AJIS Vol. 6 No. 1 September 1998

REENGINEERING A SOFTWARE REVIEW PROCESS
WITH THE FUNCTION-BASED PROCESS ANALYSIS (FPA) METHOD

Claude Stricker”
Jintae Lee™ "

Department of Decision Sciences
College of Business Administration
University of Hawai'i

ABSTRACT

With the current popularity and success of the World Wide Web, the question, How can the WWW technology improve
existing processes, is in the forefront of many managers’ mind. This paper examines this question in the context of the
software review process and proposes a method that helps us systematically answer it. The method, Function-based

Process Analysis (FPAZG), represents a process as a function lattice, in which the functions that the process is to serve
together with the subfunctions that implement these functions form a lattice. In FPA a technology like the WWW is also
represented as a function lattice. FPA then exploits the uniform representation of both a process and a technology to help
us systematically identify and examine the aspects of the process that can benefit most from the given technology. The
paper illustrates these claims by applying the method and generating WWW-based alternatives to a software review
process currently employed at a major company. More valuable than the specific alternatives generated, however, is the
systematic way that the method provides for examining the relation between a process and a technology as well as the
framework in which the relevant issues can be placed.

INTRODUCTION

With the current popularity and success of the Web technology, any manager responsible for running a given process
has probably wondered about how this technology can improve the process. Some managers have explored this
question and reengineered their processes. For example, Seafood Credit implemented a Web-based system that
maintains financial information on more than 50,000 companies across North America and allows its analysts and
customers to instantly and remotely access all the credit information (cf. Baum (1997)). Patients by Kaiser can
request a non-urgent appointment for a procedure like a cholesterol check, ask confidential questions of a nurse or
pharmacist, and search a health-care encyclopedia for anything, directly by connecting to Kaiser Permanente Online
web site (cf. Kalin (1998)). This reengineering phenomenon is nothing new nor peculiar to the Web technology. It
happens with the emergence of any new powerful technology like Lotus Notes, CASE, or TQM. With new
technologies to come in the future, researchers as well as managers will continue to ask the question of how these
technologies can help improve their processes.

Few methods exist, however, that help us systematically answer this question, and one has to rely on inspiration or
serendipity for their answers. To be sure, exploring how a given technology can change and improve the existing
process will always require good dosage of insights. However, we claim that it is possible to have a systematic
method that, given descriptions of an existing process and of a technology, helps identify the list of areas where the
technology can be used to improve the process. We claim further that such a method can help generate insights
about how they can be improved, provide a checklist for completeness, and support reuse of the analysis process.

* Email: claude.stricker@epfl.ch

** Email: jl@hawaii.edu

26 We are aware that sometimes FPA stands for Function Points Analysis (International Function Point Users Group
'94). However, the acronym FPA will be still used for the method proposed here in order to preserve continuity

with our earlier work.

117

AJIS Vol. 6 No. 1 September 1998

This paper describes such a method called Function-based Process Analysis (FPA) and illustrates how it has helped
us think about using the Web technology to improve a software review process. FPA represents a process as a
function lattice, an extended function decomposition tree with multiple inheritance. FPA also represents a
technology like the WWW as a function lattice. FPA then exploits the uniform representation of both a process and
a technology to enable us to systematically identify and examine the aspects of the process that can benefit most or is
easier to implement with the given technology. The paper illustrates these features by applying the method to a
software review process currently employed at a major company and examine which aspects of the process can be
improved by the Web technology (in particular, the Web Document Annotator technology).

The rest of the paper is organised as follows. The FPA method is described in the next section. Section 3 then
briefly describes the software review process that has been examined. Section 4 illustrates the process of
constructing the function lattice representation with the software review process as an example. Section 5 describes
the WWW document annotator technology and its function lattice. Section 6 describes how the FPA method has
been used on the two lattices, of the software review process and of the WWW document annotator technology, to
explore the different ways in which the software review process can be improved with the technology. Section 7
concludes the paper with a few caveats in the use of this methodology as well as the current status and future
directions of the FPA research.

FUNCTION-BASED PROCESS ANALYSIS
Definition

Function-based Process Analysis extends the function decomposition method?? for the purpose of process modeling
and redesign. In FPA, no distinction is made among processes, organisations, or technologies. They are all viewed
and represented uniformly as a lattice of functions.

