Does Consumers' Intention to Purchase Travel Online Differ Across Generations? Empirical Evidence from Australia

Shavneet Sharma
University of the South Pacific
Fiji
shavneet.sharma@usp.ac.fj

Gurmeet Singh
Graduate School of Business
University of the South Pacific
Fiji

Stephen Pratt
School of Tourism & Hospitality Management
University of the South Pacific
Fiji

Abstract

This paper examines the differences in consumers’ intention to purchase travel online across Millennials and Baby Boomers. The Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) is extended by including attitude, compatibility, innovativeness, perceived trust, and perceived risk variables. Data is collected using online questionnaires from Millennials (N=322) and Baby Boomers (N=318) in Australia. Overall, the empirical results revealed that factors affecting Australian consumers’ intention to purchase travel online differ across generations. This study contributes to the literature by extending and testing the comprehensive research model to understand consumers’ online travel purchase behaviour better.

Keywords: Generational cohorts; Technology acceptance; Online purchase; Travel; Millennials; Baby Boomers; UTAUT2; Australia

1 Introduction

The past decade has seen a drastic increase in internet connectivity and usage, which has reshaped tourist purchase behaviour (Buhalis & Law, 2008). Global users of the internet have increased from 16 million in 1995 to approximately 4 billion users by 2018 (ParidahDaud & Fung, 2018). Despite this, there are gaps or differences between information and communication technology (ICT) usage between user groups. This ‘digital divide’ is influenced by socioeconomic variables such as gender, level of education, generation, and age (Friemel, 2016). While some scholars argue that the digital divide between the younger and older cohorts is decreasing (Gilleard et al., 2015; Nishijima et al., 2017), especially in the case of developed countries, the literature suggests that consumers’ online behaviour may still differ between these cohorts (Confente & Vigolo, 2018). Age has been a determining factor in consumers’ intentions and use of online shopping with younger consumers found to be more likely to shop online (Khare et al., 2012). Literature shows that market segmentation is more efficient through generational cohorts than by age (Schewe et al., 2000). This is because cohort
segmentation provides both the insights into factors motivating consumers, which stem from common beliefs and values shared by the generation from coming-of-age during a particular period of history (Kumar & Sadarangani, 2018).

This study investigates consumers' intention to purchase travel online across generational cohorts. The study compares Millennials (also referred to as Generation Y) and Baby Boomers. These two cohorts were selected because these generations respectively represent both 'digital natives' and 'digital immigrants' (Coombes, 2009). Digital natives are more comfortable with using and learning technology as they have always interacted with this medium when compared to digital immigrants who only learned to use this technology as adults (Sait et al., 2004). These two groups also yield considerable purchasing power (Beauchamp & Barnes, 2015). As such, marketers see vast potential when it comes to capturing sales from these two important consumer groups.

The contribution of this paper is threefold. First, the UTAUT2 technology acceptance model will be applied to compare Millennials and Baby Boomers' intention to purchase travel products online. This model has primarily been used to examine applications, devices, and website acceptance in the tourism industry (Gupta & Dogra, 2017; Gupta et al., 2018). The UTAUT2 model has not been previously used in the tourism context to shed light on generational differences between Millennials and Baby Boomers to purchase travel online. The intergenerational examination herein also answers the call by Lim (2018b) and Mazaheri et al. (2020) for greater research in this area in order to provide a cross-comparison update to concepts and theories in information systems and technology (e.g. UTAUT) that were conceived when digital technologies in applied settings were only emerging.

Second, this study extends the UTAUT2 model with the inclusion of additional factors important in predicting online travel behaviour. Literature shows that there is little empirical work that simultaneously captures the positive (success) and negative (resistance) factors that lead consumers to adopt ICT (Alalwan et al., 2018; Hult et al., 2019; Lee, 2009; Martins et al., 2014; Zhuang et al., 2018). The academic fraternity has always given less attention to behaviour deterrents (Rehman et al., 2020) and focus primarily being on the drivers (Farivar et al., 2017). Therefore, given the importance of risk in e-commerce (Pelaez et al., 2019; Samhan, 2018), perceived risk (PR) has been added to the UTAUT2 model. Also, Dwivedi et al. (2019) found that the addition of attitude to the original UTAUT model would increase its predictive power. However, since then, little research has been carried out with the addition of this construct to the UTAUT model. This study is one of the first to incorporate attitude to the UTAUT2 model. Additionally, compatibility, innovativeness, and perceived trust are also added to the UTAUT2 model as these factors generally differ across individuals. The addition of constructs to extend technology acceptance models such as UTAUT is in line with the recommendations by Lim (2018a) as they exemplify novel and meaningful extensions that encapsulate the emerging realities of user interactions with technology in underexplored settings (e.g. tourism).

Third, in the tourism literature, to explore the similarities and differences amongst tourism behaviour across generations, the concept of cohorts has been used in segmentation studies (Gardiner et al., 2015; Kim et al., 2018). Also, most generational studies have focused on travel behaviour of a specific generation, such as Generation X or Generation Y (Chen & Chou, 2019; Xu & Pratt, 2018), but few have compared online behaviour between generations (e.g., Beldona et al., 2009; Gardiner et al., 2015). Despite this, very little research has been carried out that
differentiates generational cohorts by online shopping that focuses on cohort perceptions, decision making, and behaviour (Herrando et al., 2019; Lissitsa & Kol, 2019; Shulga et al., 2018). Despite there being a huge growth in studies relating to tourism (Athiyaman, 1995), research is still limited when it comes to the behaviour and impact of Millennials in the tourism industry (Ramsay et al., 2017). The results of this study will help scholars and practitioners better understand the generational differences in accepting and using online travel websites.

2 Literature Review, Conceptual model and hypotheses

2.1 Generational cohorts

A generational cohort can be defined by the years of birth, extending 20–25 years in duration, or as long as it generally takes one birth group to be born, age, and have children of their own (Meredith & Schewe, 1994; Strauss & Howe, 1991). These cohorts share similar ideas, attitudes, beliefs, and values based on being born during the same time period and living through common experiences, with macro-level economic, political, and social events that occurred during their coming of age years (Strauss & Howe, 1991). Generational cohort theory is useful in identifying propensities and patterns across generational groups as a socio-cultural theoretical framework (Pendergast, 2010). In tourism studies, several researchers have examined generational cohort consumer purchase behaviour (Bakewell & Mitchell, 2003) and tourism behaviour (Pennington-Gray et al., 2003).

Despite tourism research identifying characteristics that are similar and different for each generation, there is a call for a deeper understanding of each generational cohort and its impact on the industry (Bowen & Chen McCain, 2015). A fair amount of evidence grounded in social science has been provided that demonstrates the generational approach to understanding groups and society. Specifically, consumer segmentation by behaviours, attitude, and preferences can best be understood through generational analysis (Parment, 2013).

Tourism research has widely recognized the importance of profiling consumers by cognitive processes, psychological characteristics, and behavioural patterns (Lee et al., 2004). Various variables, factors, and descriptors have been used to profile consumer segments in the tourism industry: holiday and decision-making behaviour (Bicikova, 2014), electronic word-of-mouth (Zhang et al., 2017), and purchase behaviour (Beldona et al., 2009). Within this line of research, this study seeks to understand consumer segments’ intention to purchase travel online.

