 Grenoble Cedex 9

France
Email: daniel.salber@imag.fr

ABSTRACT

Information technology is developing at an astounding pace. Computers are now common and their use is switching
from number-crunching tools to "information and communication appliances". The growing success of (he Internet is
just an example of how information and communication facilities are now available to the general public. But today's
Internet is just the precursor of more innovative applications. New advances in computer science disciplines such as
communications networks and mobile devices are suggesting radically new uses of information technology.
These new uses may raise new ethical issues. We give a few examples and show that these issues are not explicitly
dealt with in existing ethical frameworks such as Mason's PAPA or Huffs ImpactCS. We also discuss the usability of
these frameworks by software designers and suggest that information technology practitioners need more explicit
tools such as handbooks to help them understand and deal with ethical issues.

INTRODUCTION

This paper presents a computer scientist's perspective on ethical issues that may arise in future computing
environments. We believe that ethical issues should be given thought very early, even before building a
prototype or developing a new computing paradigm. Following software engineering discipline, high-level
requirements such as ethical concerns raised by features of the system should be considered in the very first
phases of systems development. If ethics are taken into account as an afterthought, the new system or paradigm
may break a number of ethical principles and may be very difficult and costly to modify. Ethical concerns should
help shape tomorrow's computing environments.
We first describe a few examples of systems where ethical concerns had to be taken into account after the fact.
We then present some examples of current active research areas which question existing ethical frameworks. We
then argue that IT practitioners need better tools to help them understand what and where ethical issues are.

ETHICAL ISSUES IN RECENT AND FUTURE IT DEVELOPMENTS

Information Technology (IT) is developing fast. The World-Wide Web concept, for example, was first
implemented only three years ago and is now widely popular among Internet users. The Java language now
extends the World-Wide Web concept from an hypertext document base to a collection of documents and
executable programs. Java has brought answers to old computing problems for which solutions where not readily
available less than a year ago. Examples include cross-platform portability of executable code or secure
execution of remote code. These capabilities bring to front ethical issues related to transaction security,
authentication and privacy and also to software and networks reliability.
In a first paragraph, we present examples of commercial systems where privacy has obviously not be taken into
account in the design phase. These systems had then to be redesigned. In the second paragraph, we discuss some
issues related to software reliability. In the third paragraph, we introduce two examples of recent technological
advances which raise serious ethical concerns. Let us state right now that we don't intend to be exhaustive but
we focus on areas that we have rarely seen mentioned in the computer ethics literature.

Two Privacy-Related Examples

Many new privacy-related issues surround the recent developments of the Internet and computer-mediated
communication. We first give two examples of systems which have been designed without caring for ethical
issues and which had to be modified due to users' concerns. In the first example, the designers recognized they
didn't think about the issues. The second case raises questions about the designers' intent.

Magic Cap Business Cards

Magic Cap is an operating system running on mobile personal digital assistants. Magic Cap provides facilities
for communication between users through phone, e-mail or fax. With this system, each user has a personal

141



AJIS Vol.4 No. 2 May 1997

electronic business card in an address book which is used for two purposes. First, information stored in the
business card may be used by the system, for example for phone call or email forwarding. Second, the electronic
business card is sent to other users, in the same way one gives a business card to a colleague who asks for
contact information. In the first version of Magic Cap, giving a business card to someone also meant giving away
any personal information that was stored on it. Thus, users either were reluctant to give away their business card
which contained fields such as "private personal phone number" or wouldn't fill out personal information and
thus couldn't use some advanced features of the system. Due to users' requests, these two uses of the electronic
business card had to be separated. In the newer version of the system, each field of information has an "unlisted"
checkbox which allows the user to prevent private information to appear on the business card as related by
Jerney (1995).
In this case, the mistake is blatant and was even recognized by the designers. Personal information should be
dealt with carefully and the electronic business card function should be handled differently from the personal
information function. Designers should be better warned about the risks of a system dealing with user's personal
information as is the case with most personal digital assistants today. We'll show in the next paragraph that
mobile systems also bring up new privacy issues.
This example shows that customer concern over privacy may lead software designers to redesign software, and,
of course, at a cost. The next example brings up a different issue: if the system includes a mechanism that deals
with some user personal information, the user should be made aware of this fact.