In the systems analysis context, Gibson & Hughes (1994) define a function as an “ongoing activity a business
performs to further its mission” (e.g. Manufacturing). Note that “function” is used here not in the mathematical term
(input/output) sense, but in the sense of objective or feature. A function can be decomposed into a set of subfunctions
(e.g. Product Research and Development, Product Production, and Product Distribution), i.e. the functions that help
achieve the original function (i.e. Manufacturing in our example). Each of these subfunctions can then be
decomposed into its own subfunctions. A tree that results from this repeated decomposition is called a function
decomposition tree (cf. Table 1).

Manufacture Product
Maintain Operation
Maintain Parts
Production Operations
Research and Development

Distribute Produét.

Market Product
Market Analysis
Advertising
Research and Development

Table 1. Example of function decomposition tree

A function decomposition tree provides a good conceptual overview of the organisational activities in support of the
overall objectives. Creating a function decomposition tree also forces one to be explicit about how a function is
currently implemented (descriptive) or to be implemented (prescriptive).

27Description of function decomposition method are given in many software engineering methods, e.g. Martin,
(1990)

118

Laman S R g~

TR T e e

AJIS Vol. 6 No. 1 September 1998

FPA extends the function decomposition method in several ways. The extensions include: generalized notion of
function, function sharing via multiple parents, introduction of AND and OR constructs that resolve expressive
semantic ambiguities, and additional relations such as specialisation and conflicts that complement the traditional
decomposition relation. This paper will describe only the first two extensions, which were used extensively in the
project being reported.

In FPA, “function” is generalized to include not only activities but also any feature whether it is a desirable feature or
an existing feature. In particular, not only Market product or Advertising is a function, but also is Make profit
(desired feature) as well as Electronic mail (existing feature). In other words, FPA views organisations, processes,
technologies indiscriminately as collections of functions because at some level of abstraction they all exist to serve
functions even though some of them may be intangible (e.g. Promote the feeling of loyality among the employees)
or outdated (e.g. Circulate physical copies of the monthly reports.). A consequence of this uniform representation is
that one can create a function lattice which consists of goals, which are implemented by activities, which in turn are
implemented by technological features without worrying about where their boundaries are. Also it means that this
function fattice could be generated by synthesizing the lattices that represent objectives, processes, and technologies.
For example, the activity Advertise can be decomposed into Internet Ad, Magazine Ad, TV Ad that implement this
activity. Internet Ad can in turn be decomposed of the technological features that make it up. Table 2 shows an
example of a function tree with extended notion of function.

Market Product
Market Analysis

Advertising
Internet Ad

WWW Server
WWW Client
WWW Protocol
Electronic Mail
Internet
Magazine Ad
TV Ad

Research & Development

Table 2. An Example of function tree with extended notion of function

FPA also allows multiple functions to be implemented by a given function. That is, the same function can be a
subfunction of more than one function. This multiple “parents” allows us to express the fact that one function can
help achieve multiple objectives. For example, if Market Analysis helps not only Market Product but also Distribute
Product, then Market Analysis will be a subfunction of both. This is called “function sharing” in design literature.
This function sharing is represented in the lattice by a function linked to multiple parent functions. (cf. Figure 1).
The lattice representation makes clear any occurrence of function sharing by having multiple links coming out of the
node being shared, whereas in the outline representation (cf. Tables 1 and 2) function sharing is more difficult to
detect because a node being shared is multiply copied where appropnate in the outline.

119

AJIS Vol. 6 No. 1 September 1998

Market Product Distribute Product
1 Advertizing ' Research and "’hjdajfkéi‘rAné'l‘zéls I
Development . ‘ y

Figure 5. Function sharing

With this extension, FPA helps us:

o model a process as a function lattice

¢ model a technology as a function lattice

¢ identify the areas of the process that can be redesigned and improved with the technology.

Modeling a Process

FPA models a process by identifying the functions of the process, the subfunctions that implement these functions,
and the subfunctions that implement these subfunctions, and so on recursively. This generates a function tree or
lattice, whose root consists of high level functions that the process is designed to serve (e.g. producing good quality
software for software review process) and whose leaves consists of the most specific subprocesses such as the
individual speech of a meeting’s participant.

A function lattice can be built from top-down and from bottom-up. The top-down construction proceeds by
identifying the high level objectives (e.g. detect defects) that the process is to serve and examining how they are
implemented with more and more concrete activities. The bottom-up construction proceeds by examining the
observable, individual activities (e.g. moderator asks opinion of author) and articulating the higher level functions
that they serve. The concurrent use of the top-down and the bottom-up approaches help us not only build a model of
the process but also help us to identify the areas in the current process that can be improved, as discussed further in
Lee (1993).