2.2 Unified Theory of Acceptance and Use of Technology (UTAUT)

Venkatesh et al. (2012) proposed an extension to the original UTAUT model which included three additional constructs: hedonic motivation, price value and habit to the existing four original contracts of performance expectancy (PE), effort expectancy (EE), social influence (SI) and facilitating conditions (FC). When it comes to consumer technology adoption, the UTAUT2 model has a better predictive power (Venkatesh et al., 2012) and has contributed significantly to the literature on consumers’ adoption of technology (Tamilmani et al., 2019). This model has been successfully applied in various contexts, including mobile payments (Morosan & DeFranco, 2016) and tourist adoption of mapping applications (Gupta & Dogra, 2017).

2.3 Performance expectancy

Extant research confirms that consumers are more likely to use a technology that brings them more favourable outcomes and is more useful to the users (Compeau & Higgins, 1995). It has
been found that performance expectancy has a strong positive association with behavioural intention (Escobar-Rodriguez & Carvajal-Trujillo, 2014; Smith et al., 2013), mobile-based communication technologies (Marriott & Williams, 2018), social media applications (Huang et al., 2018; Lim et al., 2019) and mobile wallets (Madan & Yadav, 2016; Slade et al., 2014). Thus, it is hypothesized that:

\[H1a: \text{Performance expectancy positively influences consumers’ attitude to purchase travel online.} \]

\[H1b: \text{Performance expectancy positively influences consumers’ intention to purchase travel online.} \]

2.4 Effort Expectancy

Individuals prefer to use technology that provides maximum benefits and is easy to understand (Davis, 1989). The ease and comfort in relation to the use of a system are referred to as effort expectancy (Venkatesh et al., 2003). Several studies have shown that effort expectancy is positively related to behavioural intention (Awwad & Al-Majali, 2015; Khalilzadeh et al., 2017; Wang et al., 2017). Therefore, it is hypothesized that:

\[H2a: \text{Effort expectancy positively influences consumers’ attitude to purchase travel online.} \]

\[H2b: \text{Effort expectancy positively influences consumers’ intention to purchase travel online.} \]

2.5 Social Influence

When an individual perceives that a given behaviour shall be accepted by their peer group, the likelihood of them engaging in the given behaviour increases (Ajzen, 1991). The extent to which an individual believes that others expect them to use a new system is referred to as social influence (Venkatesh et al., 2003). Studies carried out have found that social influence has a significant influence on behavioural intention (Hsu & Lin, 2016; Kim & Park, 2011; Ozturk et al., 2016; Wu & Chen, 2015). Davis (1989) believed that subjective norm had no influence on technology acceptance, while Shin (2009) has hypothesized that social influence has a positive effect on the intention to utilize mobile payments, although the effect of social influence on intention was not supported. Nakagawa and Gouvêa (2010) have found that social influence is not relevant to the intention to adopt internet shopping. Nevertheless, Venkatesh et al. (2003) believed that social influence affected consumer behaviour. Besides, Chen et al. (2007) have found that subjective norms toward using electronic toll collection positively increase the intention to use. Thus, the following hypothesis is proposed:

\[H3a: \text{Social influence positively influences consumers’ attitude to purchase travel online.} \]

\[H3b: \text{Social influence positively influences consumers’ intention to purchase travel online.} \]

2.6 Facilitating conditions

In this study, facilitating conditions reflects the effect of required knowledge and necessary resources (such as internet connectivity) to engage in travel purchases online. The relationship between facilitating condition and behavioural intention has been confirmed in various contexts, including NFC mobile payments (Khalilzadeh et al., 2017), biometric technology adoption (Akinnuwesi et al., 2016), mHealth (Hoque & Sorwar, 2017) and internet banking (Tarhini et al., 2016). Therefore, this research hypothesizes that:

\[H4a: \text{Facilitating condition positively influences consumers’ attitude to purchase travel online.} \]
H4b: Facilitating condition positively influences consumers’ intention to purchase travel online.

2.7 Hedonic motivation

‘Hedonic motivation’ is defined as the fun or pleasure derived from using technology, and it is an important determinant of consumers' technology acceptance and use (Tamilmani et al., 2019). The inclusion of this factor into the UTAUT2 model shifts the focus from extrinsic motivation as a dominant paradigm of technology adoption research to intrinsic motivation. Applications of the UTAUT2 has found hedonic motivation as a strong predictor in mobile apps (Hew et al., 2015), eLearning intention (Filippou et al., 2018), online purchase (Escobar-Rodriguez & Carvajal-Trujillo, 2014) and NFC technology adoption. Therefore, the following is hypothesized:

H5a: Hedonic motivation positively influences consumers’ attitude to purchase travel online.

H5b: Hedonic motivation positively influences consumers’ intention to purchase travel online.

2.8 Price-saving

Various industries, including tourism, have offered price-saving (PS) incentives to consumers for engaging in online purchases. Consumers look for higher perceived benefits in comparison to the monetary sacrifice, which makes price value a significant predictor of behavioural intention to use technology. Consumers who engage in online shopping also consider cost-saving a significant factor (Jensen, 2012). Thus, price-saving orientation has been observed as a significant predictor of purchase intention (PI) for online bookings (Escobar-Rodriguez & Carvajal-Trujillo, 2014) and airline e-commerce websites (Escobar-Rodriguez & Carvajal-Trujillo, 2013). Therefore, it is hypothesized that:

H6a: Price saving positively influences consumers’ attitude to purchase travel online.

H6b: Price saving positively influences consumers’ intention to purchase travel online.

2.9 Habit

Habit is defined as the extent to which an individual tends to perform behaviours automatically because of learning (Limayem et al., 2007). Habit reveals the outcome of past experiences or behaviour (Venkatesh et al., 2012). Research has shown that habit is a significant predictor of behavioural intention (Escobar-Rodriguez & Carvajal-Trujillo, 2014; Gupta & Dogra, 2017; Herrero & San Martin, 2017; Hsiao et al., 2016). Based on these findings, it is hypothesized that:

H7a: Habit positively influences consumers’ attitude to purchase travel online.

H7b: Habit positively influences consumers’ intention to purchase travel online.

2.10 Perceived compatibility

The construct of perceived compatibility is defined as "the degree to which an innovation is perceived as being consistent with existing values, past experiences, and needs of potential adopters" (Rogers, 1995, p. 15). The following definition of compatibility will be employed for this study as it fits online shopping context; it is the extent to which consumers believe that purchasing travel online matches fits their needs, shopping preference, and lifestyle (Vijayasarathy, 2004). According to Bellman et al. (1999), those individuals that spend a considerable amount of time in their personal life and job with internet and related technologies
such as e-mail have a higher likelihood to purchase online. The review of the literature shows that individuals have found a significant and positive impact of perceived compatibility on customers' attitudes to purchase online (Amaro & Duarte, 2015; Gillenson & Sherrell, 2002; Vijayasaraathy, 2004). Also, Christou and Kassianidis (2002), (Li & Buhalis, 2006) and Amaro and Duarte (2015) found that perceived compatibility positively influenced customers' intention to purchase travel online. Therefore, the following is hypothesized:

\[H8: \text{Perceived compatibility positively influences consumers' intention to purchase travel online.} \]

2.11 Customer Innovativeness

Innovativeness has been defined by Rogers and Shoemaker (1971) as "the degree to which an individual is relatively early in adopting new ideas than other members of his social system." According to the approach proposed by Bass (1969) and Midgley and Dowling (1978), criticizing this temporal perspective as it ignores the communication and social processes that characterize the diffusion of innovation, and they affirm that this concept reflects the "degree to which the individual is receptive to new ideas and makes innovative decisions independently of the communicated experience of others."