Netscape Cookies

Netscape "cookies" are a software mechanism through which World-Wide Web servers can store information on
the computer of the visiting client browser. This information may be any code or string sent by the server as a
cookie. Although the cookie mechanism is intended for harmless uses such as a server remembering a client's
last visit, it may be diverted and thus raises ethical concerns. The most worrying potential use of this capability is
the possibility for a server to "know" if another given page or server has been visited by the client. There is one
condition though for this to be possible: the previously visited server or page and the server which asks for the
information should be in the same "URL range" (URL stands for Uniform Resource Locator, i.e., the unique
address of a web page). But an URL range may be as large as "all sites ending with acme.com" as defined in
Netscape (1996).
This possibility raises a privacy risk if used improperly: a server may get information about which sites a user
has previously visited. Until recently, cookies transactions were not even noticeable to the user. Everything
happened "behind the user's back", giving him absolutely no control over the information that was stored in the
cookies file. This design choice, when discovered, was questioned by the Internet users community: cookies are
a mechanism which may benefit servers, for example for tracking customer fidelity or for presenting different
advertisements every time a user connects to a server. Why did the designers hide this feature from the user,
especially if it may involve privacy risks? This speculation has remained unresolved, but in the new Netscape
Navigator version 3, Netscape added the option for the user to be notified of new cookies and to allow or not
cookies to be stored on his/her machine. Although this option is disabled by default thus leaving the novice user
ignorant of cookies, the informed user has a way to track the storage of cookies and can even forbid them. We'll
show in section 3 that a basic human-computer interaction principle could have helped analyse this problem.
It is interesting to note that the cookie blocking capabilities of Netscape version 3 were not considered
convincing by Internet users. Systematic confirmation/denial of cookies is required from the user and is largely
intrusive (some web documents send several cookies, requiring user confirmation/denial for every cookie). This
poor design has triggered reactions: on the Apple Macintosh platform alone, six different freeware or shareware
utilities are available to clean up cookies after every Netscape session.
These examples show that computer-mediated communication software is prone to involve privacy risks and that
software designers should be better informed of the issues. But the possibilities brought by computer-mediated
communication are rapidly changing the whole software industry. A worrying aspect of this change is the lower
reliability of some software distributed over the Internet.

Software reliability
Beta Software Is Unreliable Software

A recent trend on the Internet is the wide distribution of unfinished software also known as "public beta". In
software engineering, the word "beta" to qualify the development stage of a software product has a precise
meaning. Beta software is considered feature-complete by the development team and has no known serious bugs.

142



AJIS Vol.4 No. 2 May 1997

According to Marciniak (1994), "the purpose [of beta-testing] is to find problems that show up in actual
operation before many copies of the system are released". When a product is in beta stage, it is usually
distributed to a group of technically-aware users ("beta-testers") with the aim of testing the product on a wide
range of software and hardware combinations to detect possible incompatibilities that the quality assurance team
couldn't have found under normal conditions. Beta-testers are asked to "stress-test" the software and report
technical details, should they find a remaining bug.
With the advent of "public betas" freely available on the Internet, the situation has changed radically. Any user,
whatever her/his technical proficiency, can download and use a beta version. Most users aren't even aware that
they use beta software, because beta software is not often clearly labeled so, except for the version number
which usually contains a "b". Moreover, most "public betas" software is at a development stage that would
rather be called "alpha" (feature-complete but known bugs still remaining) or even "development release" (not
feature-complete and still in development).
The reasons for this fury over beta versions are outlined in a recent issue of an electronic newsletter Duncan
(1996). In an environment where communication is fast and ubiquitous, software companies are making every
effort to get attention and distributing new beta versions of their software every few weeks is a way of making
news. However, this behaviour has some consequences for users and may be damaging to the software industry
in the long term. Every user is now a potential beta-tester, even if s/he lacks the necessary technical background,
and most of all, the willingness to be one. Actually, development or alpha versions of software may even contain
dangerous bugs. The user is thus left at risk on his own, since most software products are distributed with a
license agreement by which the software company declines responsibility in case of software misbehaviour.
Users are now commonly using software that is known to be defective, since they won't always upgrade to the
final version if they have a public beta. In the long term, this strategy may be disastrous: confidence in software
is already lower and lower and "crashing software" is a common experience among users. Giving away buggy
software to inexperienced users may be rewarding for a company's publicity but carries the risk of diminishing
seriously the confidence users have in software and the software industry in general. New approaches in building
software such as the component software approach we discuss next may make this problem even worse.