Modeling Technology

A function lattice can also be used to represent a technology because a technology such as WWW can be viewed as a
collection of functions, implemented in terms of subfunctions, which in turn are implemented as subfunctions, and so
on. As in the case of process modeling, a technology can be modelled top-down by identifying the high level
functions that the technology provides (e.g. access documents anywhere anytime) or bottom-up by identifying the
purpose of an existing feature (e.g. http protocol).

Identifying the areas of the process for improvements

In order to identify the areas that can be redesigned to benefit from the given technology, the two function lattices
representing the process and the technology can be matched systematically. That is, for each function in one lattice,
one asks whether one can find a similar function in the other lattice. If so, then one can examine whether the

120

AJIS Vol. 6 No. 1 September 1998

subfunctions that implement this similar function can be used to implement the function in the first lattice. If the
alternative implementation offers any advantage, then one marks the current subprocess as a potential area for
redesign. Section 6 illustrates this step with examples. Although a typical procedure is to start with the subprocesses
(i.e. subfunctions) that are known to be problematic or inefficient (e.g. too much searching time of relevant
documents), this step can be in principle performed for each of the functions in the lattices.

SOFTWARE FORMAL REVIEW PROCESS

In the organisation we have studied, the quality assurance standard is implemented through a software formal review
process adapted from Fagan (1976) and Freedman & Weinberg (1990). The goal of the review process is to prevent
models, concepts, design and codes from major problems by detecting and correcting defects before the product
tests. It consists of a methodical inspection by reviewers of different types of artifacts (code sources, specifications,
data models, etc.). The reviewers are usually experts in the domain of the artifact and are selected outside the project
team.

In the first stage, the reviewers try to detect potential defects by reviewing privately the artifact usually with a
checklist. Then they review the artifacts again, but this time in a group meeting. The review process organizer plays
the role of a moderator, guiding the discussion between the reviewers. The goal of the meeting is to discuss the
potential defects, agree on their seriousness, and produce an official report stating which defects should be corrected.
The process terminates with the corrections produced by the author and approved by one of the reviewers. Other
important goals of this formal review process are to develop a better understanding of the work products and to
improve the skill of all the review participants.

The main steps of the software review process are shown in Figure 2. The first step is preparing the resources for the
next steps. The main input resources to the reviewer’s preparation, besides the reviewers, are the artifacts to be
reviewed and the list of checkpoints. An essential input resource to the group meeting is the potential defects,
detected in the preceding step by the reviewers. These potential defects are discussed during the review meeting.

Review
1
{ |]
. . Review
Organization Rrev':r';fi' S group
preparation meeting

artifact
findings
check points

reviewers

Figure 6. Main functions or chronological steps of the formal review process and their input/ouptut.

SOFTWARE REVIEW PROCESS AS A FUNCTION LATTICE

Before we began building the function lattice, information about the goals, steps and activities of the process were
gathered by looking at the document standards, by interviewing the process participants, by collecting
questionnaires, and by observing a meeting recorded on video tape. The lattice has been built by using concurrently
the following top-down and bottom-up strategies.

121

AJIS Vol. 6 No. 1 September 1998

Top-down strategy

The most general goals of the process are placed at the top levels of the lattice. In Figure 3, the most general goal
Improve quality of software products is decomposed into Prevent models, concepts, design and codes from major
problem, Develop better understanding of the work products and Improve developers’ skill. These goals have been
directly extracted from the gathered information or from discussion with the people. Each of them is then
decomposed down further to the level of activities implementing them. In some cases, a subgoal or a subfunction
serves more than one function. For instance Review artifacts formally shown in the diagram of Figure 3 serves the
three goals Detect defects before testing, Develop better understanding of the work products and Improve
developers’ skill. As discussed above, the lattice allows the representation of the function sharing as multiple
parents. Curved lines indicate that the subfunction is an alternative way to implement its parent. Dots indicate that
the decomposition includes more subfunctions, but they are not represented in the diagram for space reason.