The concept of innovativeness has been predominantly shown in electronic commerce literature as a domain-specific variable (Goldsmith, 2000, 2002; Park & Jun, 2002; Varma Citrin et al., 2000). Particularly in the domain of information technology, Agarwal and Prasad (1998) proposed the concept of perceived innovativeness, which is defined as the willingness of an individual to try out any new information technology. Following this, different authors have provided empirical evidence to support the effect of a user's innovativeness in the acquisition of products using the internet (Donthu & Garcia, 1999; Goldsmith, 2000; Varma Citrin et al., 2000), frequency of acquisition (Goldsmith, 2000; Goldsmith & Lafferty, 2001) and online purchase intention in the future (Aldás-Manzano et al., 2009; Crespo & del Bosque, 2008; Goldsmith, 2002; Goldsmith & Lafferty, 2001; Lu et al., 2011). Other research carried out by San Martín and Herrero (2012) found that users' innovativeness had a positive influence on online purchase intention in rural tourism. Therefore, the following hypothesis can be developed:

\[H9: \text{Innovativeness positively influences consumers' intention to purchase travel online.} \]

2.12 Perceived Risk

Due to the separation of the buyer and the seller, the concept of perceived risk becomes more common for online shopping (Al-Gahtani, 2011). Perceived risk represents a detractor to the adoption process (Gupta et al., 2018). A study by Athiyaman (2002) found that consumers avoid purchasing airline tickets online because of security concerns. Several studies support the relationship between perceived risk and behavioural intention (Liébana-Cabanillas et al., 2017; Lu et al., 2011; Yang et al., 2012) while others reject the relationship (Kapoor et al., 2015; Tan et al., 2014). Therefore, this research will be of theoretical use. Thus, the following is proposed:

\[H10: \text{Perceived risk negatively influences consumers' intention to purchase travel online.} \]

2.13 Perceived Trust

Studies carried out previously have confirmed the positive link between perceived trust and intention to purchase online in the context of e-commerce (Chiu et al., 2010; Gefen et al., 2003;
Kim et al., 2012). In the study conducted by Wen (2010), a positive relationship was found between perceived consumer trust and consumers' intention to purchase travel online. However, Kamarulzaman (2007) did not find a direct effect of trust on consumers' adoption of online travel shopping. In the tourism field, this relationship between trust on online travel shopping adoption has been supported by Bigné et al. (2010); Escobar-Rodriguez and Carvajal-Trujillo (2014); Kim et al. (2011); Amaro and Duarte (2015); Ponte et al. (2015) and Agag and El-Masry (2017). Therefore, the following hypothesis is proposed:

\[H11: \text{Perceived trust positively influences consumers' intention to purchase travel online.} \]

2.14 Attitude

Prior literature has acknowledged the role of attitude in explaining individuals' acceptance of technology (Bobbitt & Dabholkar, 2001; Dwivedi et al., 2017; Kim et al., 2009; Taylor & Todd, 1995; Yang & Fang, 2004). The inclusion of attitude as a construct in technology acceptance models is consistent with TRA (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1975), TPB (Ajzen, 1991), and DTPB (Taylor & Todd, 1995). TAM is considered a special case of the TRA with an attitude comprising of two beliefs. According to the TRA model, attitude plays a mediating role in the relationship between the types of beliefs and intentions (Taylor & Todd, 1995). TAM postulates that technology is considered more useful when it is easier to use, and this will lead to a more positive attitude and intention for an individual to use the technology (Davis et al., 1989; Taylor & Todd, 1995). The relationship between attitude and behavioural intention, as represented in TAM, suggests that all other things being equal, individuals with a positive attitude towards a behaviour will form the intention to perform the behaviour. This relationship is key to the TRA and other related models that researchers have presented (e.g., Triandis, 1977), (Bagozzi, 1981) and (Davis et al., 1989) while developing the TAM extension (TAME) model, (Jackson et al., 1997). Therefore, it is hypothesized that:

\[H12: \text{Attitude positively influences consumers' intention to purchase travel online.} \]

2.15 Purchase Behaviour

Purchase behaviour is "the manifest, observable response in a given situation concerning a given target" (Ajzen, 1991). BI is considered an immediate consequence and indicates an individuals' readiness to perform a specific action. In the information technology acceptance studies, various studies have provided evidence of the relationship between BI and PB (e.g., Baabdullah et al., 2019; Gupta et al., 2018; Sharma et al., 2020; Venkatesh et al., 2012). Therefore, it is hypothesized that:

\[H13: \text{BI positively influences consumers' purchase behaviour to purchase travel online.} \]
A questionnaire was designed to capture data to address the research hypothesis. The first part of the questionnaire captured demographic variables such as gender, age, education level, and income. The age variable was used to segment the sample into the respective generations. A respondent was deemed a Millennial if they were between the ages of 19-37 and a Baby Boomer if they were between the ages of 55-73 (Suh et al., 2017). Other demographic variables, such as gender, were used to assess the representativeness of the sample. The second part of the questionnaire captured variables used in the UTAUT2 model and was adopted from previous literature. These variables were all asked on a 5-point Likert scale where '1' represented 'Strongly Disagree', and '5' represented 'Strongly Agree.'

Prior to carrying out the main survey, the questionnaire was piloted with 30 consumers consisting of 15 Millennials and 15 Baby Boomers. This resulted in some minor improvements being made to the item wording to enhance the readability and flow of the questions in the survey.

3.2 Data collection and sample

An online survey was conducted in Australia between March-April 2019. A professional data collection firm was contracted to collect data for this research using an online survey. A similar approach has been used in other studies (Nam et al., 2018; Njite & Schaffer, 2017). As this study aims to explore factors affects consumers’ intention to purchase travel online, online data
collection is considered relevant. This is because respondents are expected to be comfortable with the use of computers and internet to purchase travel online.

The data collection firm collected data through a consumer panel for the final survey. Data firms maintain extensive data sets of different categories of respondents, which they use as their sample frame. To participate, respondents were required to meet the following screening criteria: 1) be an Australian citizen, 2) to be more than 18 years of age. In marketing literature, an online data collection method is quite extensively used (Arnett et al., 2018; Dwivedi et al., 2016; McBride et al., 2020).

The main survey received 1000 responses. Generational cohorts were measured using the birth year of respondents (Tsaur & Yen, 2018). A part of the quality control procedure of the data collection firm, the demographic characteristics such as age gender, location were verified by the firm. The respondents were then grouped into three categories: Baby Boomers, Generation Xers, and Millennials. As this study aims to assess behavioural differences between Baby Boomers and Millennials, all respondents that did not belong to these two categories were screened out.

A total of 562 responses remained. Of this, 560 were completely filled out (Millennials N = 341; Baby Boomers N = 309). The demographic profiles of each cohort are presented in Table 1. The sample for Millennials and Baby Boomers is weighted towards males as well as educated people who might already be interested in purchasing travel online (see Table 1 for details). However, we consider the profile of Millennials and Baby Boomers as representative of those taking online surveys (Duffy et al., 2005).

3.3 Data Analysis Procedure

This study used SPSS 25 for descriptive statistics and AMOS 24 for structural equation modelling (SEM). The measurement model was evaluated for goodness of fit (Goodness of Fit Index), reliability, validity, and measurement invariance. Validity was assessed using convergent validity (AVE), construct validity (GFI, CFI (Comparative Fit Index), RMSEA (Root Mean Square Error Approximation), chi-square/degree of freedom), and discriminant validity. To assess the convergent validity, J. Hair et al. (2006) recommended using factor loadings, composite reliability, and average variance extracted (AVE). Factor loadings ≥ 0.5, and preferably ≥ 0.70, show high convergent validity. Discriminant validity was assessed using latent constructs correlations matrices, where the square roots of the AVEs along the diagonals were indicated. Discriminant validity is realized when the diagonal elements (square roots of AVEs) exceed the off-diagonal elements (correlations between constructs) in the same row and column (Fornell & Larcker, 1981b). The criteria to assess these statistics was p ≥ 0.05, the χ² / df ≤ 2.00, [RMSEA] ≤ 0.05, CFI ≥ 0.90, GFI ≥ 0.90, adjusted goodness of fit [AGFI] ≥ 0.90, and root mean square residual [RMR].