Reliability of Component Software

Maner explains that a unique characteristic of information technology lies in its complexity Maner (1995).
Because of the large number of interacting components, even in a basic system, hardware and software are prone
to errors and bugs which are difficult to isolate and correct. A current trend in software engineering aims at
building a software product from smaller software parts (or components) put together. This approach, named
"component software", has some definitive advantages from a software engineering point of view. Small pieces
can be designed to be highly reusable across a variety of software projects, thus reducing development time and
cost. Java or OpenDoc are examples of this approach.
However, one may wonder at the implications of this approach with regard to software reliability. Increasing the
number of components increases the complexity of software and thus the un-foreseeable or unwanted
interactions between components. Although some approaches, for example the use of mathematical tools such as
formal methods, alleviate these risks, these methods are costly and used only for critical systems such as flight
decks or power plant control systems.
We don't deny the clear advantages of the component software approach: it allows reusability of ready to use
software components and facilitates standardization of software. However, we believe it is misleading to
advocate this approach for cost reasons. If component software actually cuts software coding costs, it requires a
much more thorough testing approach and thus costs a lot more in testing. We should emphasize that software
testing and stronger software engineering practices are the only key to software reliability.

Future Computing Environments and Ethical Concerns

When looking at trends of computer science technology, one may wonder at the ethical implications of some
recent developments. In this paragraph, we outline a few of these recent advances and the ethical issues they
raise.

Who is Responsible for "Intelligent Agents"?

"Intelligent Agents" are a new computing paradigm. It aims at changing the way the user works from "doing" to
"letting do". Most current systems follow the traditional "direct manipulation" paradigm of graphical user

143



AJIS Vol.4 No. 2 May 1997

interfaces: users point at objects (such as text paragraphs or shapes of a drawing) and act on them. Similarly,
when using the World-Wide Web, users point and click on links they want to visit and have to elaborate
information retrieval plans when looking for specific information.
With agents, users are able to delegate tasks to software agents that will then act on behalf of the user. For
example, the user may delegate the task "make plane and hotel reservations for a two-day trip to London on
Monday next week". Based on the user's preferences or habits, the agent would then roam the network, visiting
the airline company's and the hotel's servers and making appropriate reservations, then getting back to the user to
inform her/him of the results. General Magic's Telescript system described in White (1995) already allows for
the use of such agents on a dedicated network.
The agents paradigm raises issues related to privacy and responsibility. A software agent wandering on a
network carries a great deal of information on the user whose behalf it is acting on: personal information such as
name or credit card number for handling electronic transactions, but also information required to carry the
agent's task, for example the user's daily schedule or airline and hotel preferences. Attention should be given to
the privacy of this information. Security mechanisms should prevent an hostile host from "hi-jacking" a software
agent or from gathering data from visiting agents. Another issue is responsibility: if an agent performs unwanted
transactions whose responsibility is involved? The difference here with the traditional software paradigm of
"doing" is that the agent acts following instructions given by the user. One should expect users to make errors
when giving instructions to agents and also software agents to be sometimes faulty. Should the user or the
software company or the visited host be held responsible in case the agent misbehaves?
Another area of concern is the use of mobile systems. New risks to privacy occur due to the very nature of
mobile devices.

