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Abstract  

Warehouses are being impacted by increasing e-commerce and omni-channel commerce. The 

design of current WMSs (Warehouse Management Systems) may not be suitable to this mode 

of operation. The golden rule of material handling is smooth product flow, but there are day-

to-day operational issues that occur in the warehouse that can impact this and order fulfilment, 

resulting in disruptions. Standard operational process is paramount to warehouse operational 

control but may preclude a dynamic response to real-time operational constraints. The growth 

of IoT (Internet of Things) sensor and data analytics technology provide new opportunities for 

designing warehouse management systems that detect and reorganise around real-time 

constraints to mitigate the impact of day-to-day warehouse operational issues. This paper 

presents the design and development stage of a design science methodology of an intelligent 

agent framework for basic warehouse management systems. This framework is distributed, is 

structured around operational constraints and includes the human operator at operational and 

decision support levels. An agent based simulation was built to demonstrate the viability of 

the framework. 

Keywords warehouse management systems, distributed intelligence, software agents, 

decision support. 

1 Introduction  

Increasingly, the future of warehouses is considered to be completely automated and human-

less. Not all warehouses can feasibly be automated, however. The expense of automation can 

preclude this solution in many smaller warehouses. Products that are odd shapes and bulky 

can also be difficult to handle robotically. This study proposes that advances in IoT and AI can 

bridge the gap between existing largely manual warehouses and full automation. 

Changes in product make up and e-commerce orders present new issues for warehouses and 

distribution centres. The impact of expanding e-commerce and omni-channel business models 

(Michel, 2016) create a new way of working that is characterised by increasingly changing 

customer demands, higher product variety, smaller order size, the expectation of reliably 

shorter response times (Lu, Giannikas, McFarlane, & Hyde, 2014) and irregular order arrival 

(Leung et al., 2018). Storing a wider variety of products in a warehouse in smaller quantities 
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can mean that the way the warehouse and its systems work is different (Davarzani & 

Norrman, 2015). In fact, only 10% of distribution centres exclusively handle pallets now, while 

66% handle a mixture of pallets, cases, split cases, and pieces (Michel, 2018a). Many warehouse 

management systems (WMS) are not designed for small orders picked in piece units. In the 

2018 Warehouse/Distribution Center (DC) Equipment Survey(Michel, 2018b), 29% of 

respondents indicated that the most common process for e-commerce fulfilment in their 

operation was “buy online and ship to customer from DC” although there was growth in “buy 

online and ship to customer from vendor”. This suggests that the DC might be struggling with 

the processing of e-commerce orders. This pressure may see the default of members of the 

supply chain and this can alter the behaviour and the exposure to risk of other members of the 

supply chain (Gibilaro & Mattarocci, 2019). 

Warehouse design including operational processes are predominantly based on current and 

projected future demand (De Koster, Le-Duc, & Roodbergen, 2007) and changes to design after 

construction are costly (Gu, Goetschalckx, & McGinnis, 2007). The warehouse control systems 

and software that operate them are costly to implement and change and require considerable 

training and support (Min, 2006). Warehouses are designed to be well-defined process-driven 

product flow machines (Bartholdi & Hackman, 2008). Their aim is to achieve maximum 

throughput with minimum investment and operational costs (Bartholdi & Hackman, 2008; 

Rouwenhorst et al., 2000; van den Berg & Zijm, 1999). However, their inability to flexibly 

respond to dynamic changes in demand leads to common issues such as aisle congestion, 

mistimed replenishments of the pick face, short-picks and double handling (Gong & De Koster 

2011, Bartholdi & Hackman 2008; Gu, Goetschalckx & McGinnis 2009). Dynamic responses are 

needed when the fixed constraints of the environment have been impacted. 

In dynamic environments, a small number of constraints can lead to operational issues that 

have a large impact on the warehouse throughput as a whole. These can impact warehouse 

performance if not detected and corrected in a timely manner. These include: 

• The operator is unable to complete order selection or replenishment of a selection 

location. Potential causes: 

• Congestion (for selector or forklift operator) (M. Zhang, Batta, & Nagi, 2009) 

• Inventory system inaccuracies (inventory record does not match reality). 

Many factors can cause inventory inaccuracies including visual complexity 

(Barratt, Kull, & Sodero, 2018). 

• Inaccurate product and packaging dimension data that can misrepresent 

the actual height and weight of a storage unit. SKU weights and dimensions 

can be hard to maintain due to supplier changes(Michel, 2016) 

• Slow replenishments 

• A replenishment that is triggered too early or too late has flow-on effects to 

picking (Richards, 2014; Rushton, Croucher, & Baker, 2014) such as overfull 

location (too early) or short-pick (too late). Short picks require extra order 

selection trips and delay order completion. 

• Slow receiving/checking processes. 

• A failure to prioritise stock that will be required sooner based on order 

demand (Richards, 2014) 
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• Picking from incorrect location, Incorrect stock in location, Over-picking, Under-

picking 

• Identification of this issue (occurring even with bar-coding, RF (Radio 

Frequency) scanning and voice picking technology) can highlight incorrect 

case or inner case barcoding or operator error. Picking inaccuracies that are 

not discovered prior to shipping can result in returns, repeat deliveries and 

loss of goodwill (García, Chang, Abarca, & Oh, 2007). Pick error rates were 

reported at between 0.02% and 0.05% by companies participating in a 

qualitative analysis of work schedule deviances (Glock, Grosse, Elbert, & 

Franzke, 2017). 