Improve quality of
software products

Prevent models,
concepts, design
and codes from
major problem

Develop better
understanding of
the work products

Improve
developers' skill

Detect defects
before testing

Correct defects

Organize
process

Determine
Detect defects Store defects) seriousness of Report resutls
defects

Figure 7. Top goals and major functions of the software review process

At the lowest level, activities directly observed during the review meeting are placed. These activities can be as
detailed as individual speeches of the participants. Figure 4 shows how the function Determine seriousness of defects
is decomposed down to the level of activities performed during a review meeting

122

AJIS Vol. 6 No. 1 September 1998

Review
artifacts
tormally

Determine
rganizo Detect Store } Report
orgcess detects defects seriousness res‘::lts
i ot detects

Determine in
group the
seriousness
of detects

Articulate
defects in
group
discussion

Conduct
meeting

Classity
defects

Detine
precisely
the defects

‘Maderite:
I

Announce
potential
defect

Figure 8. Detailed activities' decomposition of the meeting

Bottom-up strategy

In conjunction with the top down strategy, a bottom up strategy has been applied in the construction of the lattice. In
some cases, observed activities could not be attached anywhere in the function lattice created during the top-down
strategy. For example, one of the activities observed is that the Moderator asks opinion of author. However this
new activity can be placed in the existing lattice only if two intermediary nodes, Moderator checks author’s
understanding and Check validity of findings, are introduced to make clear the function of this activity (cf. Figure 5).

123

AJIS Vol. 6 No. 1 September 1998

Review
artifacts
formally

Determine
sori
of defects

Organize Detect
process defects

Determine in
group the
seriousness
of defects

Report
results

A

Check
Conduct Articulate validity of Classify
meeting defects in tindings defects
group

discussion

Moderator
checks

author's
. understanding

Define
precisely
the defects

Moderate
discussion

Announce
potential
defect

Moderator -

Explain
potential
defect to

the
articipant

Retrieve
annotation in
voluminous

artifact

Figure 9. Bottom-up construction of the lattice

The final lattice of functions contains more than 300 nodes, which have been validated and refined based on the
feedback provided by the people involved in the process itself.

In the course of building the function lattice, FPA helped us identify potential problem areas by forcing us to
articulate functions at appropriate levels of abstraction. For instance, it was noticed in the recorded meeting that
reviewers had difficulty retrieving findings. They spent much time browsing through their voluminous artifacts in
order to find the location of written notes and then trying to remember what their notes said. This observation was
captured in the lattice as the function Reviewers retrieve annotation in voluminous artifact as shown in Figure 6. At
first, no parent function seemed to be served by this function. However, because we knew that this function exists to
serve the reviewers remembering the defects found earlier, the parent function Reviewers remember findings was
added under the pre-existing function Announce potential defects. This newly identified function then served later as
a starting point for exploring alternative ways of remembering. (cf. Figure 6).

124

RN TS——— e =~

AJIS Vol. 6 No. 1 September 1998

Review
artifacts
formally

1]

Determine
Seriousness
of defects

Detect
defects

Report

Organize
process

results

Determine in
group the
seriousness of
defects

Check

Conduct Articulate validity of Classity
meeting defects in findings detects
group

discussion

Define
precisely
the defects

Moderator
checks
author’s

understanding

Moderate
discussion

Announce
potential
detect

Moderator
asks opinion

Explain

Reviewers, potential of author
. remamber . delect 1o
., findings the

articipant

Retrieve
annotation in
voluminous
antifact

Figure 10. Placement of function at the appropriate level of abstraction

FPA also helped us to define the desired level at which metrics could be computed. For example, a metric for the
meeting management overhead could be computed by summing over the time duration associated with the following
functions: Articulate defects in group discussion, Check validity of finding and Classify defects (cf. Figure 7.). The
total time associated with the time function, it turns out, was 75 % of the total duration of the 2 hours meeting. It
means that a quarter of the time of the meeting was devoted to the function Conduct meeting, which contained the
activities of meeting management and moderation.

125

AJIS Vol. 6 No. 1 September 1998

Determine in
group the

seriousness of
defects

Conduct

meeting Articulate Check
25% of total defects in validity of Classify
duration of group findings defects
the meeting discussion

Figure 11. A sublattice can help define a process metric by revealing the appropriate level at which individual
submetrics could be aggregated.

W3 DOCUMENT ANNOTATOR (WDA) TECHNOLOGY AS A FUNCTION LATTICE

In order to illustrate how the FPA method can be used to model a technology, W3 Document Annotator groupware
system built by Schenk (1995) has been modelled, It also provides the annotation technology that is necessary for the
Web-based software review process. However, other group annotation technologies28 could have been chosen for
illustration here equally as well.

WDA is a system that supports group annotations on the World Wide Web documents. Annotations may be linked
to any specific part of a document and may themselves be further annotated. Based on the "argumentation model"
¢IBIS of Conklin and Yakemovic (1988) and SYBIL of Lee (1990), it allows a group of people to enter and retrieve
annotations linked to any pre-defined part of a WWW document. In particular, a user can propose a topic of
discussion by issuing proposals. The participants can respond to each proposal with arguments that either support or
refute the proposal. Arguments can be supported or countered with another argument and so on. The user can
browse through the list of annotations and their corresponding arguments, and access their content displayed in a
separate WWW document.