The structural model was assessed by studying the R² determination coefficients, regression estimates, and statistical significance. The R² value exemplifies an amount of prognostic power and shows the extent of divergence, justified by its antecedent variables in the model. Chin (1998) considered R² values of 0.67, 0.33, and 0.19 as significant, reasonable, and weak, respectively.
3.4 Demographic Profile

<table>
<thead>
<tr>
<th></th>
<th>Millennials</th>
<th>Baby Boomers</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>341</td>
<td>309</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>127</td>
<td>183</td>
</tr>
<tr>
<td>Male</td>
<td>214</td>
<td>124</td>
</tr>
<tr>
<td>Rather not say</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary school education</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Secondary School</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>Diploma/Certificate</td>
<td>65</td>
<td>105</td>
</tr>
<tr>
<td>Bachelors education</td>
<td>95</td>
<td>87</td>
</tr>
<tr>
<td>Postgraduate education</td>
<td>105</td>
<td>45</td>
</tr>
<tr>
<td>Rather not say</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I do not earn a fixed income</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td>Under $15,000</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>$15,000-$29,999</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>$30,000-$44,999</td>
<td>40</td>
<td>37</td>
</tr>
<tr>
<td>$45,000-$59,999</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>$60,000-$74,999</td>
<td>44</td>
<td>31</td>
</tr>
<tr>
<td>$75,000-$89,999</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>$90,000 +</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>Rather not say</td>
<td>36</td>
<td>48</td>
</tr>
</tbody>
</table>

Note: Aggregate percentage can be slightly more or less than 100 because of rounding off.

Table 1: Profile of Respondents

4 Results

To operationalize the conceptual framework in Figure 1 and test the hypotheses proposed in the literature review section, we undertake a confirmatory factor analysis (CFA) using a structural equation model as used in previous studies of this kind (Palau-Saumell et al., 2016; Song et al., 2017).

4.1 Descriptive Statistics of Items and Constructs

The descriptive statistics of the constructs used in the proposed research model are shown in Table 2. On average, the means for most of the items were above 3.23 (out of 5) for the overall sample (N=650), above 3.51 for the Millennials’ sample (N_ML= 341) and above 3.16 for the Baby Boomers’ sample (N_BB= 309). These results show that the majority of the respondents generally express positive answers to the variables used in the research model. Table 2 also shows that the standard deviations ranged from 0.861 to 1.211 for the overall sample, from 0.731 to 1.228 for the Millennials’ sample and from 0.916 to 1.194 for the Baby Boomers’ sample. This indicates a narrow spread around the mean.
Table 2: The Results of Confirmatory Factor Analyses

<table>
<thead>
<tr>
<th>SL</th>
<th>CR</th>
<th>SMC</th>
<th>SL</th>
<th>CR</th>
<th>SMC</th>
<th>SL</th>
<th>CR</th>
<th>SMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>PE1</td>
<td>0.9</td>
<td>28.92</td>
<td>0.82</td>
<td>0.89</td>
<td>17.13</td>
<td>0.78</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>PE2</td>
<td>0.86</td>
<td>26.38</td>
<td>0.74</td>
<td>0.81</td>
<td>15.21</td>
<td>0.66</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>PE3</td>
<td>0.89</td>
<td>28.26</td>
<td>0.8</td>
<td>0.87</td>
<td>16.68</td>
<td>0.75</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>PE4</td>
<td>0.84</td>
<td>0.7</td>
<td>0.79</td>
<td>0.62</td>
<td>0.87</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE</td>
<td>EE1</td>
<td>0.88</td>
<td>27.42</td>
<td>0.78</td>
<td>0.87</td>
<td>19.11</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>EE2</td>
<td>0.87</td>
<td>26.9</td>
<td>0.76</td>
<td>0.82</td>
<td>17.4</td>
<td>0.67</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>EE3</td>
<td>0.91</td>
<td>28.78</td>
<td>0.82</td>
<td>0.89</td>
<td>20</td>
<td>0.79</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>EE4</td>
<td>0.84</td>
<td>0.7</td>
<td>0.85</td>
<td>0.73</td>
<td>0.83</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>SI1</td>
<td>0.89</td>
<td>34.28</td>
<td>0.8</td>
<td>0.85</td>
<td>20.81</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>SI2</td>
<td>0.93</td>
<td>37.59</td>
<td>0.86</td>
<td>0.91</td>
<td>24.51</td>
<td>0.83</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>SI3</td>
<td>0.92</td>
<td>0.84</td>
<td>0.92</td>
<td>0.84</td>
<td>0.92</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>FC1</td>
<td>0.76</td>
<td>21.74</td>
<td>0.58</td>
<td>0.73</td>
<td>14.11</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>FC2</td>
<td>0.87</td>
<td>26.61</td>
<td>0.75</td>
<td>0.86</td>
<td>17.9</td>
<td>0.74</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>FC3</td>
<td>0.85</td>
<td>0.73</td>
<td>0.85</td>
<td>0.72</td>
<td>0.86</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HM</td>
<td>HM1</td>
<td>0.91</td>
<td>30.11</td>
<td>0.82</td>
<td>0.85</td>
<td>17.86</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>HM2</td>
<td>0.92</td>
<td>30.87</td>
<td>0.85</td>
<td>0.87</td>
<td>18.37</td>
<td>0.75</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>HM3</td>
<td>0.86</td>
<td>0.74</td>
<td>0.85</td>
<td>0.72</td>
<td>0.87</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>PS1</td>
<td>0.85</td>
<td>26.84</td>
<td>0.72</td>
<td>0.78</td>
<td>14.79</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>PS2</td>
<td>0.75</td>
<td>21.82</td>
<td>0.56</td>
<td>0.73</td>
<td>13.6</td>
<td>0.54</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>PS3</td>
<td>0.89</td>
<td>0.78</td>
<td>0.83</td>
<td>0.69</td>
<td>0.94</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HB</td>
<td>HB1</td>
<td>0.69</td>
<td>14.81</td>
<td>0.47</td>
<td>0.74</td>
<td>12.03</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>HB2</td>
<td>0.89</td>
<td>18.3</td>
<td>0.8</td>
<td>0.9</td>
<td>14.49</td>
<td>0.8</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>HB3</td>
<td>0.91</td>
<td>18.54</td>
<td>0.83</td>
<td>0.9</td>
<td>14.53</td>
<td>0.81</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>HB4</td>
<td>0.66</td>
<td>0.43</td>
<td>0.71</td>
<td>0.51</td>
<td>0.59</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP</td>
<td>CP1</td>
<td>0.85</td>
<td>0.73</td>
<td>0.82</td>
<td>0.68</td>
<td>0.87</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>CP2</td>
<td>0.91</td>
<td>29.84</td>
<td>0.83</td>
<td>0.88</td>
<td>18.24</td>
<td>0.77</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>CP3</td>
<td>0.9</td>
<td>29.09</td>
<td>0.81</td>
<td>0.86</td>
<td>17.5</td>
<td>0.73</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>IN1</td>
<td>0.8</td>
<td>27.52</td>
<td>0.65</td>
<td>0.75</td>
<td>16.65</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>IN2</td>
<td>0.84</td>
<td>30.47</td>
<td>0.71</td>
<td>0.79</td>
<td>18.37</td>
<td>0.63</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>IN3</td>
<td>0.91</td>
<td>36.79</td>
<td>0.83</td>
<td>0.89</td>
<td>23.25</td>
<td>0.79</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>IN4</td>
<td>0.93</td>
<td>0.87</td>
<td>0.93</td>
<td>0.87</td>
<td>0.93</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PR</td>
<td>PR1</td>
<td>0.84</td>
<td>0.71</td>
<td>0.82</td>
<td>0.67</td>
<td>0.86</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>PR2</td>
<td>0.94</td>
<td>31.18</td>
<td>0.87</td>
<td>0.91</td>
<td>19.43</td>
<td>0.83</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 3: Confirmatory Factor Analysis Results for Refined Measurement Items
4.2 Measurement Model Assessment and Invariance Testing

