AJIS Special Issue — Requirements Engineering 1999

REALIZING REQUIREMENTS IN PRODUCT-LINE DEVELOPMENT
USING O-O FRAMEWORKS

Garry Froehtich, H. James Hoover, Paul Sorenson

Software Engineering Research Laboratory
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1
{ garry, hoover, sorenson } @cs.ualberta.ca

ABSTRACT

An existing, rapidly evolving strategy for realizing requirements in product line development is described. The
position taken and the proposed new directions are based on our substantial experience in building and using O-O
frameworks. Important new directions include the use of hooks to encapsulate product-line requirements and the
management of requirements using a hook evolution model and experience base construction. It is also proposed that
requirements traceability can be supported in an obvious manner by following prescribed processes for product
development that are based on enacting hooks.

INTRODUCTION

The paper begins with an overview of product-line development, O-O frameworks and the relationship between
the two. The importance of requirement capture and management in software product-lines is identified and
strategies for determining product-line requirements are reviewed. A form of prescriptive documentation,
embodied in the hooks model [Froehlich97), is introduced as a mechanism for encapsulating requirements.
Hooks use script style descriptions to assist the developer in extending a framework into a product using a set of
intentional requirements that are anticipated by the O-O framework developers. The issues of how hooks are
changed to support evolving requirements is discussed. A proposal for how requirements traceability can be
supported using hook enactment is presented. This approach to traceability can be supported through a tool like
HookMaster [Liu99).

Although much of this work is still “work-in-progress,” it is based on our substantial experience in building and
using O-O frameworks in areas such as engineered products [Froehlich99a) and personal assistants [Liew99) for
the web.

PRODUCT LINES AND 0-O FRAMEWORKS

Product-line architectures, or product families [Parnas79), move beyond the traditional notion of building a
single product in isolation, and instead focus on building whole suites of related products within a single
domain. The concept takes the view that most development is actually redevelopment. Most products have
been built before at some level. Industries such as telecommunications build the same or similar products over
and over again. Although the core requirements evolve slowly, there may be significant feature changes from
one product to another.

Domain analysis techniques, such as FAST [Weis99) or FODA [Kang90), capitalize on the similarities between
programs within a domain. Using commonality analysis techniques, they examine products within and across a
domain or rely on the knowledge of experts to discover the core requirements that apply to the entire domain.
These are divided into two basic, but important, types. Commonalties are the same across the products, such as
the event model in a window based user interface. Variations are the parts that differ between products, such as
the actual menus or buttons within that user interface.

Similarly, analysis patterns [Roberson93, Fowler37) capture common requirements and their solutions within a
particular domain such as accounting. They document problems and solutions, and capture the experience of
developers within the domain. Analysis patterns are at an abstract enough level to capture both the
commonalties and variations of the problem.

AJIS Special Issue — Requirements Engineering 1999

Domain Analysis

Analysis Patterns

Figure 1: Relationship of Analysis Techniques to Frameworks

Object-Oriented
Framework

These domain analysis techniques and patterns are used to produce the domain specific representations of the
product-line. These can take the form of tools that support domain specific languages such as JTS {Batory98),
or domain ‘jargons’ as in FAST [Nakatani99). As shown in Figure 1, the products of domain analysis and
analysis patterns can also be used as the basis for building object-oriented frameworks. O-O frameworks consist
of an architecture that covers an entire domain, and an implementation of that architecture. The commonalties
are built into the architecture and implementation so that they need not be developed over and over again. The
variations are included as hooks into the framework. Product developers can easily attach their own
components through the hooks. The framework forms a solid basis for quickly developing new products within
the product line.

Strategies for Determining Product-line Requirements

Product-line requirements differ from the requirements of a single product in their breadth and their generality.
In order to produce a successful product-line, the requirements must cover an entire domain and they must be
general enough to capture both the commonalties and variations within that domain. New strategies are needed
and these are explored in the next section.

One strategy is to examine or to build products within a domain in order to gain experience in that domain
(Taligent 1995). Obviously several products must be built or analyzed to determine the commonalties and
variations across them. Typically, at least three such products are needed.

Another strategy is to employ a domain expert. Key to our success in constructing a product-line framework for
engineering sizing and selection tools (Froehlich 1999a) was the close collaboration with the product line
champion: a domain expert in pressure safety relief valve sizing and selection His familiarity with not only the
relief-valve domain but the broader domain of engineering design was indispensable in the development of our
first product SizeMaster Mark IV (see www.avrasoft.com/sizemaster) and the current EAF (Engineering
Application Framework). We were also influenced by the expert users, practicing chemical engineers, who
raised requirements that neither the domain export nor we anticipated. Building products and using domain
experts complement one another, as we have discovered in the development of our frameworks.

