
AJIS Vol. 7 No. 1 Sept 1999

STRENGTHEN AND SUPPORT THE MAINTENANCE OF OBJECT-ORIENTED SOFTWARE

Ming-Chi Lee
Dept. of Business Administration, National Ping Tung Institute of Commerce

Taiwan, R.O.C.
E-mail: lmc@sunl.npic.edu.tw

Timothy K. Shih and Teh-Sheng Huang
Dept. of Computer Science and Information Engineering, Tamkang University

Taiwan, R.O.C.

ABSTRACT

Inheritance is one of the most common features of object-oriented languages, and has been widely applied to develop
large and complex software system. However, designing a suitable inheritance hierarchy, involving redundant
inheritance, is a difficult task and easily suffers from name-confliction and repeated inheritance which are error-prone
and difficult to test. In this paper, we explain how redundant inheritance makes object-oriented programs difficult to
test and maintain, and we give a concrete example of the problems that arise. We show that the difficulty lies in the
fact that we lack an effective detection tool suited for work with inheritance problems. Therefore, a formal checking
mechanism is proposed to detect and resolve redundant inheritance. Furthermore, this checking mechanism can be
easily incorporated with object-oriented CASE tool to enhance software quality.

Keywords: Inheritance Hierarchy, Redundant Inheritance, Repeated Inheritance, Inference Rule, Object-
Oriented Program

INTRODUCTION

Inheritance is a relationship among classes wherein one class shares the structure or behavior defined in one
(single inheritance) or more (multiple inheritance) other classes. Class hierarchy consists of a set of ordered
inheritance relationships and is often denoted as a directed acyclic graph. It plays a vital role and a fabric in
object-oriented design (OOD). However, designing a suitable inheritance hierarchy, especially with multiple
inheritance, is a difficult task (Moises et al 1992). This is because several problems associated with multiple
inheritance remain still in debate, such as name collisions and repeated inheritances (Cardelli 1984, Meyer
1988). Booch (1991) showed that we have never been able to define a class hierarchy right the first time except
for trivial small cases. In practice, this design of class hierarchy is an incremental and iterative process. If you
allow multiple inheritance into a language, then sooner or later someone is going to write a redundant
inheritance. For example, given a class hierarchy Q={ O^-MX,, a,—»a3 , a2-»a4, OJ-MX, }. if we add a new
inheritance relationship, at—»<X4, then this inheritance cCj-^oc,, is called a redundant inheritance because OC4 could
inherit indirectly from a,. After adding c^—MX4, <X4 inherits twice (or more) from o^. This situation suffers from
name-confliction problem and the ambiguous method invokation. As a consequence, many implicit software
faults very much difficult to test are generated (Chung & lee 1997). Although some object-oriented
programming languages permits this writing, it is necessary to detect and refine them before coding (Meyer
1988). We argue that an inheritance-based checking mechanism is essential for effective testing and maintenance
of object-oriented programs. In addition, it is worthy to note that an inheritance hierarchy is dynamic rather than
static during the lifetime of OO software development. It is therefore almost impossible to maintain an
unambiguous and nonredundant inheritance hierarchy forever without a checking mechanism.
In Section 2, we introduce the redundant inheritance problem associated with repeated inheritance and name
conflictions. In Section 3, inference rules and the inheritance constraints are introduced. Meanwhile, we show
how to compute the closure set of an inheritance hierarchy by inference rule. In Section 4, a concept of minimal
class hierarchy is proposed to address the issue of redundant inheritance. Also, a simple but delicate method to
compute the closure of a set of classes with respect to a class hierarchy is introduced. In Section 5, we derive an
algorithm based on the concept of minimal class hierarchy to determine the redundant inheritances in an
inheritance hierarchy. Three approaches to resolving redundant inheritances are presented. Finally in Section 6
the conclusion and future research is presented and discussed. .