Ubiquitous Computing and Privacy of Location

With mobile systems, such as portable phones or personal digital assistants (PDA), users are now free to use
information technology while on the road and in different places. The "ubiquitous computing" paradigm
proposes the implantation of fixed infrastructures in buildings that allow mobile systems to communicate,
whatever their location inside the building or whatever building they are in.
This paradigm raises serious issues with regard to privacy. Whenever a mobile device establishes a
communication through the fixed infrastructure, the location of the entry point nearest to the user is known to the
system. Thus, it is possible for the system to know the user's location with great accuracy: a typical entry point
range is a few meters or hundred meters. A similar problem already occurs with cellular phones: the cellular
phone infrastructure divides geographical space in small cells. It is then possible to know which cell a user
carrying an active cell phone is in. Not only can users be located, but more worryingly, they are often not aware
of this possibility. Once again, system designers should inform the users of ethical issues raised by the use of
their systems.
These examples cover a broad range of issues but are symptomatic of a common problem. Software designers
and computer science researchers aren't aware of ethical issues that may arise in the systems they develop.
Practical tools are needed to help designers identify and assess potential ethical issues.

TOWARDS AN IT PRACTITIONER'S COMPUTER ETHICS HANDBOOK

A possible first step towards a better understanding of ethical issues is a categorization of the areas of ethical
concern. Ethical frameworks such as PAPA in Mason (1986) or ImpactCS in Huff (1995) are certainly adequate
to classify ethical issues into categories. But their intent is not practical use in software design. ImpactCS is
intended for teaching ethics and therefore, as the authors recognize, requires a good knowledge of the ethics
literature to identify issues and refine the framework's categories. PAPA suffers some similar limitations: without
previous exposure to computer ethics, these frameworks are of little value to the practitioner. In the case of new
technologies, even previous experience with computer ethics may not be sufficient. For example, the problem of
privacy of location raised by the use of mobile systems is not commonly dealt with in the computer ethics
literature.
Computer ethics codes, such as the ones proposed by the ACM or IFIP certainly are valuable to the practitioner.
But here again, their scope is too broad for them to be practically usable in software design. They present
general principles but are of little help when confronted to a software design decision.
Another approach is to establish a bridge with human-computer interaction. Human-computer interaction deals
with the design of user interfaces. The user interface of a computer system mediates the interaction between the
user and the system. In the terms of Norman, the user interface presents to the user the image of the system from

144



AJIS Vol. 4 No. 2 May 1997

which the user builds a cognitive model of the system behaviour and functions Norman (1986). User interface
design relies heavily on collections of rules often devised by ergonomics specialists, which practitioners apply
when designing a system. We first introduce a simple basic rule of human-computer interaction and show how
computer ethics could provide input for its use. We then show how it applies to an example of the previous
section.

The Observability Rule in Human-Computer Interaction

The rule of observability states that the user interface of a system should inform the user about the current
internal state of the system that is relevant to the user's current task (Abowd (1992)). This rule is sometimes
called "feedback principle" because it implies that any action from the user must trigger a response from the user
interface (a user action modifies the internal state of the system). The difficult part in applying this rule is
deciding what part of the internal state of the system is actually relevant to the user's task. Computer ethics could
help decide what information should be considered relevant and thus be presented to the user.
In the example of Netscape cookies, observability applies easily. In this case, the system to be considered is the
user's browser. When handed a cookie by a server, the client browser's internal state is modified: an information
is received and then stored in a file. When a server asks for a previously stored cookie, the internal state is again
modified since this information is fetched in the file by the browser and then transmitted to the server. Is this
information relevant to the user's task? When Netscape first didn't give any possibility to the user to know about
cookie transmission, they considered that it was not relevant. In the current version of Netscape's browser,
information about cookies is presented to the user only if a server hands in a cookie. If the server fetches a
previously stored cookie, the user is not informed about it. There is here a clear discrepancy between the
presentation of both operations to the user. If privacy concerns were taken into account consistently, both
operations would be considered relevant to the user's task and the user interface of the browser would notify the
user in both cases.
To be of value to practitioners, computer ethics could provide them with practical rules to be taken into account
when designing systems. These rules could build on the observability rule.