• Staging dock congestion 

• Badly managed staging areas can lead to congestion and scattered staging 

of picked orders causing issues when loading trucks for delivery. Picked 

goods for dispatch should not be ready too early as this causes congestion 

and should also not be late as this holds up the loading process and the 

despatch door (Walker, 2018) 

As with most errors that occur with flow-on effects in a system, prevention or detection and 

correction in a real-time or near real-time manner is desirable. This is especially important in 

the order fulfilment space, where truck scheduling and delivery time windows need to be met 

and returns are costly or become losses (especially with high value stock).  

Current warehouse management systems (WMS) are generally top-down, centralised systems 

and their decision support functions are the same. The disadvantages of central control include 

a single point of failure, inconsistent speed of response and a high dependency in the structure 

(Haneyah, Schutten, Schuur, & Zijm, 2013). Most of these software packages deal with 

producing tasks to completely pick and despatch a batch of customer orders in a given time 

period. Inventory management and interfaces to transport and billing (ERP) systems are 

managed as part of order fulfilment. The dynamic operational control is mainly done by 

humans via summary reports and screens that require human intervention and that are highly 

customised (Haneyah et al., 2013). This study sought to find a better way to design warehouse 

management systems, utilizing intelligent agents. It sought to answer the following research 

question: 

How can distributed intelligent agents augment warehouse operations to mitigate the impact of 

dynamic day-to-day issues? 

The purpose of this paper is to propose a distributed model for designing warehouse 

management systems that detects and reorganises around real-time constraints to mitigate the 

impact of day to day warehouse operational issues. The model is depicted in Figure 1. 
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Figure 1 Conceptual Model of proposed WMS design framework 

The elements of this model include: 

• Distributed intelligence via cooperative agents 

• Real time feedback/detection mechanisms 

• Incorporate real-time constraints in the framework 

• Embed the human operator as an actor in the framework with consideration of: 

• Physical, mental and social real-time constraints 

• The information required at different levels for decision support 

• Adaptive learning based on trends for decision support 

• Allow for AI algorithms to be plugged in where applicable and appropriate 

based on the temporal environment. 

2 Literature Review 

The challenges faced in decision support for complex systems such as warehouses are: 

infeasibility (all the information is not available in one place), impracticality (it would not be 

practical to come up with a centrally determined optimal solution), inadvisability (even if you 

had such a solution it would not be advisable) (Marik & McFarlane, 2005). Distributed 

intelligence (DI) as a bottom-up approach to solving these issues has been proposed to enhance 

flexibility and agility (García et al., 2007). DI is a system of elements that have a degree of 

autonomy of operation, can reason solely or jointly and can interpret the state of the 
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environment and the intentions of other elements (McFarlane, Parlikad, Neely, & Thorne, 

2012). Distributed intelligence can be implemented using an intelligent agent framework 

(Shukla & Frank Chen, 1996).  

Decision making within distributed intelligence can be determined by the data visibility at 

each point or node of a system. Technologies such as RFID, Internet of Things (IoT), GPS and 

other tracking systems are making this easier (Ding, 2013; Karagiannaki, Papakiriakopoulos, 

& Bardaki, 2011; Liu et al., 2013).  

One can imagine a warehouse environment in which information from sensors is used to form 

a picture of the environment and make a decision in real-time. Estanjini, Lin, Li, Guo, and 

Paschalidis (2011) developed such a system to determine the next task to be allocated to forklift 

drivers in a grocery warehouse. The system used a sensor network, an information collection 

system, a localisation algorithm and dynamic programming to determine the next task to 

allocate to an available forklift. A dynamic programming technique – actor-critic algorithms 

was used to determine the optimal average cost in simulation and this value was used in the 

implementation in a case study. Dynamic programming is used in multi-dimensional problem 

spaces such as this one where finding an exact optimum solution is almost impossible. 

One approach using product intelligence (Giannikas, Lu, McFarlane, & Hyde, 2013) uses a 

product and a shelf agent to select an appropriate storage location. This introduces the concept 

of non-human agency in the warehouse giving agency to products and shelves and is an 

important aspect of actor-network theory (Latour, 2005). This “intelligent product” concept 

has been extended into concepts such as “communicating objects”(Trab et al., 2017) and “smart 

warehouses” (Ding, 2013).  

A new model using multi-agent systems (MAS) and IoT is proposed by Reaidy, Gunasekaran, 

and Spalanzani (2015), responding to the growing norm of uncertainty in supply chains. This 

model uses a bottom-up approach in which simple functions with local objectives are 

distributed. Ambient intelligence is achieved through sensors, control science (expert systems) 

and telecommunications. Agent communication strategies may be cooperation, competition, 

coo-petition or comp-eration (Reaidy et al., 2015).  