A third approach that supports both the determination and elaboration of requirements is the creation of an
experience base. In this approach, product-line development is treated as a continuous case study in which
results from using the framework in several product developments is captured. These results are later used to
improve the framework and the product development process that is based on the framework. The requirements
for our CSF (Client Server Framework - see hitp://www.cs.ualberta.ca/~garry) are undergoing this type of
refinement as part of the ongoing FrameScan case study (Froehlich 1999b). The CSF supports the development
of simple web-based client server applications in our fourth-year software engineering class CMPUT 401 - see
http://www.cs.ualberta.ca/courses/Cmput401.html. The ultimate goal of this approach is to provide an
experience base that complements and links to the requirements (encapsulated in hooks as described below),
examples and other design documentation of a framework. Our work to date in this area is preliminary but
promising.

Documenting Product-line Requirements
In this section, we describe how the requirements that are common across products are encapsulated, and how

those that vary within the product-line architecture are documented. The variations, which are particularly
important to product developers, are documented prescriptively using hooks. Finally, we examine how

AJIS Special Issue — Requirements Engineering 1999

product-line requirements evolve as the domain of the family of products evolve and why they must be managed
carefully.

Hooks

One means of encapsulating these requircments is through the use of hooks (Froehlich 1997). Each hook
documents a narrowly focused means of using the framework to fulfill a particular requirement. For example, a
hook will indicate how to create a menu within a user interface framework, or which packages to choose in a
command and control framework. The suggested hook documentation consists of a structured template that
elicits all of the required information needed to select and use the hook, including a section on the requirement
fulfilled, the parts of the framework it uses, and any conditions on the use of the hook.

Since the product-line architecture and implementation already exists, the requirements must be mapped onto
that implementation. As shown in figure 2, cach hook maps its requirement back to the place in the framework
that it affects. In addition, the hook defines in a systematic manner, how the design and code base of the
framework should be extended.

“=~"7 Hooks

] Classes

Figure 2: Hooks and Classes in CSF

Figure 3 shows the space of possible variations, that is, the changes, modifications or additions needed to
produce a product within a particular domain based on an O-O framework. It is divided into four overlapping
regions.

Option hooks are provided when the variations of a particular aspect of a domain can be explicitly catalogued.
They are the narrowest in scope, but are also the easiest for the user. Option requirements are fulfilled by
selecting one or more items from a pre-defined set of components and linking them into the object-oriented
framework. They can be completely automated and tested to ensure conformance with the framework.

Unsupported

Figure 3: The Space of Possible Extensions to a Framework

AJIS Special Issue — Requirements Engineering 1999

Pattern hooks capture variations that can be parameterized and/or restricted. They may include options, but
they also present the user with a restricted set of operations that the product developer is allowed to perform.
Patterns can be partially automated and tested.

Open hooks use a much less restricted set of operations. Open hooks allow entirely new functionality to be
added to the framework, and represent wide variations within a domain.

Unsupported changes go beyond the uses the framework builders envisioned for the framework. They may
arise because the framework does not completely cover the domain or that the requirements of the product-line
have changed. Typically, the discovery of unsupported changes is an indication that a framework needs to be
updated or evolved.

Examples of all four kinds of hooks can be found in our Engineering Application Framework (EAF) which is
used to build engineering worksheets. Each worksheet is a collection of data elements and calculations that
represent the contents of an engineering code or standard. Each engineering application that we build has one or
more worksheets that form the core of the application. The user interface of the application, provided by
another framework, navigates through the worksheet but does not do any engineering computations. In this way
we keep the robust core engineering part of an application relatively isolated from the more fragile user
interface.

An engineering standard is embodied into a worksheet by following the EAF hooks. Option hooks are provided
for adding data elements to the worksheet. Each item of data in the standard is identified, and then classified
according to whether it is numeric or text, and whether it is an external input from the user or an internal
computed value, and whether its range of values is fixed or user modifiable. For example, one combination of
options can be used to add a text data element that has a predetermined set of user-selectable values. For
numeric data, there is the additional option of what basis units it has, such as length or temperature, and what its
normally displayed style should be (for example, English or metric).

Pattern hooks are provided for adding new data element types, basis units and calculations. The hooks for new
elements and units involve constructing new classes directly by writing code. The pattern for adding new
calculations is embodied in a custom calculation language that hides many of the details. Calculations are
written in this higher-level custom language and then compiled into the class definitions that implement the
calculation. This allows us to alter the implementation of the calculation hooks without having to rewrite the
calculations. We just recompile them.