REDUNDANT INHERITANCE AND BASIC WORKS

Basically, inheritance relationships have two different structures. One is single inheritance which allows every
class inherits from at most one superclass. In contrast, multiple inheritance allows every class inherits from more
than one superclass. In OOD, designing a suitable class hierarchy involving multiple inheritance is a difficult
task. Two problems present themselves when we have multiple inheritance: how to deal with name conflictions
from different superclasses, and how do we handle redundant inheritance. Name conflictions are possible when
two or more different superclasses use the same name for some element of their interfaces, such as instance

32



AJIS Vol. 7 No. 1 Sept 1999

variables and methods (Carre &Geib 1990). In part (a) of Fig.l, class US-Driver and class China-Driver both
have a method named traffic-violation, representing the number of traffic violations in US or China respectively.
If someone has driver licenses both in US and China, then a class US-China-Drive is declared to be inherited
from both of these classes, what does it mean to inherit two traffic-violation with the same name? There are
basically three approaches to resolving this clash. First, the language semantics might regard a name confliction
as illegal, and reject the compilation of the class. This is the approach taken by Smalltalk and Eiffel (Borning &
Ingalls M982). In Eiffel, however, it is possible to rename items so that there is no ambiguity. Second, the
language semantics might regard the same name introduced by different classes as referring to the same traffic-
violation, which is the approach taken by CLOS. Third, the language semantics might permit the confliction, but
require that all references to the name fully qualify the source of its declaration. This is the approach taken by
C++.

Multiple Inheritance Graph

method: traffic-violation;

netnodj/fraf fie- violation

(a)

Repeated Inheritance Graph

string: driver-name;
method: birthday-cfledc;

(b)

Redundant Inheritance Graph

string: driver-name;
method: birthday-check;

(c)

Figure 1: Mutiple, Repeated and Redundant Inheritance

The second problem is redundant inheritance which is raised by the presence of repeated inheritance when a
class is an ancestor of another in more than one way. Consider the inheritance graph in Fig.l-b. A base class
Driver is declared to be the parent class of both class US-Driver and class China-Driver. We find that class US-
China-Driver inherits twice from class Driver. This situation is called a repeated inheritance. Furthermore, the
class Driver, suppose, is declared to be the parent class of class US-China, then this inheritance is called a
redundant inheritance because class US-China-Driver could inherits all the value and behaviors from class
Driver through class US-Driver or class China-Driver (see Fig.l-c). From the programming viewpoints, the
redundant inheritance is not only unnecessary but also error-prone. In this redundant inheritance graph, class
US-China-Driver inherits twice (or more) from class Driver in the redundant inheritance. Redundant inheritance
is often confused with repeated inheritance. To formally verify the difference, repeated and redundant
inheritance are defined individually as follows:

Definition 1: Given two classes denoted as a, and 0:̂  in some class hierarchy £1, if there exists at least two (or
more) inheritance paths between a, and ar all the classes on these inheritance paths form a repeated
inheritance.

Definition 2: Given a class hierarchy Q with n inheritances, for an inheritance relation o^-HXj e Q, if there
has been existed other k inheritances for 1 < k < n, such that a,— MX,., — MX,,, . . .— >a,.)[-Hxj, then C^-MX, is
called a redundant inheritance.

Basically, redundant inheritance is generated on the extension of repeated inheritance. In this paper, we call a
repeated inheritance graph which contains a redundant inheritance as a redundant inheritance graph.
Consequently, a redundant inheritance graph must also be (contain) a repeated inheritance graph. Apparently,
Fig.l-c is just a redundant inheritance graph. After the above analysis, we can derive a mathematical expression
to verify the relationships among multiple inheritance graph, repeated inheritance graph and redundant
inheritance graph. This verification is helpful to reduce the occurrence of controversial and error-prone
inheritances.

33



AJIS Vol. 7 No. 1 Sept 1999

multiple inheritance graph e repeated inheritance graph c redundant inheritance graph (1)
For a large OOD system, the detection of redundant inheritance is a time-consuming task. In next section,
inference rule is used to address the redundant inheritance. This inference rule can be easily programmed and
maintained in the OO software development.

INHERITANCE CONSTRAINTS AND INFERENCE RULES

One of the key issues in object-oriented design is certainly the specification of inheritance constraints. In the
object-oriented design (OOD) phase, system designer declares inheritance constraints initially and modifies them
later. Since inheritance constraints must not be ambiguous and redundant, some external checking mechanisms
must be provided. The constraints detected in the OO design should be embedded in some way so that
unambiguity and nonredundancy are preserved. The classification of inheritance constraints are shown as
follows:

1. Single Inheritance Constraints (SIC): Given two classes, a, and P, a -» P means that 3 is a subclass of o,
and that every instance in p is also an instance in a.