Trab et al. (2017) use the “communicating object” concept and IoT to deal with the safe 

handling of hazardous products in a warehouse. All actors in the warehouse are modelled 

including human operators. The proposed hybrid intelligent system (central and distributed 

elements) has three levels of interaction O2O (object to object), O2H (object to human) and O2E 

(object to environment). Liu et al. (2013)) discusses full electronic and GPS tracking of all goods 

coming in and out of the warehouse using RFID, GPRS (GPS) and Zigbee WSN for tracking 

within the warehouse. A model for the safe handling of hazardous goods in warehouses is 

also proposed using RFID and IoT to track materials and notify of incorrect placement and to 

support storage decisions (L. Zhang, Alharbe, & Atkins, 2016). An artificial neural network 

(ANN) is used for environment detection. What emerges from the above research is a model 

where information about the environment is pieced together from sensors and made sense of 

through algorithms and AI. 

Multi-agent systems (MAS) have been studied in warehouse management systems (García et 

al., 2007; Kim, Graves, & Heragu, 2002; Rubrico, Ota, Higashi, & Tamura, 2006). A MAS system 

was proposed to control stock levels using information from inputs and outputs of a bedding 

company warehouse captured via RFID (García et al., 2007). The stock level control was done 
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at the ERP level while the enhanced RFID/IMS system was used to improve warehouse 

inventory management and picking accuracy. This was a bottom up approach feeding decision 

support systems. Multi-agent systems that communicate have been used to optimise the 

assignment of a pick route to an available picker based on proximity to the first location to be 

picked (Gharbi, Zgaya, & Hammadi, 2013). The location of the pickers is determined via RFID.  

In one agent-based model presented for the movement of products from the main warehouse 

to storage in the production warehouse for use on the production line four agents are used: 

production, storage, forklift and main warehouse (Maka, Cupek, & Wierzchanowski, 2011). 

The products are moved between the storage and production warehouses by forklift. As well 

as communication, there is some complex logic in scheduling which products should be 

moved, in what priority and in what sequence they should be loaded and unloaded from the 

forklift. The authors make an interesting point about the value of following global rules in 

storage decisions compared to the intelligence gained from analysing historical data such as 

product trends. Instead of the rule that all products must be stored in the closest empty 

location for instance, it is more efficient for products that are usually retrieved together for the 

production line to be stored together. However, this information is dynamic and based on 

recent historical data. 

Of the indirect measures of warehouse performance, labour is especially important since any 

inefficiency on the part of a human operator can impact shipping and delivery time. The 

importance of the human element (from operators to supervisors and management) as the 

actor whose “service failure or inefficient performance directly increases customer-order cycle 

time and negatively impacts the level of service as perceived by the customers” (Staudt, Alpan, 

Di Mascolo, & Rodriguez, 2015) cannot be overlooked.  

A different way of thinking of work environments is that of a cooperative partnership rather 

than a differentiation between the “computer system” and the “human” as entities that 

enhance the fulfilment of goals. The desired precepts of a system in which human and non-

human agents interact in a “team” are that: 1) agents agree to collaborate to achieve a joint 

state and goal, 2) agents are predictable, able to be directed, observant and transparent in 

intentions and behaviour and 3) agents coordinate, negotiate and communicate (Klien, Woods, 

Bradshaw, Hoffman, & Feltovich, 2004). 

The design of Decision Support Systems (DSS) that can emulate human decision making 

would best be based on an understanding of human decision making but this is a complex 

psychological construct (Arnott & Pervan, 2005). Firstly, humans are restricted by the 

availability and limits of cognitive resources, by biases and by time (Einhorn & Hogarth, 1981). 

Nowadays, vast amounts of data can be stored and analysed. Information overload can stunt 

human decision making. DSS systems can assist humans most in the areas where they are most 

deficient: computational speed and planning (scenario generation) and it has been suggested 

that a human-machine collaboration is the best way to breach the gap between human 

limitations and computer understanding (Pohl, 1999). As warehouse operations become more 

complex, decision support tools that augment the ability of people to make appropriate and 

timely decisions has many advantages (Miller, 2018).  

Real-time data capture supported by IoT, data mining advances and non-human agency 

converge on the concept of a digital twin first developed in Glaessgen and Stargel (2012). The 

digital twin is proposed to have a complete and individual representation of its non-digital 

counterpart. It uses available information from sensors and via data mining of other sources 
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and mirrors the operating physical twin in order to predict the probability of future failure 

points based on hypothetical simulated scenarios. 

A digital twin consists of three parts: physical product, virtual product, and connected data 

that tie the physical and virtual product space (Tao et al., 2018). The virtual product is a real-

time reflection of the physical product and is being updated in real-time to maintain this 

mirroring. Connected data consists of various real-time and historical data that can be 

analysed and mined in a converged state (Tao et al., 2018). The connected data helps form a 

complete view of the state of an element and enhances decision-making. 

In the model presented in this paper, new technologies and algorithms are used to augment 

the natural decision-making and learning capacity of people to create more flexible and 

productive work environments. 

3 Methodology 

Design Science research methodology (DSRM) was used for this study because of its iterative 

approach to developing and improving an IT artefact. An artefact is considered “any designed 

object in which a research contribution is embedded in the design” (Peffers, Tuunanen, 

Rothenberger, & Chatterjee, 2007). Hevner, March, Park, and Ram (2004) describe design 

science research as “inherently, a problem-solving process”. The seven guidelines for effective 

design science research established by Hevner et al. (2004) included designing a viable artifact, 

problem relevance, evaluation, contribution, research rigour, design as a search process and 

the communication of that research. 