A preliminary single-group CFA was first conducted using the full-sample data (N = 650), followed by two separate single-group CFAs for each generation. As observed in Table 3, the fit indices for all the single-group CFAs were within limits recommended by J. F. Hair et al. (2006), suggesting that the model fits well separately for the two generations. Before conducting the multi-group comparison, it is imperative first to establish that the measures perform adequately in both sub-samples. The findings in the evaluation of the measurement models in the aggregate sample also apply to the generation-specific sub-samples. Indicator reliability was verified in both sub-samples. All loadings of the reflective measurement models were significant at the 0.01 level and above the recommended 0.7 threshold (Table 4) (Nunnally & Bernstein, 1994). The estimated indices for composite reliability and Cronbach’s alpha demonstrate the reliability of the constructs in each sub-sample. The respective AVE values were all above the minimum requirement of 0.50 (Bagozzi & Yi, 1988), confirming convergent validity. Discriminant validity was also assured as an inspection of the indicators’ cross-loadings. This showed that none of the indicators load higher on an opposing construct. An application of the Fornell and Larcker (1981a) criterion further confirmed discriminant validity (Tables 4, 5, and 6).

Having established that the measures are valid for both Millennials and Baby Boomers, the next step was the simultaneous estimation of the unconstrained model in the two samples to verify configural invariance. The results show that the configural model fits the data adequately ($\chi^2 = 1769.74; df=696; p < 0.01; \chi^2/df=2.54; RMSEA=0.044; CFI=0.9108; NFI=0.896; TLI=0.925$). To test for metrical invariance, we imposed equality constraints on all the factor loadings in the two groups. Despite the metric model fitting well ($\chi^2=1660.45; df=799; p<0.01; \chi^2/df=2.08; RMSEA=0.051; CFI=0.928; NFI=0.91; TLI=0.931$), a comparison of the χ^2 of the configural and the constrained models suggest significant differences ($\Delta \chi^2=107.85; \Delta df=106; p<0.01$).
α	CR	AVE	MSV	MaxR (H)	CI	AT	PE	EE	SI	FC	HM	PS	HB	PR	FT	CP	PI	PB			
CI	0.926	0.93	0.76	0.32	0.94	0.874	0.946	0.95	0.78	0.72	0.946	0.409***	0.882	0.927	0.93	0.76	0.72	0.931	0.405***	0.846***	0.873
PE	0.928	0.93	0.77	0.76	0.931	0.361***	0.663***	0.762***	0.875	0.937	0.94	0.83	0.47	0.939	0.518***	0.619***	0.641***	0.471***	0.913		
SI	0.865	0.87	0.69	0.76	0.875	0.326	0.713***	0.801***	0.872***	0.488***	0.828										
FC	0.922	0.92	0.8	0.6	0.928	0.483***	0.758***	0.771***	0.641***	0.688***	0.650***	0.895									
PS	0.861	0.87	0.69	0.72	0.882	0.337***	0.791***	0.846***	0.696***	0.587***	0.759***	0.727***	0.829								
HM	0.877	0.87	0.63	0.36	0.914	0.564***	0.425***	0.363***	0.260***	0.597***	0.163***	0.556***	0.318***	0.796							
PR	0.935	0.94	0.83	0.15	0.952	0.153***	-0.247***	-0.296***	-0.283***	0.067	-0.391***	-0.105*	-0.314***	0.258***	0.912						
PT	0.899	0.9	0.69	0.52	0.903	0.316***	0.661***	0.676***	0.570***	0.511***	0.627***	0.682***	0.715***	0.331***	-0.196***	0.831					
CP	0.916	0.92	0.79	0.71	0.921	0.403***	0.694***	0.747***	0.635***	0.589***	0.690***	0.678***	0.728***	0.465***	-0.283***	0.720***	0.887				
PI	0.939	0.94	0.75	0.71	0.942	0.335***	0.727***	0.784***	0.663***	0.559***	0.730***	0.659***	0.766***	0.343***	-0.321***	0.697***	0.843***	0.869			
PB	0.804	0.82	0.6	0.35	0.844	0.465***	0.526***	0.518***	0.396***	0.592***	0.401***	0.507***	0.443***	0.533***	0.112*	0.440***	0.535***	0.552***	0.77		

Table 4: Discriminant Validity Analysis from Confirmatory Factor Analysis - Overall Sample

α	CR	AVE	MSV	MaxR (H)	CI	AT	PE	EE	SI	FC	HM	PS	HB	PR	FT	CP	PI	PB			
CI	0.904	0.91	0.71	0.41	0.93	0.844	0.925	0.93	0.72	0.68	0.929	0.525***	0.846	0.902	0.9	0.7	0.72	0.911	0.475***	0.827***	0.883
PE	0.916	0.92	0.74	0.72	0.921	0.325***	0.703***	0.808***	0.858	0.921	0.92	0.8	0.54	0.927	0.642***	0.621***	0.635***	0.498***	0.893		
SI	0.852	0.86	0.67	0.72	0.868	0.357***	0.709***	0.801***	0.849***	0.465***	0.816										
FC	0.890	0.89	0.73	0.59	0.891	0.545***	0.771***	0.759***	0.671***	0.733***	0.625***	0.855									
PS	0.819	0.82	0.61	0.72	0.83	0.445***	0.804***	0.856***	0.739***	0.622***	0.750***	0.756***	0.781								
HM	0.889	0.89	0.67	0.43	0.913	0.564***	0.493***	0.449***	0.284***	0.620***	0.150*	0.657***	0.363***	0.816							
PR	0.923	0.93	0.81	0.16	0.949	0.232***	-0.076	-0.067	-0.169***	0.232***	-0.273***	0.079	-0.169*	0.400***	0.898						
PT	0.884	0.89	0.66	0.6	0.891	0.402***	0.692***	0.692***	0.601***	0.590***	0.612***	0.716***	0.772***	0.395***	-0.051	0.812					
CP	0.887	0.89	0.73	0.78	0.892	0.512***	0.734***	0.813***	0.720***	0.638***	0.698***	0.723***	0.797***	0.544***	-0.08	0.760***	0.853				
PI	0.919	0.92	0.7	0.78	0.921	0.364***	0.705***	0.792***	0.677***	0.564***	0.689***	0.641***	0.774***	0.403***	-0.133*	0.745***	0.882***	0.834			
PB	0.811	0.82	0.61	0.48	0.851	0.512***	0.522***	0.579***	0.377***	0.691***	0.368***	0.587***	0.463***	0.622***	0.249***	0.521***	0.594***	0.580***	0.78		