Figure 8 portrays a part of the lattice of functions constructed for WDA, following the strategies described earlier in
Section 2 and 4.

28 See for instance: WIT (W3 Interactive Talk) of Ari Luotonen at http://www.cern.ch/wit

126

AJIS

Vol. 6 No. 1

Review the
document
in group
with WDA

September 1998

-

Select
annotation

anchor

Annotate a

document

View
annotations
of others

Argue
adbout an
annotation

w3

Prepare
html|
document

annotation

View
arguments
of others

l

l

]

Filt Select
annotations in

the list of

Fil
argument
W3 form

Disptay list of Display

annotations

W3 form

annotations

annotation in a
W3 document | [W3 document

Display
arguments in a

Select
argument in
the list of
arguments

1

T

Write a : Communicate

label in the co{::‘?;; n a;g::::::‘ by e.mail
W3 form) "m W3 directly from
orm within the W3

Write a text{ Select an

form

document

|

Edit htm|
annotation
anchor in

Edit html
document

the
document

When the function lattices of both the process and the technology have been constructed, the next step is to find if
certain functions in the process lattice can be replaced or implemented by the functions in the technology lattice by
systematically comparing the two lattices. First the matching process is described, followed by the description of the

matching results.

Matching process

First, for each function of the review lattice, the WDA lattice is searched? for a similar function, or for a function
which could implement it. A similar function is an action that is described by the same verb or by a synonym, a
hyponym or a hyponym of the action’s verb used in the review lattice. For example, the software review process

Store htm! I
document

Select e.mail
address

Access W3
document

on a w3
server

displayed in from
the W3 anywhere at
document anytime

Figure 12. The function lattice of the WDA technology

WWW-BASED FORMAL REVIEW PROCESS SOLUTION

function Reviewers argue is similar to the WDA function Argue about an annotation (cf. Figure 9).

29 The WDA lattice is searched systematically by following a tree traversal method, i.e. by following each branch of

the lattice from the top nodes, down to the detailed subfunctions.

127

Vol. 6 No. 1 September 1998

Determine
seriousness of
defects in face-to-| Software review process
tace mesting \\/

S

~
-
——
e ——————
-~

Classify
defects

Articulate
defects in
group
discussion

validity of
findings

Conduct
meeting

. T T s -

Classify the
\\ Define seriousness
1 precisely of defects
i
I
!
I
/ /
i |
\~
| ==
I ~
! —_—T -~ ~q \
' Reviewers Explain ity \\
'l reemleember potentia) Review the Y\ - I
e defect to the document in |\ \ J
! indings participant \ \\ J
! v 7
! N\ =
’ N o —— ~
/ ! Y
] Retrieve ! // \\
{ | annotation in I, / \
I V°":".':'“‘t’“5 H Annotate a | |- “Argue . View \
! artifac V] annotation w3 agolitan™| 1 fons| | arguments \
\ PR anchor document X of others !
- - /
/
td

Figure 13. Matching software review functions with WDA functions

Another example is the function Announce potential defects which is currently implemented by the functions

Reviewers remember findings and Explain potential defect to the participant. It could be implemented by the WDA
function View annotations of others, if the reviewers would annotate the potential defects in the html document, in

order that it can be retrieved and displayed to the other reviewers.

Alternatively, for each function describing the WDA system, the software review lattice is searched for similar
functions or for functions that could be potentially implemented by the WDA function. For example the WDA

function Annotate the W3 document could potentially implement the software review function Annotate artifact, as

shown in Figure 10.

128

AJIS Vol. 6 No. 1 September 1998

Software review
process

Review
artitacts \
formally N\

Determine
seriousness
of defects

Detect
defects

Review the
document in
group with

I
Select » Annolate s, Argue about View View \
annotation T % an annotations arguments of \
anchor - document- annotation of others g
B EHES others I}
S e = . — e —— — ——— - e — — ”/
WDA technology /

Figure 14. Matching WDA functions with software review functions

In many cases, one need to fully understand the context of the current function, before marking it a potential
alternative. For instance, before deciding that View annotations in the WDA lattice can be used as an alternative
implementation of the software review function Announce potential defect, one needs to know that reviewers
propose their finding based on their previous annotations and that announcing a finding is made in the context of
reviewing a work product or “document”. This context information can be obtained by examining the parent nodes
of the process. For example, one can examine the parent nodes of Review artifacts formally, shown in Figure 3, to
make sure that the objects of the review are those that can be automated. However a large part of the comparison
process still has to rely on the analyst’s knowledge of both domain. Successful use of the FPA method usually
requires that the analyst be the same one who build the function lattices to ensure that the analyst is familiar with the
domains as well as the ways in which they have been represented.