In this research, the artefact is a distributed WMS model tested via simulation. The six DSRM 

activities as defined by Peffers et al. (2007) were used as follows: 

1. Identify Problem and Motivate. The problem addresses the real-time operational 

issues that cause bottlenecks and impede product flow in warehouses. As well as a 

literature review, semi-structured exploratory interviews were undertaken with 

warehouse professionals to confirm operational issues in warehouses. The results 

of these interviews are the subject of another paper. 

2. Define Objectives of a Solution. Following the thematic analysis of the 

exploratory interviews, the data was examined to determine the link to the problem 

domain and the measures that would be used to evaluate the artefact that would 

be developed. The determined objective was to develop a model for designing a 

WMS that makes use of distributed intelligence. This model provides a way to re-

organise around real-time constraints before they become bottlenecks and augment 

human decision-making and operational control. 

3. Design and Development. This involved the requirements analysis, the design of 

a conceptual model, agent model, agent communication protocol, state diagrams, 

simulation development and the development of evaluation scenarios and 

measures. This step is the main focus of this paper. 

4. Demonstration. The developed model was tested in the simulation using 

generated data (locations, products, inventory, orders etc.) against standard WMS 

algorithms.  
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5. Evaluation. This activity involves determining how well the artefact matches the 

problem solution defined in activity 2. The simulation environment that was 

designed and constructed was used to evaluate the feasibility of the WMS design 

framework developed. 

6. Communication. This paper is communicating the WMS design framework 

developed and evaluated in this study. We hope to make all phases and results of 

this study available through publication. 

Three distinct design iterations are described below. These comprised the design and 

development activity of the DSRM methodology and were iteratively modified following 

demonstration/testing activities. 

1. Development of the conceptual model (depicted in Figure 1). This involved 

defining the industry problem and reviewing the literature. The conceptual model 

was developed via a synthesis of research literature and industry experience. 

2. Design of the multi-agent system. This involved defining and specifying the types 

of agents required, their specifications, goals and behaviours. This is elaborated in 

section 4. 

3. Simulation. This involved developing a warehouse simulation environment and 

coding the behaviour of the agents, using JadeX. The simulation was used to 

validate the design of the conceptual model. Real-world scenarios and constraints 

were used to test and evaluate the model. This is elaborated in section 5. 

4 Conceptual Design Overview 

The design development of a distributed framework for a warehouse management system 

involved: Requirements Modelling and Agent Modelling. Requirements analysis was used to 

determine the required agents and their interactions. Agent modelling determined the agent 

states, goals, plans and modes of interaction. 

4.1 Requirements Analysis 

ANEMONA (A Multi-agent Methodology for Holonic Manufacturing Systems) (Botti & Giret, 

2008) was used to develop a basic requirements analysis of the agent and agent responsibilities 

for a warehouse. ANEMONA was chosen because of the structured and iterative approach to 

analysing and defining agents from the organisational diagram to abstract agents, goals, tasks 

and interactions into agents. Figure 2 shows a version of the abstract agents representing 

various warehouse roles. 
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Figure 2 Abstract agents and the organisational diagram 

4.2 The Agent Model 

Three types of agents were modelled: entity agents that were connected to a physical entity 

(location, inventory pallet, human, forklift, shipping pallet), mentor agents (forklift operator 

and selector operator mentors) and service agents. Entity agents could be associated with 

sensors and other direct feedback mechanisms. Mentor agents were associated with a human 

operator and were in control of communicating with other agents to obtain available tasks and 

communicating task instructions to the human operator. Service agents were either providers 

of a function or information or fulfilled a role (generally a manager role).  

The design of the agents involved goals and plans that were either triggered by a request from 

another agent via a communication protocol or a change in the state of the agent due to a 

change in the environment. As such, the design of the agents involved state diagrams and an 

inter-agent communication protocol. Each agent had a defined communication interface 

through which they receive a request for information or action. Each communication protocol 

involved the exchange (incoming and outgoing) of a message (request or response) and an 

object of data. Figure 3 shows some of the agent interactions in a mostly non-hierarchical 

configuration. 

 

Figure 3 Agent Interactions 
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4.2.1 State Diagrams 

The agent goals were either triggered by a change of agent state or by a request from another 

agent. A change in state indicated a change in the environment and hence a change in the 

actions required from the agent. In the example of a receiving pallet in Figure 4, a change of 

state to “Arrived” triggers a goal to unload the pallet from the truck, creating the task required 

to unload it. This task is prioritised by the Work Priorities agent and allocated to a forklift 

operator through the task service agent. Once the pallet has been unloaded from the truck its 

state changes to “Unloaded” triggering a goal to find a suitable warehouse location for it. The 

goals that are initiated by a change of state in an agent are predictable. Entity agents maintain 

a state (status) and a position within the warehouse so that this can be maintained when the 

simulation is restarted. 