Towards A Practitioner's Computer Ethics Handbook

To take into account computer ethics in system design, designers need clearly outlined issues expressed in terms
of their practical concerns instead of broad categories of ethical concerns.
A first step could be to recommend the use of basic human-computer interaction principles. Human-computer
interaction prescribes a "user-centered" approach to design. It emphasizes that computers are designed for users
to accomplish tasks in a human way, and not for users to adapt to the peculiarities of the software they use. The
observability rule should also be presented. It doesn't prevent a system to break computer ethics principles such
as privacy, but it requires the user to be informed about the capabilities of the system. It forbids a system to
perform actions "behind the user's back". This applies to Netscape cookies but also to the problem of privacy of
location we have mentioned above. If a mobile system is able to transmit the location of the user, at least the user
should be made aware of this.
Practical recommendations would be helpful to designers. For example, they should be warned about the
potential issues of systems dealing with the user's personal information such as software agents or mobile
systems. Not only should the system inform the user when personal information is about to be disclosed, but the
system should provide a way of keeping personal information really personal if the user wishes so. Systems
permitting remote execution such as software agents should also be mentioned as raising issues related to privacy
of personal information and responsibility.
Finally, emphasis should be put on software quality and the risks of unreliable software. Software engineering
could certainly be helpful here, but better software quality really requires a profound change in current software
development practices.

CONCLUSION

We have presented a few examples of recent systems and technologies that raise ethical issues. We have also
shown how practitioners need to be better educated about ethical concerns. There is definitely a need for
practical recommendations that software designers could apply without possessing a background in computer
ethics. Human-computer interaction rules could provide a first basis for taking computer ethics principles into
account in software design and disseminating them efficiently to designers.

145



AJIS Vol.4 No. 2 May 1997

REFERENCES

Abowd, G., Coutaz, J. & Nigay, L. (1992) "Structuring the Space of Interactive Systems Properties",
EHCI'92, IFIP TC2/WG2.7 Working Conference on Engineering for Human-Computer Interaction,
Ellivuori, Finland, pp. 113-130.

Duncan, G. (1996) "Waiting with Beta'd Breath", TidBITS, n° 328, Vol 1. <http://www.tidbits.com/tb-
issues/TidBITS-328.html>.

Huff, C. & Martin, C.D. (1995) "Computing Consequences", Communications of the ACM, n° 12, Vol 38,
pp. 75-84.

Jerney, J. (1995) "Magic Cap: Straight from Andy Hertzfeld", Mobilis, n° 8, Vol 1, pp. 1-9.
<http://www.volksware.com/mobilis/august.95/hertzl.htm>.

Maner, W. (1995) "Unique Ethical Problems in Information Technology", Proceedings of
ETHICOMP95, An International Conference on the Ethical Issues of Using Information Technology,
Leicester, UK.

Marciniak, J.J. (1994) "Categories of Testing", Encyclopedia of Software Engineering. New York: John Wiley,
pp. 90-93.

Mason, R.O. (1986) "Four Ethical Issues of the Information Age", MIS Quarterly, n° 1, Vol 10, pp. 486-498.
Netscape (1996) "Persistent Client State HTTP Cookies", Netscape Communications Corporation.

<http://www.netscape.com/newsref/std/cookie_spec.html>.
Norman, D. & Draper, S. (1986) "User Centered System Design: New perspectives on human- computer

interaction", Hillsdale, NJ: Lawrence Erlbaum Associates.
White, J.E. (1995) "Mobile Agents", General Magic Corporation.

<http://www.genmagic.com/Telescript/Whitepapers/wp4/whitepaper-4.html>.

146