Table 5: Discriminant Validity Analysis from Confirmatory Factor Analysis - ML Sample
<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>CR</th>
<th>AVE</th>
<th>MSV</th>
<th>MaxR (H)</th>
<th>CI</th>
<th>AT</th>
<th>PE</th>
<th>EE</th>
<th>SI</th>
<th>FC</th>
<th>HM</th>
<th>PS</th>
<th>HB</th>
<th>PR</th>
<th>PT</th>
<th>CP</th>
<th>PI</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>0.858</td>
<td>0.941</td>
<td>0.81</td>
<td>0.31</td>
<td>0.949</td>
<td>0.898</td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>0.960</td>
<td>0.960</td>
<td>0.83</td>
<td>0.74</td>
<td>0.962</td>
<td>0.308***</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>0.944</td>
<td>0.945</td>
<td>0.81</td>
<td>0.74</td>
<td>0.945</td>
<td>0.343***</td>
<td>0.860***</td>
<td>0.899</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>0.937</td>
<td>0.937</td>
<td>0.79</td>
<td>0.78</td>
<td>0.943</td>
<td>0.371***</td>
<td>0.632***</td>
<td>0.723***</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>0.949</td>
<td>0.946</td>
<td>0.86</td>
<td>0.42</td>
<td>0.951</td>
<td>0.395***</td>
<td>0.607***</td>
<td>0.640***</td>
<td>0.439***</td>
<td>0.929</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>0.874</td>
<td>0.876</td>
<td>0.7</td>
<td>0.78</td>
<td>0.882</td>
<td>0.285***</td>
<td>0.713***</td>
<td>0.793***</td>
<td>0.885***</td>
<td>0.502***</td>
<td>0.839</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM</td>
<td>0.945</td>
<td>0.948</td>
<td>0.86</td>
<td>0.61</td>
<td>0.956</td>
<td>0.423***</td>
<td>0.754***</td>
<td>0.778***</td>
<td>0.613***</td>
<td>0.651***</td>
<td>0.661***</td>
<td>0.925</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>0.894</td>
<td>0.898</td>
<td>0.75</td>
<td>0.72</td>
<td>0.928</td>
<td>0.241***</td>
<td>0.770***</td>
<td>0.846***</td>
<td>0.666***</td>
<td>0.548***</td>
<td>0.763***</td>
<td>0.703***</td>
<td>0.868</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB</td>
<td>0.862</td>
<td>0.847</td>
<td>0.6</td>
<td>0.32</td>
<td>0.919</td>
<td>0.554***</td>
<td>0.357***</td>
<td>0.272***</td>
<td>0.214**</td>
<td>0.563***</td>
<td>0.152*</td>
<td>0.471***</td>
<td>0.247***</td>
<td>0.774</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>0.946</td>
<td>0.947</td>
<td>0.86</td>
<td>0.26</td>
<td>0.96</td>
<td>0.056</td>
<td>-0.412***</td>
<td>-0.500***</td>
<td>-0.405***</td>
<td>-0.114+</td>
<td>-0.510***</td>
<td>-0.278***</td>
<td>-0.465***</td>
<td>0.094</td>
<td>0.926</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>0.913</td>
<td>0.913</td>
<td>0.73</td>
<td>0.48</td>
<td>0.916</td>
<td>0.232***</td>
<td>0.638***</td>
<td>0.666***</td>
<td>0.543***</td>
<td>0.418***</td>
<td>0.637***</td>
<td>0.655***</td>
<td>0.672***</td>
<td>0.246***</td>
<td>-0.359***</td>
<td>0.852</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>0.936</td>
<td>0.938</td>
<td>0.83</td>
<td>0.66</td>
<td>0.942</td>
<td>0.310***</td>
<td>0.664***</td>
<td>0.701***</td>
<td>0.574***</td>
<td>0.546***</td>
<td>0.678***</td>
<td>0.647***</td>
<td>0.682***</td>
<td>0.386***</td>
<td>-0.465***</td>
<td>0.695***</td>
<td>0.912</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>0.951</td>
<td>0.950</td>
<td>0.79</td>
<td>0.66</td>
<td>0.962</td>
<td>0.286***</td>
<td>0.722***</td>
<td>0.770***</td>
<td>0.642***</td>
<td>0.537***</td>
<td>0.749***</td>
<td>0.661***</td>
<td>0.758***</td>
<td>0.259***</td>
<td>-0.495***</td>
<td>0.652***</td>
<td>0.809***</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>0.767</td>
<td>0.784</td>
<td>0.56</td>
<td>0.28</td>
<td>0.837</td>
<td>0.378***</td>
<td>0.526***</td>
<td>0.464***</td>
<td>0.393***</td>
<td>0.463***</td>
<td>0.424***</td>
<td>0.427***</td>
<td>0.427***</td>
<td>0.392***</td>
<td>-0.081</td>
<td>0.322***</td>
<td>0.486***</td>
<td>0.513***</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 6: Discriminant Validity Analysis from Confirmatory Factor Analysis - BB Sample
4.3 Structural Relationships

After the measurement model was successfully evaluated for goodness of fit, reliability, validity, and measurement invariance, a structural equation model using the maximum likelihood method of estimation was used to test the hypotheses.

First, for the Millennials, the model was adequate as the chi-square value was statistically significant ($\chi^2=5224.321; \text{df}=1202; p<0.01; \chi^2/\text{df}=4.346; \text{RMSEA}=0.0943; \text{CFI}=0.926; \text{NFI}=0.901; \text{TLI}=0.919$). Of the 20 estimate path coefficients, 14 were statistically significant at the .05, .01, or .001 level. The significant relationships were found on the paths for PE to AT ($\beta=0.664$, $p<0.001$), FC to AT ($\beta=0.187$, $p<0.001$), HM to AT ($\beta=0.278$, $p<0.001$), PS to AT ($\beta=0.361$, $p<0.001$), HB to AT ($\beta=0.142$, $p<0.05$), PE to PI ($\beta=0.346$, $p<0.001$), SI to PI ($\beta=0.131$, $p<0.05$), HM to PI ($\beta=0.121$, $p<0.05$), HB to PI ($\beta=0.086$, $p<0.05$), AT to PI ($\beta=0.121$, $p<0.05$), CP to PI ($\beta=0.659$, $p<0.001$), IN to PI ($\beta=0.122$, $p<0.01$), PT to PI ($\beta=0.283$, $p<0.001$), and PI to PB ($\beta=0.561$, $p<0.001$). However, H2a, H2b, H3a, H4b, H6b and H10 were not supported for Millennials.

Second, for the Baby Boomers, the model was adequate as the chi-square value was statistically significant ($\chi^2 = 5006.065; \text{df}=1202; p<0.01; \chi^2/\text{df}= 4.165; \text{RMSEA}= 0.0953; \text{CFI}= 0.921; \text{NFI}= 0.879; \text{TLI}= 0.906$). Of the 20 estimate path coefficients, 12 were statistically significant at the .05, .01, or .001 level. The significant relationships were found on the paths for PE to AT ($\beta=0.382$, $p<0.001$), FC to AT ($\beta=0.121$, $p<0.001$), HM to AT ($\beta=0.238$, $p<0.001$), PS to AT ($\beta=0.221$, $p<0.001$), HB to AT ($\beta=0.0798$, $p<0.05$), PE to PI ($\beta=0.115$, $p<0.05$), SI to PI ($\beta=0.076$, $p<0.05$), FC to PI ($\beta=0.184$, $p<0.001$), PS to PI ($\beta=0.231$, $p<0.001$), CP to PI ($\beta=0.608$, $p<0.001$), PR to PI ($\beta=0.088$, $p<0.05$), and PI to PB ($\beta=0.394$, $p<0.001$). However, H2a, H2b, H3a, H5b, H7b, H8, H11, and H12 were not supported for Baby Boomers.