 

Figure 4 State Diagram for a pallet received into the warehouse 

The entity agents such as the receiving pallet agent above were paired with inanimate objects 

to which agency is not usually ascribed. All entity agents had a real-time vision of other entity 

agents in their shared environment. Within the simulation this could be set to the entire 

environment or to a more realistic proximal distance. Granting agency to inanimate objects 

means that they are not just represented as a number within a WMS that are acted on but have 

the ability to determine their required action based on the current state. Another example of 

this is the location or point (staging, door, equipment etc.) entity agent (Figure 5). When the 

receiving pallet agent requests a storage location for itself, the location manager service may 

use any suitable algorithm which may change based on the current state of the environment. 

When a suitable location for put-away is found, the location agent must agree to allocate. This 

is a point at which the location agent, having more accurate information about its own state 

and the state of its surroundings may refuse the allocation thus preventing an operational 

exception from occurring when the forklift driver arrives at that location with the receiving 

pallet. Entity agents are a form of digital twin albeit a not very complicated one and without 

analytical capabilities. 
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Figure 5 State Diagram for a Location Spot Entity Agent 

The mentor agents that are associated to a human agent are more complex. The mentor agent 

mirrors the state of their human operator counterpart who is constantly moving within their 

environment, unlike the physical objects paired with an entity agent. The mentor agents 

(Forklift Operator Mentor and Picker Operator Mentor) have the ability to re-arrange the order 

of the task allocation based on environment information such as congestion, to release a task 

to be completed by another operator or to signal a review of similar tasks once it is determined 

that the current task cannot be completed. For example, when the picker operator mentor 

agent (Figure 6) detects a short pick at a primary selection location, the primary inventory 

pallet will request a replenishment pallet. If there are none available and none expected into 

the warehouse, then the picking manager service agent is signalled and it will either move or 

invalidate subsequent pick tasks from the same location preventing unnecessary work that 

cannot be completed. 

 

Figure 6 Picker Operator Mentor Agent State Diagram 
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4.2.2 Communication Protocol 

Each agent has a defined communication interface through which they receive a request for 

information or action. Each communication protocol involved the exchange (incoming and 

outgoing) of a message (request or response) and an object of data.  

 

Figure 7 Communication of Forklift Operator Mentor 

The communication between agents does not follow a strict hierarchical configuration unless 

a request was required to be directed to a manager service agent instead of an entity agent. 

For instance, a picker mentor agent could not request another picker mentor agent to alter the 

path of its mission directly. This request had to be made to a picker manager service. Figure 7 

shows an excerpt of the communication initiated from the forklift mentor agent and other 

agents when the forklift operator signs on for their shift. The communication between the 

mentor and the human operator is a two-way communication whereby a request is issued by 

the mentor and accepted or completed by the operator. In a real-life implementation this 

communication would be via a voice headset or via an RF screen or hand-held device.  

4.3 Service Agents – Provision for plug-ins 

Service agents have the greatest scope for including rules surmised from the data mining of 

historical data. Since they receive real-time requests, instead of following one rule or algorithm 

for responding to a request, such as a request for a forklift work task or a selection mission, it 

may adjust its rules based on the state of the environment. The state of the environment can 

include time of the day, current number of operators, the number of available equipment - all 

of which equate to the capacity of the warehouse, versus the demand on the warehouse 

(orders). 

For instance, the work priorities service agent receives requests to review the priorities of work 

tasks from other agents based on some operational event. These requests are received into a 

queue. When the warehouse capacity is under pressure, the priorities for task allocation 

become more important so the queue (Figure 8 and Figure 9) itself can be re-ordered based on 
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the number of requests for a particular product, the number of orders requiring that product 

and the expected departure time of the orders with those same products for instance. 

 

Figure 8 Work Priorities Service Agent 

Multiple requests for priority reviews for the same product beyond a threshold (from machine 

learning) can signal a potential issue to a human operator and assist in the decision-making 

process for resolving the issue with potential solution scenarios. This form of DSS involves 

human-machine collaboration. It is not necessarily always up to the human decision-maker to 

identify potential issues with time-consuming reports but it may be more effective to allow a 

human decision-maker to decide the best course of action based on scenarios generated by the 

DSS and by critical evaluation of the situation. 

 

Figure 9 Work Priorities Service agent actioning requests 

Another example of this is the inventory pallet agent determining its replenishment 

requirements. It will use time estimates from the Picker Manager Service for the “time until 

empty” and from the Inventory Service Manager for “time until replenishment can be 
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completed”. Both these estimates can be based on the current environment instead of stored 

averages so that the replenishment is created and allocated in time (Figure 10). 

 

Figure 10 Primary Selection Inventory Pallet reviewing replenishment requirements 

5 Simulation Development 

This research examined various tools for the simulation development (Bordini, Dastani, Dix, 

& Seghrouchni, 2009). The tool had to be open-source and programmable in a language that 

was already familiar to the researchers. The agent programming tool had to support BDI 

(Belief, Desire, Intentions) agents where a goal could be achieved through different plans that 

were deployed based on the real-time environment. JADEX (Pokahr, Braubach, & Lamersdorf, 

2005) was chosen and used to develop the agent simulation with associated database tables 

using MySql (Widenius, Axmark, & Arno, 2002). JADEX agents are based on the traditional 

BDI agent model and its active component features facilitate the interactions between agents. 

The open-source multi-agent platform tools considered for the development of this simulation 

were Jason (Bordini, Hübner, & Wooldridge, 2007), JADE (Bellifemine, Caire, & Greenwood, 

2007) and JADEX. Jason is an interpreter for an extended version of the logic-based language 

of AgentSpeak. JADE did not have BDI agent infrastructure, and this was provided by JADEX. 