2. Multiple Inheritance Constraints (MIC): Given three classes, a, p, and y, ocp — > y means that y is a
subclass of a and also a subclass of p. 0$ -» Y implies that a — »y *P — > y.

We can characterize the constraint membership problem in an inference rule system. In what follows, we assume
that we are given a set of classes denoted by *F and a class hierarchy denoted by Q, involving only classes in *F.
The inference rules are:

Axiom 1: The inference rules for single inheritance constraints are

1 . Transitivity: given three classes, a, P and y e *F, if a -» P and p -> y hold, then a — » y.
2. Union: if a — > p and a -» y.hold, then a — > Py.
3. Decomposition: if a — »py hold, then a -» P and a -»y.

There are several other inference rules that follows from axiom 1. We state two of them in the next theorem.

Theorem 1: The inference rules for multiple inheritance constraints are
1. The composition rule: given classes P, <Xi, Oj, ..., a* € *F, if oq -> p for every i= 1, ..., n, then (Xi 02 ...
a.-» P.

2. The pseudotransitivity rule: given classes a, p, y and <|), if a — » p and <|>P — > y hold, then ou|> -> y holds.

Proof:
1): We are given <Xi — » P, Oj -» P. By composition rule, oti -» P, 02 -> P deduce <Xi 02 -> p. By induction,

P holds.

2): By decomposition rule, <|>P -> y tells us <|> -» y, p -» y holds. By union rule, a -» y, <|) -> y implies oa|> -»

Y-

Before tackling the main issues in this paper, it is important to introduce transitivity rule and the closure
computation with respect to a given class hierarchy.

A. Transitivity Rule for Inheritance Hierarchy

Given a class hierarchy consists of a — » P and P — > y. Then, we could claim that a— > y must also hold in SI.
This proof is easy by the property of transitivity. In general, let SI be a set of inheritance relations. We say ^ — >
T| is indirectly inherited from Q, written £1 ̂  £ -> T|. We saw above that if £1 contains a — » P and P — » y, then
cc» y is indirectly inherited from Cl. That is, { a -» P , P -> y} =* a» y. Let Q+, the closure of Q, be the set
of inheritance relations that are indirectly inherited from Q, i.e., fl+ = { ̂  -> f\\£l =>+ £ — » T| } .

For example, Let 4>={oc, P, y), and Q={ a -> P , P -» y}. Then Q* consists of all those inheritances ^ -» T\
such that either

34



AJIS Vol. 7 No. 1 Sept 1999

1. £ contains a, e.g., ap -> y, a -» P , or P -» y,
2. £ contains P but not ct, and T| does not contain a, e.g., P -» y, or P -> <|>, and
3. £ -^ T| is y -> <)).

It turns out that computing the closure set for a class hierarchy £2 is a time-consuming task in general, simply
because the set of relationships in £2* can be large even though £2 itself is small. Consider the set £2 = {ai -> 02,
.... On.i —» On }. Then £2+ includes all the transitive inheritances ctj —» 4*, where 4* is a subset of {cti, Oj, ...,«„
}. Obviously, the number of all derived inheritances on the 4* by inference rules could be C(n,l) + C(n,2) + ... +
C(n, n-1) + C(n, n). The number is equal to 2n. As there are 2" such sets of £2, we can not expect to list £2+

conveniently, even for a reasonably sized n. By contrast with £2*, computing £*, for a set of classes £, is not hard;
it takes time proportional to the length of all inheritances in £2, written out. Instead of computing the tedious £2*.
£* is informative enough to tackle the cyclic and redundant inheritance issues. In the next section, an algorithm
to compute £* will be presented.