In order for the revised lattice to work, however, it needs to make sure to incorporate not only the nodes
implementing the present function but also all the other nodes required by any of the nodes being imported from the
technology lattice. For example, the function Annotate the W3 document is a potential alternative to the software
review function Annotate artifact for implementing the parent function Store defects. However, simply replacing
this function (along with all of its subfunctions) for the Annotate artifact would not work because it also requires the
function, Edit html annotation anchor in the document, which appears in another branch of the WDA lattice, i.e.
under the function Prepare html document (cf. Figure 11 and Figure 8).

129

AJIS) Vol. 6 No. 1

September 1998

Consequently one must also place the latter function in the revised lattice. In selecting an adequate place under which
to place this function, one must first look for a function which could be implemented by Prepare the html document.
In the present example, the function Organize process is a good candidate because it contains the activities of
collecting and distributing the material to be reviewed and can be implemented by Prepare the html document.

Review
artifacts
formalty

Software review

AN
2N / process

Detect
defects

Select Get
checkpoints reviewers

Store
defacts

Review the
document in
group with
WDA

Select
artifacts to

\
1
Determine Report
seriousness resuits
of defacts

]

Selec'l Annotate a Argue about View View
annotation w3 an

ion
anchor d arg ts of
others

of others

; 'pﬁw‘ htm
‘. document’ " :

Edit b » B Store htm!
\ it himi " anb:

document on
\ document a W3 server
\
\
N
~

WDA technology

Figure 15. Placement of prerequisite functions

\

|
I
)
|

]

!

|

|

l
|
\
|
1
!
|
!

In some cases, one has to create intermediary functions between an existing parent function and the function to be
placed, in order to better represent the rationale of the new function or to better represent alternatives composed of a
group of functions. In Figure 12, Determine seriousness of defects asynchronously is created between Determine in

group the seriousness of defects and Review document with WDA.

130

AJIS Vol. 6 No. 1 September 1998

Software review

Review \ process
artitacts \
formally \ T~
N - —— - ~
— — \

\
Organize process Detect Store Determing Report |
defects defects seriousness results I
of defects /
/
7/
Select T \
antifacts to Select Get reviewers eterming in
: Annolate
roup the
b checkpoints artitacts se?' p \ \
reviewed iousnes o \
delects
\
\
- . . \
_ Determine - - Determing \
~ " $8fioUSNesS of;* - - -seriousness of \
o defects defacts In face-
. to-face group . \
" meeting \
|
|
Review the |
document in Artoculate |
P group with defects in
——— WDA group Conduct]
- discussion meeting
-
PR
”
7
< \
/
) \
| \
\
,I Prepare Select Annotate a Argue about View \
himi annolation w3 an annotations View arguments \
|\ document anchor document annotation of others of others |
|
N —— /

Figure 16. Adding functions for better understanding

Alternative WWW-based solution

A number of possible redesign alternatives have been already mentioned briefly while describing the matching
process. Two of them are described below in detail: Select arrifact and Detect defects processes.

131

AJIS Vol. 6 No. 1 September 1998

One of the software review functions that can benefit from the WWW technology is Select artifacts to be reviewed
(cf. Figure 13). The subfunctions of Select artifact to be reviewed show that the coordinator must find the
information about the risks and the potential defects associated with the artifacts. Currently this is usually done by
contacting the people such as project managers who would have such information. This need for human contact
often cause delays the whole review process. In examining the WDA lattice for an alternative, one finds the function
Access documents from anywhere at any time, suggesting the possibility of eliminating this source of delay. The
relevant information can be listed in a WEB page and updated by the project managers. Other WEB pages could
contain the status of the monitored risks and the task assignments. The review coordinator can then access these
documents and get the needed information asynchronously.

Another feature of the WWW-based technology appears in the WWW lattice as the subfunction Email address
embedded in WWW document serving the function Communicate by email directly from inside a WWW page (cf.
Figure 13). Many of the activities of the review coordinator appear in the review lattice as communication between
him and the process participants (reviewers and author). This function of communication could be potentially served
efficiently by the WWW communication feature, where a shortcut between the documents and information exchange
with the participants is easily implementable.