Although all three were trialled, JADEX was chosen for its perceived ease of use and the 

availability of resources for supporting the development of the simulation. 

5.1 Simulation Scenarios 

Three common warehouse scenarios were selected to demonstrate the utility of the agent 

model in simulation. These are:  

Scenario 1 – Generating a Replenishment. This scenario is based on the precept that inventory 

received into the warehouse should be checked and stored in a sequence that prioritises stock 

that will be required sooner based on order demand. This is often a manual process in 

warehouse systems that are increasingly reliant on “just in time” inventory. The visibility of 

incoming goods required for order fulfilment in real-time, discerning and updating the 
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priorities of the receipt of these goods in order to avoid an exception in picking is 

demonstrated in this scenario. 

Scenario 2 – Short Pick in Selection. Order selection is still the most costly warehouse task 

performed and travel time in order selection is considered a major and “unproductive” 

component. Extant research focuses on optimising pick paths to minimise travel time. This 

scenario demonstrates minimising wasted travel time by avoiding short-picks in selection 

when an exception is detected which means that the intended selection tasks will not be 

successful.  

Scenario 3 – Congestion in selection. Congestion occurs in real-time and hence is difficult to 

predict and is largely left up to the selectors to manage using the available options at their 

disposal – generally “skip” the pick or “wait”. Congestion is also generally not tracked for 

analysis. This scenario demonstrates minimising unproductive time in selection due to 

congestion and the ability to track congestion and the success of congestion avoidance 

scenarios. 

5.1.1 Simulation Scenario 1 - Generating a Replenishment 

A replenishment is the refill of a primary selection location with product from another 

location. It involves identifying that there is a shortage in the primary selection location and 

triggering the move required to fill it in enough time to prevent shortages during order 

selection. The scenario is as follows: 

• A customer order for 4 of product 108081 arrives into the system. The selection 

location for product 108081 is “01-01-1-1” and only has a quantity of 3. A pallet of 

40 cases for product 108081 is on a receiving truck that has arrived with 10 other 

pallets but has not been unloaded yet. Table 1 shows the sequence of events in the 

distributed model in simulation. 
Description Screenshot 

Order Manager Agent: 

• Receives a request to release customer orders 

for picking and initiates plan to release order. 

• Detects that there is only a quantity of 3 in 

active (in a warehouse location) inventory. 

• Creates a selection mission for 3 and 

backorders 1. 

• Requests Work Priorities Manager review 

priorities of “Receiving” for this product. 

• Work Priorities Manager Agent: 

• Increases the priority of all unload work on 

the receiving appointment truck. The pallet 

with 108081 has a higher priority. 

• Task Manager Agent: 

• Changes the destination of the pallet with 

product 108081 to the priority lane. Other 

pallets go to the staging lane 

• Forklift driver is allocated the unload task 

and completes it. 
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Description Screenshot 

Inventory Pallet Agent: 

• Generates a put-away task when the 108081 

pallet is placed in the priority lane. This put-

away task is of high priority because the 

unload task was high priority. 

• Forklift driver is allocated the put-away task 

and completes it. 

• With Augmented Reality wearable glasses 

connected to the mentor agent, put-away 

pickup could be allocated to a specific 

operator and directed with colour coding. 

• Completing a high priority put-away task 

triggers a request by the forklift mentor agent 

on the primary selection location to review its 

replenishment requirements. 

 

 
Inventory Pallet agent: 

• Requests the Pick Manager for an estimate of 

time before location is empty. 

• Requests the Inventory Manager for an 

estimate of time to complete the “best” 

replenishment. 

• Requests Task Service to generate a 

replenishment. 

• Requests Work Priorities Manager review 

priorities of “Replenishment” for this 

product. The priority manager can do this in 

cooperation with the resource agent. 

• Selector visits location and picks 3. 

• Forklift driver is allocated the replenishment 

task and completes it. 

• Order manager releases the backorder 

quantity. 
 

Table 1 Distributed Model for Replenishment Scenario 

5.1.2 Simulation Scenario 2 – Short Pick in Selection 

There has been a promotion for end of model product that has caused a spike in demand for 

that product. The warehouse expected to have enough in stock to meet the projected demand 

but an error in master data (the number of products on a supplier pallet) has meant that the 

warehouse has overestimated stock levels. The scenario is as follows: 

• Four customer orders for 4 each of product 108081 arrive into the system. The system 

indicates that the selection location for product 108081 is “01-01-1-1” and has 30 but 

actually only has a quantity of 10. There are no available pallets in reserve for this 

product. Table 2 shows the sequence of events in the distributed model in simulation. 

 
Description 

Order Manager Agent: 

• Receives a request to release customer orders for picking and initiates plan to release orders. 

• Erroneously detects that there is a quantity of 30 in active (in a warehouse location) inventory. 

• Creates 5 selection missions for this product along with other products ordered by the customer. 
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Description 

Picking Manager Service: 

• Receives a request from the Mission Service to make selection missions available. 

• Makes all 5 selection missions available for pickers. 

Mission Service agent: 

• Allocates missions to picker mentor agent for associated picker. 