Open hooks are provided for calculations that cannot be described by our calculation language. Worksheets are
by nature acyclic in order to enforce a consistent evaluation order. This means that iterative components of the
calculations must be individually programmed, and then attached to the framework through open hooks.
Unsupported changes are more an issue of good framework architecture. If the architecture is well-factored, we
find that adding hooks for unanticipated requirements is a natural, although non-trivial, activity.

EVOLVING REQUIREMENTS

When the requirements of the product-line evolve, it can have several different effects on the underlying
framework:

Changes to the underlying framework These occur when the common requirements change, new ones arise,
or the framework design needs to be made more robust. Such changes typically include refactoring (Fowler
1999) the framework classes without affecting the hooks. The variable requirements themselves don’t change
so the hooks don’t change either; the only changes are in the common parts of the framework and their
underlying implementation.

Changing hooks to make them more flexible. Sometimes the variable requirements supported by the
framework are not flexible enough to accommodate the requirements of the products within the domain.
Generally, one or more hooks need to be evolved along with parts of the underlying framework in order to
support the new flexibility. As shown in figure 4, to make a hook more flexible, it must be made more open as
well.

Changing hooks to provide more support for the product developer. As a framework matures, the exact
variations between products within a domain can be catalogued and support for the different variations built
directly into the framework. Building in variations makes the framework easier to use as it contains more

support for the product developer. As shown in figure 4, this is the opposite effect of increasing the flexibility
of the framework.

AJIS Special Issue — Requirements Engineering 1999

Increased Flexibility

<

Open p| Pattern 3| Option

Increased Ease of Use

>

Figure 4: Evolving from One Type of Hook to Another

Adding new hooks. New hooks can be added in two ways:

e As users gain more experience with a framework they may discover ways to support a requirement
that was not documented by the original framework developers. These experiences can be documented
in a hook description, usually an open hook, and are supported in new releases of the framework.
Existing products need not be affected.

e New functionality can be added to the framework itself, and this functionality accessed through
hooks. This type of change can have pervasive effects on the framework and can affect existing
products that rely on new releases of the framework.

REFINING REQUIREMENTS AND REQUIREMENTS TRACEABILITY

In our experience, we have found that one of the difficulties in using a product-line architecture is mapping the
requirements of the product to the requirements supported by the architecture. When developers are familiar
with the architecture and the framework, they can perform this mapping intuitively. But when developers are
new to the framework, it can be difficult to see the relationships between the focused requirements represented
by the hooks and the coarse requirements of the product.

We define a high level process consisting of a series of steps that guides the new product developer through the
use of the framework. Figure 5 shows an example for the Client-Server Framework (CSF). Each of the steps is
written in natural language and discusses a key concept of the framework, much like framework patterns
(Johnson 1992). The steps link to the hooks themselves, which in turn link to the framework. These steps
provide three benefits:

Mapping. The high level process guides the user in deciding how to map their requirements onto the
requirements supported by the framework. For example, the first two steps, Discover Data and Identify
Persistence, guide the framework user in deciding what they need to communicate across a network, and which
information needs to be persistent (stored in files or in a database). They are then pointed to specific hooks in
the framework, specifically New Data and Read/Write Data, which handle transmitting and storing information
in the CSF.

Order. The steps of the process explain the order in which things should be done to successfully use the
framework, which isn’t clear from a simple list of supported requirements. Even in the case of the CSF, we
found that when new framework users were presented with the unordered set of hooks and the dependencies
between them (e.g. the Send Message hook depends on the New Data hook), they needed some coaching in
where to get started and how to proceed further. The ordering shown in Figure 5 is somewhat simplistic, but
appropriate for the CSF framework. However, in practice for larger and more complex frameworks, choices
made later in the steps may affect earlier steps, so more complex orderings and mappings may be required.

10

AJIS Special Issue — Requirements Engineering 1999

Discover | Identify Ly ... —p Communicating —p| Communication Process Steps
Data Persistence Information Performance
Read/Write Send Choose Hooks
Data Message MailServar
Framework

Figure 5: Process for Using CSF

Details. This approach is similar to work done by Lajoie and Keller (1994) in which high level descriptions
called motifs are mapped to the design patterns of the framework. The process steps themselves are based on the
hooks and point to specific hooks in order to make the changes. The hooks map into the framework itself, so the
transition from requirements, to architecture to implementation can be made smoothly. For example, in the
Communication Performance step, the product developer decides on the specific communication needs, such as
performance. The Communication Performance step directs the developer to, in this case, the Choose
MailServer hook, in which an ‘engine’ best matching the requirements is chosen. The hook itself points to the
places in the framework that it affects.