Another software review function that can be improved by the WDA technology is Detect defects. In the software
review lattice, the function Detect defects is implemented in two ways (cf. Figure 13). On the one hand, possible
defects are found during a private examination by the reviewers before the group meeting. On the other hand,
potentially remaining defects are discovered during the group meeting by discussing the previously found defects.
These two subfunctions are very different from a logistic perspective, but both contribute to the same goal Detect
defects. Detecting defects during the group discussion, in turn, is implemented by the functions Announce potential
defects and Store defects. Announce potential defects is implemented by the reviewers explaining during the meeting
the findings that they have previously annotated in the artifacts. Store defects, in turn, is implemented in two different
ways. Firstly the reviewers annotate the artifacts during their private examination before the group meeting.
Secondly the classified defects are recorded during the meeting.

In the WDA-based implementation of these functions, the entire process becomes asynchronous and simpler due to
the ubiquity that the WWW technology provides. Moreover the functions appearing in the WDA lattice suggest that
the storing of the findings as well as their announcements and discussions (argumentation and counter-argumentation
in favor of or against the official classification of a defect) could be alternatively implemented by the WDA functions
Annotate the W3 document and Argue about a selected annotation as shown in Figure 13. Each reviewer would go
through the complete set of annotations created by all the reviewers and react by entering arguments and counter-

arguments.

132

T T v e

AJIS Vol. 6 No. 1 September 1998
’_._--—_—_-‘\\
)) \ Software review
Review artifacts ~o
formally ~~a process
-~
~ - -
| 1 N “\
Organize Determine \
process seriousness of Report resutls 1
4 defects |
/]
,I /
/
! Annotate /
I ?::“: Select Got artifacts Determine in //
| artifacts ! : group the
| to be checkpoints reviewers seriousnes of
| reviewed Detect findings Reviewers defects
! | during the detect findings
| group privately
: discussion <
- . N
U | (Getlist of artifactd) (“Ger project | [CNO0Se artifacts Determine \
| and authors * with high potential o seriousness of \
1 names nsk status of defects Verity artifacts defects 1
i against asynchronously 1
| checkpoints /
| S/
l\ /
/
N\
\Y Ask project !
\ manager Ask developers Artoculate Check Crassity)
\ defects in validity of a'ssv Y
group findings defects |
discussion !
1
\ Classity the /
\ seriousness of l’
\ precisely the defects |
\ defects]
\
vy :
\\ \‘ Announce |
/ - potential
] { Select e.mail \\ N l'
] address \ N \
| | displayed in v S \
' the W3 \ \
| document \ \
| \ \
i \
~ AN |
| \ \ A S - }
\ \ document N
h N N)
! \\ in group N)
] ~ with WDA S \\ -
] ~
/
/
/
,/ Select) ew
\ Prepare annotation "9“’_"?’"3
\ htmi anchor of others
\ \ document
\
\
‘| Edit hm! Store htmi /
1 . annotation document {
\ Edit himl anchor in ona w3 |
\ document the sarver I
\ document ! WDA technology
S }
/

-
—— e —— - - —— -

Figure 17. Partial view of the redesigned software review process with WDA technology

-—

/

-~
.
—— ”
-

133

AJIS Vol. 6 No. 1 September 1998

CONCLUSION

This paper describes a method for systematically exploring the ways in which a given technology can improve an
existing process. It shows how a process can be modelled as a function lattice and how the construction of the lattice
helps identification of potential problem areas. It also shows how a technology such as the WWW Document Editor
can be represented as a function lattice.

With both a process and a technology represented in the common representation, i.e. function lattice, it shows how a
systematic matching between them can help us identify the features of the technology that can implement some parts
of the process. Whether the actual implementation of the technology will in fact improve the process is an empirical
question that depends not only on the technology alone but also on many other factors such as how it is deployed and
integrated in the overall workplace setting. However, this preliminary work has demonstrated the ways in which the
method can help generate potentially promising alternatives based on the technology.

A few caveats about the use of the method are in order. As mentioned earlier, the method still requires an analyst
with good understanding of the process and the technology because constructing and matching of function lattices
requires detailed knowledge of the ways in which the functions have been represented as well as the context
information that may not be explicit in the lattices.

Secondly, one has to be careful with the dependencies that hold among the process steps. A function lattice
representation is not expressive enough to capture all the dependencies that may hold among the subfunctions or
subprocesses. As mentioned briefly in Section 6, when considering whether a set of functions can implement a given
function, currently one needs to check manually to make sure whether there are other functions on which this set
depends. If so, one needs to add the additional functions and consider the implications. In Malone et al. (1993), we
explore a representation that makes explicit these dependency relations so that a system can help explore the
implications.