Pick Operator Agent/Picker Mentor Agent 

• First 2 selection missions complete successfully. 

Inventory Pallet Agent: 

• Requests replenishment but there are no available reserve pallets. 

• Informs Picking Manager of anticipated short pick issue. 

Pick Operator Agent/Picker Mentor Agent 

• Picker Operator travels to selection location, picks remaining 2. Two are not picked (shorted). 

 
Inventory Pallet Agent: 

• Updates balance in location to zero. 

• Requests replenishment but there are no available reserve pallets. 

• Informs Picking Manager of actual short pick issue. 

Picking Manager 

• Modifies available but as yet unallocated selection missions to remove this pick instruction. Selection 

mission cancelled if no other pick instructions. 

• Requests order manager update orders and backorder the items not picked. 

• Notifies warehouse manager agent of issue. 

 
Warehouse Manager Service Agent 

• Sends issue to inventory controller mentor agent. 

Inventory Controller Mentor Agent 

• Displays issue and potential scenarios to inventory controller human agent 

  

Table 2 Distributed Scenario for short pick in selection 
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5.1.3 Simulation Scenario 3 – Congestion in Selection 

There has been a promotion for end of model product that has caused a spike in demand for 

that product. The warehouse does have enough in stock to meet the projected demand. The 

scenario is as follows: 

• Forty customer orders for 1 each of product 108081 arrive into the system. The system 

indicates that the selection location for product 108081 is “01-01-1-1” and has 50. Table 

3 shows the sequence of events in the distributed model in simulation. 

 
Description 

Order Manager Agent: 

• Receives a request to release customer orders for picking and initiates plan to release orders. 

• Creates 40 selection missions for this product along with other products ordered by the customer. 

Picking Manager Service: 

• Receives a request from the Mission Service to make selection missions available. 

• Makes 40 selection missions available for pickers. 

Mission Service agent: 

• Allocates missions to picker mentor agent for associated picker. 

Pick Operator Agent/Picker Mentor Agent 

• Requests status from Passage Agent (sensor in the aisle for the next selection location to be picked) 

Passage Agent  

• Indicates that it is at capacity. 

Picker Mentor Agent: 

• Alters the pick path of the selection mission for a less congested path or next aisle to become uncongested 

or other rule.  

• Picker Operator is informed of change in pick sequence. 

 
  

Table 3 Distributed Scenario for Congestion in Selection 

5.2 Simulation Evaluation 

These scenarios as described above with the agent model interaction were reviewed by an 

expert from the field with 25 years of experience in warehousing and distribution. All three 

scenarios were evaluated as realistic. Feedback on scenario one related to directing the 
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putaway of priority pallets directly to the selection location from priority staging instead of 

via reserve inventory, and has been incorporated into a future test scenario. 

6 Discussion 

Warehouses and warehouse management systems are complex and dynamic systems 

traditionally controlled by strict adherence to process and sequence. The problem with this is 

that when an unexpected exception occurs, the process cannot be followed and something else 

has to be done in its place and this causes delays and flow-on effects. Adaptive mechatronic 

systems with societies of autonomous adaptive agents can exhibit self-organising behaviours 

that can overcome these small bottlenecks in operational processing. As in the scenario in 

section 5, the pallet yet to be unloaded can be prioritised and the task destination changed 

dynamically by the real-time detection of a deficit in selection. Adaptation can occur by 

recording predicted estimates of task completion against actual task completion outcome and 

incorporating the error (difference) into future estimates. Adaptation can also occur in storage 

by connecting patterns of inventory inaccuracies with product characteristics such as 

similarity contributing to operator error. 

Agents can communicate a real-time status. This means that dynamic tasks can be generated 

closer to the time that they will be actioned. As a result, more appropriate locations will be 

available for inventory to be put away, the resources to complete the tasks will be available 

(potentially) and time and productivity is not spent actioning tasks that are not ready to be 

completed and that may potentially not be able to be completed.  

Agents have goals and goals can persist. Agents continue to execute plans until the goal is 

fulfilled so an exception does not need to be handled manually all the time. For instance, a 

replenishment that failed to be physically completed will trigger a replacement task (until the 

selection location is refilled). A pallet that failed to be physically put away in its designated 

location will be taken to the resolution zone and if appropriate will self-generate another put 

away task for itself. Tracking the reason for task failure (exceptions) in real-time allows more 

information to be given to the inventory manager to resolve issues that could not be self-

resolved, aiding the decision-making process. Human intervention, where needed, can correct 

the system data to the point where the agents can continue their normal processing. 

The purpose of the mentor agent is to provide a real-time ability to react to real-time changes 

in the environment. Human operators are generally just following instructions and 

encountering a real-time constraint issue such as congestion. The mentor agent, 

communicating agent-agent, agent-human or human-agent, can provide the advantage of a 

smarter view of the warehouse environment for the operator. With sensors detecting changes 

in the warehouse environment, different algorithms can be deployed to determine selector 

travel path or to re-evaluate the sequence of available tasks. 