B. Equivalence of Two Class Hierarchies

Let £2 and 0 be two class hierarchies; £2 and 0 are said to be equivalent if and only if £2* = 0*. To test whether
£2 and 0 are equivalent, we must verify whether both £2* e 0+ and 0+ £ £2+ hold. The verification of the
equivalence of two class hierarchies by inference rules is relatively time-consuming. An illustration is shown as
follows:

Example A:
Given a class hierarchy £2 consists of two multiple inheritance constraints (MIC) and two single inheritance
constraints (SlC)as follows:

Q = 1 5IC :« 1 -» « 2« 3« 4 <« 6 -» « 5

[ M 1C -.a !« 2a 3 -» a 5 ,a 3a t -> a 6

We can find other equivalent class hierarchies whose closure is equal to £2. Suppose 0 is an equivalent one
which contains four single inheritance constraints and one multiple inheritance constraint as follows:

— »
z: «2a3 -> a5

By use of Axiom 1 and Theorem 1, we can verify that £i and 0 are equivalent by checking whether £2* is equal
to 0*. However, we cannot expect to list Q+ and 0* conveniently. A useful alternative equivalence is addressed
in the next theorem.

Theorem 2: For each class hierarchy f l , there is an equivalent class hierarchy 0 in which no both sides of an
inheritance have more than one class.
Proof:
(1) Let 0 be the set of inheritance relations a -> ty\ such that for some a — » y in £i, 4>( e vy where (fc is a single
class. The a -> <t»j follows from y by the decomposition rule. Thus, 0 e fi* holds. On the other hand, £2 £ 0*
also hold, since if \y = ty\ .. .<t>n, then a • y follows from a -xj»i, .... a -*(>„ using the union rule.

(2) Let 0 be the set of inheritance relations fy, -» P such that for some \|/ -»P in £2, <h e y. The «J>j -» P follows
from \|/ by the decomposition rule. Thus, 0 c £2* holds. On the other hand, £2 c; 0+ also holds, since if \j/= 4>i
. . .<(»„, then y -» p follows from $1 -> P, fo -> P ..... <J>n -> P using the union rule.

Example B
Consider class hierarchy £2 in Example A again, By Theorem 2, we can find an equivalent class hierarchy
denoted 0 whose both sides has only one class and is shown as follows:

*=>-L' **1 ~* U2°'3U4 'U6 U5 equiabtt . Q _



AJIS Vol. 7 No. 1 Sept 1999

It turns out to be useful, when we develop a class hierarchy design, to consider a stronger restriction on
equivalence than that both sides have but one class.

MINIMAL CLASS HIERARCHY

In this section, we propose a useful concept called minimal class hierarchy to address redundant inheritance.
This minimal class hierarchy plays a vital role in our checking mechanism for redundant inheritance.

Definition 3: A class hierarchy is said to be minimal if:
1. Every both sides of an inheritance relation in ft is a single class.

2. No £ — » r\ e ft such that the set (ft - { J; -» T| }) is equivalent to Q.

Theorem 3: If a class hierarchy & contains redundant inheritance relationships, then there is a minimal class
hierarchy 0 such that 0 c ft and ft* = 0+.
Proof: We have to show that 0 satisfy the two conditions mentioned above.

1. For each redundant inheritances £ — > T) € ft, (ft - {£ -» T\})+ = ft+ must hold, and we can remove I; -» T|
from ft. Let 0 = ft - (£ -> T|). Because Q contain redundant inheritance relationships, there exists at least one
redundant relationships J; — > T| such that ft - { ̂  -» T| } is equivalent to Q.

2. By Theorem 3, all the inheritance relationships in ft can be decomposed into a class hierarchy 0, in which
no both sides have more than one class. Therefore, 0 can be done in the same way.

Example C: Consider the class hierarchy 0 in Example B again. We apply Theorem 3 to 0, then get a minimal
class hierarchy denoted A equivalent to 0 shown as follows.

By the comparison of Example A and Example C, we can conclude that £2, 0, and A are equivalent mutually.(
i.e., £i+ = 0+ = A+.) Theorem 3 derives a useful property that a minimal class hierarchy itself is a non-redundant
class hierarchy. This non-redundancy is just what we are seeking for. We can derive a redundant inheritance
detection algorithm straightforward from the Theorem 3. The idea of this algorithm is that for each inheritance %
• TJ e £i, if Q+ is equal to (ft - { ̂  -> T| } )+, then ̂  -> T| is a redundant inheritance.