To better understand the moderating effects of the generational cohort, we conducted further analyses to identify the structural relationships that were non-invariant. The significance and magnitude of path coefficients in the inner model were also compared to ascertain whether the strength and directionality of the structural relationships differ across the two samples. Table 8 presents the generational-specific MGA results for the Millennials and Baby Boomers. The fit indices suggest that the structural model is adequate in the Millennial and Baby Boomer samples ($\chi^2 = 5142.52; \text{df}=1129; p<0.01; \chi^2/\text{df}=4.555; \text{RMSEA}=0.057; \text{CFI}=0.916; \text{NFI}=0.891; \text{TLI}=0.917$).
<table>
<thead>
<tr>
<th>Path Name</th>
<th>ML Beta</th>
<th>BB Beta</th>
<th>Difference in Betas</th>
<th>P-Value for Difference</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE → AT.</td>
<td>0.664***</td>
<td>0.382***</td>
<td>0.282</td>
<td>0.019</td>
<td>The positive relationship between PE and AT is stronger for ML.</td>
</tr>
<tr>
<td>EE → AT.</td>
<td>0.0718</td>
<td>-0.0645</td>
<td>0.1363</td>
<td>0.251</td>
<td>There is no difference</td>
</tr>
<tr>
<td>SI → AT.</td>
<td>0.0796</td>
<td>0.049</td>
<td>0.0306</td>
<td>0.85</td>
<td>There is no difference</td>
</tr>
<tr>
<td>FC → AT.</td>
<td>0.187***</td>
<td>0.121**</td>
<td>0.066</td>
<td>0.858</td>
<td>There is no difference.</td>
</tr>
<tr>
<td>HM → AT.</td>
<td>0.278***</td>
<td>0.238***</td>
<td>0.04</td>
<td>0.975</td>
<td>There is no difference.</td>
</tr>
<tr>
<td>PS → AT.</td>
<td>0.361***</td>
<td>0.221***</td>
<td>0.14</td>
<td>0.418</td>
<td>There is no difference.</td>
</tr>
<tr>
<td>HB → AT.</td>
<td>0.142**</td>
<td>0.0798†</td>
<td>0.0622</td>
<td>0.964</td>
<td>There is no difference.</td>
</tr>
<tr>
<td>PE → PI.</td>
<td>0.346***</td>
<td>0.115†</td>
<td>0.231</td>
<td>0.067</td>
<td>The positive relationship between PE and PI is stronger for ML.</td>
</tr>
<tr>
<td>EE → PI.</td>
<td>-0.017</td>
<td>0.008</td>
<td>-0.025</td>
<td>0.874</td>
<td>There is no difference</td>
</tr>
<tr>
<td>SI → PI.</td>
<td>0.131**</td>
<td>0.076†</td>
<td>0.055</td>
<td>0.61</td>
<td>There is no difference.</td>
</tr>
<tr>
<td>FC → PI.</td>
<td>0.034</td>
<td>0.184***</td>
<td>-0.15</td>
<td>0.155</td>
<td>The positive relationship between FC and PI is only significant for BB.</td>
</tr>
<tr>
<td>HM → PI.</td>
<td>0.121**</td>
<td>0.022</td>
<td>0.099</td>
<td>0.169</td>
<td>The positive relationship between HM and PI is only significant for ML.</td>
</tr>
<tr>
<td>PS → PI.</td>
<td>0.0226</td>
<td>0.231***</td>
<td>-0.2084</td>
<td>0.07</td>
<td>The positive relationship between PS and PI is stronger for BB.</td>
</tr>
<tr>
<td>HB → PI.</td>
<td>0.086†</td>
<td>0.038</td>
<td>0.048</td>
<td>0.132</td>
<td>The positive relationship between HB and PI is only significant for ML.</td>
</tr>
<tr>
<td>AT → PI.</td>
<td>0.121†</td>
<td>0.0622</td>
<td>0.0588</td>
<td>0.581</td>
<td>The positive relationship between AT and PI is only significant for ML.</td>
</tr>
<tr>
<td>CP → PI.</td>
<td>0.659***</td>
<td>0.608***</td>
<td>0.051</td>
<td>0.544</td>
<td>There is no difference.</td>
</tr>
<tr>
<td>IN → PI.</td>
<td>0.122**</td>
<td>0.051</td>
<td>0.071</td>
<td>0.021</td>
<td>The positive relationship between IN and PI is stronger for ML.</td>
</tr>
<tr>
<td>PR → PI.</td>
<td>-0.061</td>
<td>-0.088</td>
<td>0.027</td>
<td>0.549</td>
<td>The negative relationship between PI and PR is only significant for BB.</td>
</tr>
<tr>
<td>PT → PI.</td>
<td>0.283***</td>
<td>0.041</td>
<td>0.232</td>
<td>0.023</td>
<td>The positive relationship between PI and PT is stronger for ML.</td>
</tr>
<tr>
<td>PI → PB.</td>
<td>0.561***</td>
<td>0.394***</td>
<td>0.167</td>
<td>0.017</td>
<td>The positive relationship between PB and PI is stronger for ML.</td>
</tr>
</tbody>
</table>

Table 7: Structural Model Relationships
5 Discussion

To evaluate the predictive power of the endogenous constructs, the explained variance (R²) of the endogenous constructs was examined (Chin, 2010). This explains the amount of variance in the construct that is explained by the model. Using the full set of data, the R² value of the original UTAUT2 model is 33 percent. With the addition of attitude to the model, the R² value increases to 38 percent. Furthermore, adding compatibility, innovativeness, perceived risk, and perceived trust increases the R² value to 64 percent. The three categories that can be used to classify the R² values of endogenous latent variables are: weak (19 percent), moderate (33 percent), and substantial (67 percent) (Chin et al., 2008). This increase in R² highlights the importance of constructs in predicting consumers’ online purchase intention. The study conducted by Escobar-Rodriguez and Carvajal-Trujillo (2014) derived a model with a R² value of 57.9%. The study conducted by San Martín and Herrero (2012) had an R² value of 40 percent, while the study by Agag and El-Masry (2017) had an R² value of 59%.

5.1 Theoretical Contributions

This study has provided further insights into online travel purchase behaviour by extending the UTAUT2 model. The inclusion of attitude, compatibility, innovativeness, perceived risk, and perceived trust was able to increase the predictive power of the model. This allows for empirical evidence pertaining to new relationships to be tested, which provides greater insights into consumer behaviour. This also reiterates the importance of applying the technology acceptance model to consumer context to understand behaviour. This study highlights the importance of generational cohort theory in online travel purchase intention. It demonstrates how factors vary between Millennials and Baby Boomers. Much of the studies carried out previously have looked at a single generation (Chen & Chou, 2019; Ladhari et al., 2019). This study is the first to apply the UTAUT2 model with the generational cohort theory to understanding online travel purchase behaviour.

5.2 Practical Implications

At a time when internet use and online travel shopping are more prevalent, it is important to understand the factors that impact consumers’ intention to purchase travel online, and how this outcome varies across generational cohorts. It is particularly important in the tourism industry to understand the different consumer segments to develop strategies to increase online purchases.