In a working warehouse environment this simulation could be run with actual data and could 

be used to enact scenarios which have caused an operational exception that was pre-emptively 

avoided to determine how the operational exception could happen again and become a failure 

point that is not managed to be avoided (increasing demand, increasing congestion, 

decreasing staff and equipment). Alternatively, scenarios that were a failure point can be used 

in the simulation to determine corrective action or pre-emptive detection that can be used to 

avoid the failure. 
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The increase in e-commerce and omni-channel commerce has been putting a strain on 

warehouses and WMS systems. Many warehouse management systems (WMS) are not 

designed for this new way of working. In addition, warehouses by their design run efficiently 

when predicted demand is adequately met by warehouse capacity (goods, people and 

resources) and when operational procedures are clear and stringently followed. However, 

there are a number of small operational exceptions that can impede this smooth product flow 

and manifest as disruptions if not detected and mitigated early.  

Past warehouse research literature has largely focused on optimisation strategies (pick paths, 

product storage and human ergonomic aspects). More recently research has begun to focus on 

realising a living or “smart” warehouse by giving inanimate objects properties and agency in 

order to respond faster to real-time events. It seems that this is a unique point in time, with 

emerging technologies such as data mining and analysis, sensor and IoT interconnectivity to 

create a WMS framework that is not just based on maintaining “standard” operations and their 

optimisation but also includes a basis of the real-time constraints that cause exceptions and 

lead to disruptions.  

Estanjini et al. (2011) uses sensors and dynamic programming to calculate the most cost-

effective way to allocate the next forklift task which is smart optimisation. The intelligent 

product agent in Giannikas et al. (2013) seeks the best storage location each time it is received 

into the warehouse and this is based on a number of factors including “turnover rate, demand, 

the relationships with other products, the layout of the warehouse etc.” This could also include 

minimisation of warehouse real-time exceptions. Giannikas et al. (2013) describes “unexpected 

events” such as “arrivals of new orders”. In a warehouse environment there can also be many 

other unexpected events. The WMS agent in Trab et al. (2017) is based on real-time safety 

compatibility constraints of goods and people in a hazardous goods environment and is 

focused on minimising risk. Trab et al. (2017) describes an “unexpected event” as something 

that increases risk to “products, humans and the environment” such as “the presence of an 

empty product owing to a leak, and a human user without safety protection equipment”. 

In everyday warehouse operations, unexpected events pose a risk to efficiency and 

productivity. While the type of unexpected events may be known, the timeline of their 

occurrence and which operational exception will occur as a result is not known. For this 

reason, a WMS framework that can detect their occurrence and has built-in plans that can be 

deployed when they occur is needed both to mitigate flow-on risk and to provide real 

assistance to decision makers.  

Current literature focuses on recording exceptions (Weissbach, Radmanu, & Grabowski, 2009) 

and expediting individual exception resolution (McDonald Jr et al., 2018) but not on detecting 

an exception that is about to occur in order to avoid it, detecting exceptions in real-time, 

minimising the flow-on effect when an exception has occurred and augmenting the decision-

making capacity of humans tasked with resolving these exceptions. This study proposes that 

incorporating these exceptions specifically into the WMS framework will make warehouses 

more able to respond to dynamic changes in the environment. 

7 Conclusion 

Warehouses are real-time environments that involve a work schedule, available resources, and 

time and space constraints. Increasingly, the outlook to solving this problem is to fully 

automate, however this may not be feasible for small to medium size warehouses or 
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warehouse with specialist requirements. This research aims at innovation by augmenting 

people rather than replacing them. This paper presents a framework for designing warehouse 

management systems that uses distributed intelligence to react to real-time events and 

constraints, in order to mitigate the impact of small operational issues on product flow and 

order fulfilment. A simulation based on intelligent agents was designed and constructed in 

order to validate the viability of the framework. 

The contribution of a new framework for WMS design is three-fold. Firstly, there are 

advantages to be gained in detecting warehouse exceptions in real-time before they escalate 

into disruptions. Although adherence to warehouse processes dictate smooth product flow, 

unexpected events can have a big impact on productivity and efficiency. 

Secondly, academic research provides new algorithms and processes for optimisation and 

efficiency of warehouse processes, but these cannot be easily incorporated into current 

warehouse management systems. The design of service agents in this model can make adding 

new features such as the above more feasible in an environment where they can be used when 

applicable based on real-time environmental constraints and where their effectiveness can be 

evaluated in real-time and historically through data-mining. 

Thirdly, decision support that supports the cognitive, memory and actual time constraints of 

the warehouse decision makers by providing packaged information about an exception and 

potential resolution scenarios facilitate the resolution of warehouse exceptions faster where a 

human decision-maker is required. 

This paper contributes to industry by proposing a new way of designing warehouse 

management systems that augments and enhances the operations of manual warehouses 

instead of replacing them with automation. With advances in IoT and sensor technologies this 

approach may be more suitable to the challenges posed by demand being driven by the 

changing consumer behaviour.  

Future research iterations of this project may take several paths. Various AI methods and 

algorithms can be tested as plug-ins within the intelligent agents, in the simulation, to improve 

operational functionality and the ability of the model to forecast and resolve problems. The 

metrics that will be used for evaluation purposes include stock out rate, orders shipped on 

time, shipping accuracy, queuing time and throughput. These metrics are based on the direct 

indicators of performance as defined by (Staudt et al., 2015). The number of operational 

exceptions that occur will also be measured for comparison. 
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