Algorithm 1: Find out Redundant Inheritances with respect to a class hierarchy
Input: A class hierarchy Q={ei, 62, ..., en} with n inheritances.
Output: A redundant inheritance set F

1. F = 0; initialize F with empty
2. for each Cj e £2, i = 1,2,. ..,n

if Q+= {£i-ei}+ then add ei to F

However, this algorithm is not efficient because the computing of ii+ is an exponential time. Fortunately, there
is an alternative approach to replace £i+. At the other extreme, computing %+, for a set of classes ^, is not hard; it
takes time proportional to the length of all inheritances in Q, written out. A more efficient algorithm based on E,+

will be proposed in the next section. Now we define %? formally as follows:

Definition 4: Let ft be a class hierarchy on a set of classes denoted by T, and let ^ be a subset of XF. Then the
closure of ^ with respect to ft, denoted by E,+, is defined as the set of classes T| such that ^ — » T\ can be deduced
from ft by inference rule.

The redundant inheritance detection could be achieved by checking whether %+ still contains T| after removing ^
— > T). If it does, then J; — » TJ is a redundant inheritance relationship. A simple algorithm to compute £*" is
shown in the following.

36



AJIS Vol. 7 No. 1 Sept 1999

Algorithm 2: Computation of the Closure of a set of classes with respect to a class hierarchy
Input: A finite set of classes T, a class hierarchy £1 on 4*, and a set ̂  c 4*.
Output: £*, the closure of £ with respect to £2
Method: We compute a sequence of sets of classes ^(0), £(1),..., by the rules:u<°>^
2. £(1+1) is £(l) plus the set of classes T| such that there is some inheritance Y -> Z in Q, T| is in Z, and Y G £(i).
Since £ = £(0> c ... £ £(i) c, ... c 4*. and M* is finite, we must eventually reach i such that £(i) = £(i+l). It then
follows that £(i) =£<i+1)= £(i+2)= .... There is no need to compute beyond £(0 once we discover £(i)= £(i+I). We can
(and shall) prove that £* is £w for this value of i.

In the following, we use an example to illustrate the algorithm. To illustrate the algorithm clearly, a complex
class hierarchy is chosen and executed instead of a trivial one. Although the class hierarchy may be very
complex and contains cyclic inheritance which is controversial in semantics, the major goal is to demonstrate the
process of algorithm execution. Therefore, we do not request its programming feasibility in practice.

Example: Let £1 consists of the following eight inheritances:

a^jtt, -> a2 at -> «5a6 «2a5 -» «3

«3a6 -> a2at a3a5 -» «1a6

and let ^=0204. To apply algorithm 2, we let £(0)= c^ct). To compute £(1> we look for fi that have a left side Oj,
04, or 0204. There is only one, o» -» 050$, so we adjoin 05 and 0$ to £<0) and make ^(1)= o^o^ocsOg. For £(2), we
look for left sides contained in £(1) and find 04 -4 OsOe and 0205 -» o3. Thus £(2>= o^ajO^OsCif,. Then, for £(3) we
look for left sides contained in 020:3 OtOsOe and find, in addition to the two previously found, o3 -» Oi, 0703 -»
04, a3O6 — » 02 ct», and a3(X5 -» cciC^. Thus ^(3)= 010203040506. It therefore comes as no surprise that £(3)=
£<4)=.... Thus (a2O4)+= Oi 02 a3 04 05 O6.

Time Complexity and Data Structure Analysis for Algorithm 2
Algorithm 2 can be implemented to run in proportional to the sum of the lengths of the inheritances in £1 if we

keep, for each inheritance Y — » Z, a count of the number of classes in Y that are not yet in £(l). We must also
created a list, for each class T|, of the inheritances on whose left side T| appears. When T) is adjoined to some £(l>,
we decrement by one that count for each inheritance on t\'s list. When the count for Y — » Z becomes 0, we know
Y £ £(l>. Lastly, we must maintain £(l) as a Boolean array, indexed by class numbers, so when we discover Y £
£(l), where Y — » Z is an inheritance in £i, we can tell in time proportional to the size of Z those classes in Z that
need to be adjoined to £(l)- When computing £(M'1) from £(l) we have only to set to true the entries of the array
corresponding to classes added to £(l); there is no need to copy £'".
Now the problem of proving that algorithm 2 is correct must be addressed. It is easy to prove that every class
placed in some £(k) belongs in £*, but harder to show that every class in £* is placed in some ̂