Empirical evidence from this study shows the influence of performance expectancy on behavioural intention is stronger for millennials. This can be attributed to millennial consumers having relatively higher technological innovativeness compared to Baby Boomers (Church & Iyer, 2017). Despite Baby Boomers being open-minded and active, along with a keen sense of interest towards new technology (Kumar & Lim, 2008), they are unable to perceive the usefulness of new technology in the absence of ease of use (Hur et al., 2017). Therefore, online travel providers need to give greater emphasis on efficient content development and design so that the consumers find information on the website accurate, reliable, and useful (Gupta et al., 2018). This will enhance perceived utility, which will help increase adoption.

FC was also found as a variable that positively influences BB online travel purchase behaviour. This highlights the importance of resources and support services to be available to more mature customers when engaging in online purchases. As such, businesses need to ensure that
their websites are informative about the support services available to customers should they encounter problems when purchasing online. This can include a list of frequently asked questions or online chat services to resolve customer confusion or doubts. The reason this relationship was only found significant for BB could be that they are less used to the internet compared to ML.

Looking at the results of the relationship between HM and PI, according to literature, only one study by Baptista and Oliveira (2017) found age as a significant moderator. Two other studies by Ramantoko et al. (2016) and Ramirez-Correa et al. (2014) did not find a significant relationship. ML is more likely to feel positive emotions while browsing when the travel website has a high quality of security and is well-designed (Éthier et al., 2006). To increase hedonic shopping experiences on e-commerce websites, online retailers can incorporate exclusivity (e.g., deals and items that are web-exclusive) and concepts of game mechanics (i.e., gamification) (Insley & Nunan, 2014). To encourage the adoption of online travel shopping, web designers need to improve the hedonic features of the websites.

The importance of price-saving has been highlighted in this study. As such, online travel providers need to provide customers cost-saving deals, best offers, and promotions as incentives to purchase travel online (Ladhari et al., 2019). For instance, customers that purchase travel online will receive an additional discount. Based on the empirical results of this study, this factor is only critical to BB. This may mean if price saving is a benefit of engaging in online buying, BB would be more likely to engage in this behaviour.

Results from this study have shown that habit is a significant factor impacting consumers’ intention to purchase travel online in the ML sample. It is therefore suggested that businesses in Australia should formulate strategies of marketing communication that create the habit of consumers’ online travel purchase intention that will lead to an increase in purchase intention, thus, generating more online purchase behaviour. The findings from this study imply that in order for businesses to increase sales via online travel websites, businesses need to advertise using a combination of traditional media and the internet about how their websites can be used on different occasions and contexts to purchase travel.

Innovativeness is a personality trait that manifests in the ways that tourists that are more innovative are attracted more by new services that are an improvement to the existing options. This implies that marketing managers need to monitor levels of perceived value and benefits for ML constantly so that improved and innovative service options can be made available to consumers (Kindström & Kowalkowski, 2014; Nicolau & Santa-María, 2013; Sandvik et al., 2014).

The results of this study support the crucial role that perceived risk plays on consumers’ intention to purchase travel online. Thus, it is important that online travel providers come up with strategies to reduce consumers’ perceived risk to increase the adoption of online purchases. While results demonstrate that perceived risk negatively impact online shopping both age groups, the relationship is stronger for Baby Boomers. Research carried out by Chakraborty et al. (2016) and Pascual-Miguel et al. (2015) found similar results. The practical implication of this is that online travel providers need to convince their mature consumers about the security measures in place that help mitigate the risk. Providing consumer information about their rights and protection, communicating high-security standards, having security approval symbols (e.g., VeriSign), offering money-back guarantees as well as clear
information privacy policies can be some of the risk-reducing strategies employed (Amaro & Duarte, 2015).

Website designers and service providers can increase their visibility and trust by making the process and outcomes associated with purchasing travel online more easily accessible to consumers (e.g., with the use of personas and first-person-view videos that consumers are able to associate themselves with) with an explanation of the not so apparent support services (i.e., backend) will help enhance the observability. Showcasing the positive outcomes to demonstrate the outcome of using online travel websites can also help businesses in increasing the adoption rate, for example, by highlighting testimonials and positive reviews about purchasing travel online. This will also help increase consumers’ trust perception of online travel websites and increase adoption. This study has evidenced the importance of trust in consumer decision making to purchase online. Therefore, travel providers should offer refunds, assure customers about their policies to ensure that their private and confidential information is not shared, provide formal guarantees of products and services, inform consumers about the availability of the product or service at the time of purchase and also allows comments and feedback to be posted by consumers. Explaining the reliability measures, not including hidden costs, using the latest encryption technology, not disclosing credit card details, explaining how the information collected from consumers will be used, and having a well-designed website can help increase trust in online travel shopping (Teubner & Klein, 1998).

5.3 Limitation and future research

Just like any other study, there are limitations to this study that provide good directions for future research. The results from this study may be difficult to generalize to other national markets because these are based on the unique experiences of consumers in Australia. Future research could better explore how online travel purchase behaviour varies across generations in different countries.

Another limitation of this research is in relation to the definition of an online travel purchase. The definition used in this research can be considered broad as it includes the purchase of all types of tourism products and services such as hotel reservations, holiday packages, cruises, and airline tickets. Therefore, future research can examine the motivations to purchase travel products online while considering distinct product and service categories. Studies (e.g., Bogdanovych et al., 2006; Kamarulzaman, 2007) have found that consumers are less likely to purchase complex travel products online as they prefer to use travel agents to book complex travel. As such, the results of this study may differ if applied to products of high and low complexity.

For comparative analysis, it would be interesting to replicate this study in different countries with different generational cohorts. It is important to highlight that the effect the extended UTAUT2 model together is likely to vary from one context to another. Specifically, the effect of facilitating condition and social influence may vary in situations where users’ risk perception regarding online purchase is higher (e.g., in countries with lower levels of legal security and technology). To add on, effort expectancy and innovativeness of users can be more significant in cases where more involvement is demanded from consumers, and the purchasing process is more complex (Limayem et al., 2000). Other recommendations for future research can be to adopt a different methodological approach that distinguishes between "individuals that have purchased online" and "those that have not" to study in greater detail.
psychological factors influencing consumers’ online purchase intention. Also, when making multimodel comparisons, future research must remain cognizant of hypothesis testing errors emerging from type one and type two errors and the ways to mitigate those errors (see Lim and Mandrinos (2020)).

6 Conclusion

This study was carried out with the aim of understanding consumers’ intention to purchase travel online by extending the UTAUT2 model. Attitude, compatibility, innovativeness, perceived trust, and perceived risk were added to the UTAUT2 model to increase its predictive power. Empirical results from the study showed that with the addition of these factors to the UTAUT2 model, its predictive power was significantly increased. Additionally, the analysis of results across Millennials and Baby Boomers showed that factors affecting consumers’ decision to travel online vary across the two generations. This study contributes theoretically and practically to better understanding of motivators and barriers of online purchase behaviour.

References

Bigné, E., Sanz, S., Ruiz, C., & Aldás, J. (2010). Why some Internet users don’t buy air tickets online: Springer.

Fornell, C., & Larcker, D. F. (1981b). Structural equation models with unobservable variables and measurement error: Algebra and statistics. *Journal of Marketing Research, 382*-388.

Madan, K., & Yadav, R. (2016). Behavioural intention to adopt mobile wallet: a developing country perspective. *Journal of Indian Business Research, 8*(3), 227-244.

Copyright: © 2020 Sharma, Singh & Pratt. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and AJIS are credited.

doi: https://doi.org/10.3127/ajis.v24i0.2751