Ideally, the steps will identify single requirements (or sets of similar requirements) which can then be mapped
directly to a hook. The refinement performed potentially offers an additional benefit. Requirements mapped to
the framework during the process steps allow for requirements tracability. That is, each requirement identified
is mapped to a single hook, which then points to a specific part of the framework that fulfills that requirement.
Additionally, support for this type of process can be incorporated into a tool, not just for a single framework as
in the case of GUI builders, but for frameworks in general. We have constructed the prototype of such a tool
called Hook Master (Liu 1999) for supporting the enaction of hooks on frameworks.

CONCLUSIONS

Using hooks to encapsulate requirements in a generic design and implementation is extremely promising for
product-line development. It helps to localize the effects of requirement changes and focuses a developer’s
attention on those requirements that are unique for the product under development. Traceability can be
supported in a straightforward manner and with the assistance of a tool such as HookMaster.

Our approach has been tried out and refined in the development and use of several O-O frameworks including
the EAF (Engineering Product Framework), Prothos (web delivery of database-centric applications), Sandwich
(personal web assistant proxy framework), and CSF (Client Server Framework). We are continuing to
experiment and improve many aspects of our approach. Future work includes: i) formalizing the hooks model
so that model checking can be applied to ensure consistency and completeness of a product-line architecture, ii)
extending the HookMaster tool to more explicitly support requirements traceability, iii) investigating the use of
generic processes for O-O framework evolution, and iv) developing support for the creation and evolution of
experience bases that can be associated with O-O frameworks.

REFERENCES

D. Batory, B. Lofaso and Y. Smaragdakis. JTS: Tools for Implementing Domain-Specific Languages. In
Proceedings of the Sth International Conference on Software Reuse. (Victoria, Canada, June 1998).

M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, Menlo Park, California. 1997.

M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Menlo Park, California.
1999.

11

AJIS Special Issue - Requirements Engineering 1999

G. Froehlich, H.J. Hoover, L. Liu, and P. Sorenson. Hooking into Object-Oriented Product Frameworks. In
Proceedings of the 1997 International Conference on Software Engineering (Boston, Mass, 1997), 491-
501.

G. Froehlich, H.J. Hoover, L. Liu and P. Sorenson. Reusing Hooks. In Building Application Frameworks. M.
Fayad, D. Schmidt and R. Johnson, ed. Wiley Computer Publishing, New York. 1999, 219-235.

G. Froehlich, A. Kamal and P. Sorenson, FrameScan: Exploring O-O Framework Usage. Located at
www.cs.ualberta.ca/frames/papers.

R. Johnson. Documenting Frameworks Using Patterns. In Proceedings of OOPSLA’92 (Vancouver, Canada,
1992), 63-76.

K. Kang, S. Cohen, J. Hess, W. Novak and A. Peterson. Feature—Oriented Domain Analysis (FODA)
Feasibility Study. (CMU/SEI-90-TR-21, ADA 235785). Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

R. Lajoie and R. K. Keller. Design and Reuse in Object Oriented Frameworks: Patterns, Contracts, and Motifs
in Concert. In Proceedings of the 62nd Congress of the Association Canadienne Francaise pour
I'Avancement des Sciences. (Montreal, Canada, 1994).

W. Liew. A Personal Web Assistant Framework MSc. Thesis, University of Alberta, 1999.

L. Liu. Hook Master: A Tool to Support the Enactment of Hooks. MSc. Thesis, University of Alberta, 1999.

L. Nakatani, M. Ardis, R. Olsen and P. Pontrelli. Jargons for Domain Engineering. In Proceedings of the 2nd
Conference on Domain-Specific Languages (DSL '99). (October, 1999).

D.L. Parnas. On the Design and Development of Program Families. IEEE Transactions on Software
Engineering, SE-2:1-9, March 1976.

S. Robertson and K. Strunch. Reusing the Products of Analysis. In Proceedings of the Second International
Workshop on Software Reusability. (Lucca, Italy, March 1993).

Taligent. The Power of Frameworks. Addison-Wesley Publishing Company, Reading, MA. 1995,

D. Weiss. Commonality Analysis: A Systematic Process for Defining Families. In Proceedings of the Second
International Workshop on Development and Evolution of Software Architectures for Product
Families. (February 1998).