Theorem 4: Algorithm 2 correctly computes £+.
Proof: First we show by induction on k that iff) is placed in £*', then T| is in £+.
Basis: k=0. Then T| is in £, so by reflexivity, £ -» TJ.
Induction: Let k>0 and assume that Jj*"0 consists only of class in £*. Suppose T| is placed in ̂  because T| is in
Z, Y -* Z is in Q, and Y c £(l"'). Since Y £ £(tl), we know Y c t? by the inductive hypothesis. Thus £ -» Y by
Lemma 1. By transitivity, £ -> Y and Y -> Z imply £ -» Z. By reflexivity, Z -»£, so £ -» T| by transitivity. Thus
T| is in £+.

REDUNDANT INHERITANCE DETECTION AND RESOLUTION

In this section, a detection algorithm for redundant inheritance will be presented. Also, three approaches to
resolving redundant inheritances are proposed. In Section 3, we have shown that the computation of a closure set
of a class hierarchy, for example f l , is very time consuming. In contrast, computing ̂ , for a set of classes ^, is
not hard. Previously, ^+ is defined as the closure of a set of classes ^ on some class hierarchy. Because there
may exist various different class hierarchies in an OO design, the definition of the closure ^ is not precise

37



AJIS Vol. 7 No. 1 Sept 1999

enough to specify to which class hierarchy it belongs. For the sake of precision, the term 4+n is used to
strengthen the previous definition. Simply stated, the closure of £ on £2 is denoted as £,+n. The idea of the
algorithm is that for each ^ -> Tl e Q, if Tl e £+n-(£. n } then ̂  -» n, is a redundant inheritance.

Algorithm 3: Find out Redundant Inheritances
Input: A class hierarchy Q.
Output: A set of redundant inheritance F
1. Apply Theorem 2 to ft, then get an equivalent class hierarchy 0
2. For each ^ -» T| e 0 do

(1) Apply Algorithm 2 to compute 4V{5- ti (
(2) if TI E £+e-($. n )} t"611 add ^ -» Tl to F

Example D: Given a class hierarchy Q, find out its redundant inheritances. Let Q consists of the following four
inheritances:

Step 1. To apply Theorem 2 to £i, we then get a class hierarchy 0 as follows:

Step 2. for each inheritance £ • T| in 0 we do:

1. ai —» a3 is chosen: we apply algorithm 2 to compute the closure of Oi+ on (0-{(X| -» 0.3}), and we
get ai +={ 05}. We find that oc3 e cti+ does not hold, then discard aj -* a3.

2. d] —»ots is chosen: we apply algorithm 2 to compute the closure of oti+ on (0-{cti —> ots}), and we
get a\ +={a3, 04,05}. We find that 05 e oti+ holds, then we adjoin cii —> 05 to F.

3. a2 —> as is chosen: we apply algorithm 2 to compute the closure of 02* on (©-{02 —> 013}), and we
get ct2*={0} (denoting empty set). We find that Ct3 e 02* does not hold, then discard 02 -» a3.

4. a3 -> 04 is chosen: we apply algorithm 2 to compute the closure of Ot3
+ on (0-{ct3 -» 014}), and we

get a3+={ots}. We find that 04 e a/ does not hold, then discard a$ —» o .̂
5. ct3 -» 05 is chosen: we apply algorithm 2 to compute the closure of a3

+ on (0-{a3-> 05}), and we
get a3

+={ct4, ots}. We find that o^ e a^ holds, then we adjoin <x3 -» o^ to F.
6. 04 —» ots is chosen: we apply algorithm 2 to compute the closure of Oj* on (0-{Oi —» 0(5}), and we

get O4+={0}. We find that 05 e a/ does not hold, then discard 04 -» 05.