The third caveat is that so far in the discussion of FPA, it is assumed that a technology such as the Web comes in
individual features. But sometimes a given technology has to be accepted as a whole or not at all. It implies that
even though some part of a technology may help improve the current process, adopting it as a whole may introduce
more problems, apart from the usual training problems, because of the other features that bring with it (e.g. security,
incompatibilities).

The FPA work is continuing in several directions. First additional ways to support the process of comparing
function lattices, are explored. A generic taxonomy of functions is articulated, in order to facilitate the search,
creation, navigation, and matching of function lattices. In this taxonomy, a new function is created as a
specialisation of an existing function and inherits the attributes of the parent function (such as the agent, objects, and
. instruments, associated with the function). These attributes, in turn, can be used to acquire relevant information from
the user in characterizing a new function or searching in existing function.

Although the use of FPA has been described in exploring how a given technology can improve an existing process,
its use in evaluating which of the technologies should be most appropriate for a given process is also being explored.
For this purpose, a library of function lattices representing different technologies such as the WWW, the Lotus
Notes, and other groupware tools, is created. One may then use the same matching procedure as described in this
paper not against one technology but against all the technologies in the library and see which of them produce the
best result.

The FPA can also be used as a framework for comparing and contrasting a given group of processes or technologies
that reveals what is generic and different about them. This use of FPA, however, requires, in addition to the
decomposition relation, the specialisation relation which was not described in this paper and is a topic of another
paper.

ACKNOWLEDGEMENT:

The authors would like to thank the anonymous reviewers for their useful comments and suggestions. The authors
would like to also thank Cecile Bruellhart, Thomas Mueller, Juerg Braun and Franz Brunner for their important
participation in the gathering of the data. The work and the people at the MIT Center for Coordination Science have
been also influential in the shaping of the ideas underlying this paper.

134

P P

AJIS Vol. 6 No. 1 September 1998

This work would not have been possible without the funding of the Swiss National Fund for Scientific Research
(Grant no 1214-039627.93), Bank of Vaud, Centre Informatique de I'Etat de Vaud, Credit Suisse, Unicible, and by
the support of the Department of Decision Sciences at the University of Hawaii (USA) and Elca Informatique in
Lausanne (Switzerland).

REFERENCES

Baum, D. (1997) "Intranet Politics and Technologies" in Byte, North-America issue. May, 1997, Vol. 22, Number 5.
Page 88F.

Conklin, E., J. & Yakemovic K. C. B. (1991) “A Process-Oriented Approach to Design Rationale” in Human-
Computer Interaction, the Special Issue on Design Rationale. 6 (3-4), pp. 357-392.

Fagan, M. E. (1976). “Design & Code Inspection to Reduce Errors in Program Development”. IBM System
Journal, Vol. 15,No 3

Freedman, D. P. & Weinberg D. (1990). Handbook of Walkthroughs, Inspections & Technical Reviews -
Evaluating Programs, Projects & Products. Dorset House Publishing. New York

Gibson, M. L., & Hughes, C. T. (1994) Systems Analysis & Design. Boyd & Fraser Publishing Company. One
Corporate Place. Danvers, Mass.

International Function Point Users Group (1994). Guidelines to Software Measurement, Release 1.0, International
Function Point Users Group (IFPUG) Standards, 1994. Westerville, OH

Kalin, S. (1998) "Kaiser Permanente Online" in CI0 WebBusiness Magazine. CIO Communications, Inc.
<htp://www.cio.com/archive/webbusiness/050198 _kaiser.html> 1.5.1998

Lee, J. (1990) “What’s in Design Rationale?” in Human-Computer Interaction, the Special Issue on Design
Rationale. 6 (3-4), pp. 251-280

Lee, J. (1993) “Goal-based Process Analysis”. Proc. ACM Conference on Organisational Computing 11-93
Milpitas, CA

Malone, T. W., Crowston, K., Lee, J. & Pentland, B. (1993) “Tools for inventing organisations: Toward a handbook
of organisational processes”. Proceedings of the 2nd IEEE Workshop on Enabling Technologies Infrastructure
for Collaborative, IEEE Computer Society Press

Martin, J. (1990) Information Engineering - Planning & Analysis, Prentice Hall, Englewood Cliffs, New Jersey

Schenk, M.-A. (1995) “W3 Document Annotator”. Inforge Institute, Business School HEC, University of Lausanne.
Technical Report 5-1995. Lausanne

135