After the execution of algorithm 3, F will contain a set of redundant inheritances {oti -» 05, ot3 -> 05 }. For this
redundant inheritance at —» 05 in F, it means that class 0$ could inherit directly or indirectly from oti .
Equation (1), shown in Section 2, reveals that 05 would inherit twice (or more) from cti . To reduce the
occurrence of implicit errors caused by this redundant inheritance, we had better refine all the ancestor classes of
class 05. The depth-first or breadth-first traversal algorithm can be used to determine these ancestor classes. The
refinement depends on the actual inheritance relations. We can combine related classes to remove these
unnecessary duplicates. This behavior is also called class aggregation (Hendler 1986). The redundant
inheritance a3 —» 05 can be dealt by the same way.

Analysis for Algorithm 3

Algorithm 3 basically consists of two parts. First part is to apply Theorem 3 to a given class hierarchy. As the
proof of Theorem 3 mentioned above, we use decomposition rule and union rule to get a class hierarchy whose
both sides contain only one class. For an inheritance £ —» T), the decomposition rule can be implemented to run
in time proportional to the length of r\, and union rule is in proportional to the length of %. Second part is to
apply algorithm 2 to compute the closure set of £ on 0 for each inheritance ^ -> TI e 0. The analysis of

38



AJIS Vol. 7 No. 1 Sept 1999

algorithm 2 has been shown above. Integration of the analysis of the two parts, the algorithm 3 runs in
proportional to the sum of the lengths of inheritances in a given class hierarchy.

Resolutions for Redundant Inheritance

After the redundant inheritance have been identified, it is important to resolve them before coding. Basically,
there are three approaches to dealing with the problem of redundant inheritance. First, we can treat occurrences
of redundant inheritance as illegal. This is the approach taken by Java, Smalltalk and Eiffel (with Eiffel
permitting renaming to disambiguate the duplicate references). Second, we can permit duplication of
superclasses, but require the use of fully qualified names to refer to members of a specific copy. This is one of
the approaches taken by C++. Third, we can treat multiple reference to the same class as denoting the same class.
This is the approach taken by C++ when the repeated superclass is introduced as a virtual base class. A virtual
base class exists when a subclass names another class as its superclass and marks that superclass as virtual, to
indicate that it is a shared class. The redundant inheritance in Fig.l-c can be resolved by declaring superclass
Driver as a virtual base class:

class Driver {....};

class US-Driver, virtual public Driver {...};

class China-Driver: virtual Public Driver { ... };

class US-China-Driver: public US-Driver, public China-Driver {...};

Similarly, in CLOS repeated classes are shared, using a mechanism called the class precedence list. This list,
calculated whenever a new class is introduced, includes the class itself and all of its superclasses, without
duplication, and is based upon the following rules:

1. A class always has precedence over its superclass
2. Each class sets the precedence order of its direct superclasses

In this approach, the inheritance graph is flattened, duplicates are removed, and the resulting hierarchy is
resolved using single inheritance (Dussud 1993). This is akin to the computation of a topological sort of classes.
If a total ordering of classes can be calculated, then the class that introduce the redundant inheritance is accepted.
Note that this total ordering may be unique, or there may be several possible orderings. If no ordering can be
found (for example, when there exist cyclic inheritance), the class is rejected. In Fig.l-c, the class US-China-
Driver would be accepted, because there is a unique ordering of superclasses; the superclass hierarchy includes
exactly one (shared) appearance of the class Driver.

Invoking a Method hi Redundant Inheirtance

In traditional programming languages, invoking a subprogram is a completely static activity. In Pascal for
example, for a statement that calls the subprogram P, the compiler can generate code that creates a new stack
frame, places the proper arguments on the stack, and then changes the flow of control to being executing the
code associated with P. However, in OO languages that support polymorphism, invoking a method is dynamic
because the class of the object being operated upon may not be known until runtime. Matters are even more
complicated when we add redundant inheritance to this situation. Redundant inheritance with polymorphism
requires a much more sophisticated technique. Consider the class hierarchy shown in Fig.l-c, which shows the
base class Driver along with two subclasses named US-Driver, and China-Driver. Both of them has a subclass,
named US-China-Driver. In class Driver, the method birthday-check is common to all subclasses, and therefore
need not be redefined. However, the method traffic-violation must be redefined by each of the subclasses, since
either in China or US, the number of violations must be mutually independent. Thus, since the class Driver is an
abstract class', traffic violation has an empty implementation (it is a pure virtual function, in C++ terminology).

In C++, the developer can decide if a particular method is to be bound late by declaring it to be virtual; all
other methods are considered to be bound early, and thus the compiler can statically resolve the method call to a
simple subprogram call. In this redundant inheritance, we might have declared traffic-violation as a virtual

1 A class with no instances is called abstract data class.

39



AJIS Vol. 7 No. 1 Sept 1999

member function and the method birthday-check as nonvirtual because the birthday of anyone is unique and
unexchangeable. Therefore, birthday-check need not be redefined.

CONCLUSION

In this paper, we propose a checking mechanism to determine redundant inheritance in a given class hierarchy.
Inference rule system is used to specify the inheritance constraints. A minimal class hierarchy concept is
presented to address the redundant inheritance occurrence. An algorithm based on the minimal class hierarchy is
derived to detect redundant inheritances. This work will contribute to object-oriented software testing and
maintenance. It is note worthy that this checking mechanism can be easily incorporated with OO CASE tool to
facilitate OO software development and quality. The occurrence of cyclic inheritance which causes self-
inheritance and endless type-checking is another problem associated with multiple inheritance in the class
hierarchy design. For most theoretical papers, it is strictly prohibited and is assumed to never happen. However,
the occurrence of cyclic inheritance due to careless design or specific purpose is inevitable and inherent for
software designers. For the sake of space limitation, we leave it to future discussion and research.

REFERENCES

Horning, A.H. and Ingalls, D.H.(1982), "Multiple Inheritance inSmalltalk-80," in Proc. of the AAAI-82,
Pittsburgh, 1982, pp. 234-237.

Cardelli, Luca (1984)," A semantics of Multiple Inheritance, " in Semantics of Data Types, Lecture Notes in
Computer Science 173, Springer-Verlag New York, 1984, pp. 51-67.

Carre, B. and Comyn, G. (1988)," On Multiple Classification, Points of View and Object Evolution," in
Demongeot, Herve, T., Rialle, V., and Roche, C. (eds.), Artificial Intelligence and Cognitive Science,
Manchester University Press, 1988.

Carre, B. and Geib, J.M.(1990), "The Point of View Notion forMultiple Inheritance, " OOPSLA, 1990, pp.
312-321.

Chung, C.M. and Lee, M.C.(1997)," Integration Object-Oriented Software Testing and Metrics," International
Journal of Software Engineering and Knowledge Engineering, vol. 7, no. 1,1997, pp. 125-144.

Dussud, P. (1993)" TICLOS: An Implementation of CLOS for the Explorer Family." SIGPLAN Notices vol.
24(10), 1993.

Freeman, Lee, ed.(1991), Computer Aided Software Engineering (CASE), James Martin Insight Inc,
Naperville, 111., The Martin Reprt, Vol. VI, updated quarterly, 1991.

Grady Booch (1991), Object-Oriented Design with Application, pp. 105-113, 1991, The Benjamin.
Hendler, J. (1986)"Enhancement for Multiple Inheritance," SIGPLAN Notices, vol. 21 (10), Oct. 1986, pp.

100.
Kim, Won Modern Database Systems (1995), The Object Model, nteroperability, and Beyond, ACM Press.

1995. pp.211-222.
Lee, M.C. and Chiang, D.A.(1992), "Cyclic Inheritance Detection for Object-oriented Database," IEEE Region

10 Conference, TENCON'92 Australia, November, 1992, pp. 633-637.
Meyer, Bertrand, Object-oriented Software Construction, New York, Prentice-Hall 1988, pp. 274.
Moises Lejter, Scott Meyers, and Steven P. Reiss, (1992)"Support for Maintaining Object-Oriented Programs,"

IEEE Trans, on Software Engineering, vol. 18, no. 12, Dec. 1992, pp. 1045-1052.
Ullman, J.D., (1988) Principles of Database and Knowledge-Base Systems, Vol. 1, Computer Science Press,

Maryland 1988, pp. 391-392.

40


