
AJIS vol. 8 no. 1 September 2000

TOP-DOWN ENTERPRISE APPLICATION INTEGRATION
WITH REFERENCE MODELS

Willem-Jan van den Heuvel & Wilhelm Hasselbring & Mike Papazoglou
Infolab, Dept. Information Management and Computer Science, Tilburg University,

PO Box 90153, NL-5000 LE Tilburg, Netherlands,
Email: { wjheuvel | hasselbring | mikep } @kub.nl

ABSTRACT

For Enterprise Resource Planning (ERP) systems such as SAP R/3 or IBM SanFrancisco, the tailoring of
reference models for customizing the ERP systems to specific organizational contexts is an established
approach. In this paper, we present a methodology that uses such reference models as a starting point for a
top-down integration of enterprise applications. The re-engineered models of legacy systems are
individually linked via cross-mapping specifications to the forward-engineered reference model's
specification. The actual linking of reference and legacy models is done with a methodology for
connecting (new) business objects with (old) legacy systems.

INTRODUCTION

With the traditional bottom-up approach to the integration of existing (legacy) systems, the structure of
the (merged) integrated information models is highly determined by the overlaps among the component
system models. As discussed in Hasselbring (1999), the maintenance of such integrated models may
become a serious problem, because the merged models rapidly become very complex; usually more
complex than required for the actual integration goals. This situation can lead to severe scalability
problems with respect to execution performance, usability, and maintenance. For a discussion of the
resulting problems refer to Hasselbring (1999).
Another way to approach the integration of heterogeneous information systems is a top-down process.
Starting with common reference models, the individual component models are integrated into these
common reference models Hasselbring (1999). The resulting integration process is illustrated in
Figure 1. The local models of the legacy systems are not integrated into a common global model (which
would be the 'federated schema' in federated database systems (Sheth & Larson 1990)) as it would be
the case with the traditional bottom-up approach. Instead, an integration of the given reference model
with each individual local model is constructed via a Unking mechanism (a form of type matching in our
methodology). A cross-mapping specification defines the mapping from the (given) reference model to
the (local) legacy models. The integration process starts top-down with the reference model. The
linking process combines forward and reverse engineering techniques. Both, the reference model and
the legacy models are specified in our Component Definition Language (CDL), before they are
integrated. An important difference with integration in federated database systems is that with
enterprise applications, we integrate business models, not database schemas. CDL has been proposed as
the standard component specification language by the Business Object Domain Task Force of the
OMG. It is a superset of the OMG Interface Definition Language (IDL) and the ODMG Object
Definition Language (ODL). We introduce specific extensions for business modeling and, in particular,
cross-mapping specification.

126

AJ1S vol. 8 no. 1 September 2000

Cross-mapping :;j-:~ GrpssTtnappjiig ',.

Re-engineered .
; Legacy" System

'.Model
••• .-.- . . - < . .

$
. .&

f-<?

Re-enigineered
Legacy Systern,

Model''-,'''

Forward
engineering

i Q.

Reverse
engineering

Figure 1: Top-down integration of legacy systems with a reference model for enterprise applications as starting
point for the integration.

For the actual linking of reference and legacy models, we employ a methodology for business model
integration, called Business Applications to LEgacy Systems (BALES) (van den Heuvel 2001). This
methodology allows reusing as much of the legacy data and functionality as needed for the development
of applications that meet modem organization requirements and policies. In particular, the BALES
methodology allows to construct configurable business applications on the basis of business objects and
activities that can be linked through parameterization to their legacy counterparts.

THE BALES METHODOLOGY FOR LINKING BUSINESS MODELS

Most of the approaches to integrate legacy systems with modern applications are designed around the
idea that data residing in a variety of legacy database systems and applications represents a collection of
entities that describe various elements of an enterprise. Moreover, they assume that by combining these
entities in a coherent manner with legacy functionality and objectifying (wrapping) them, legacy
systems can be readily used in place. In this way it is expected that the complexities surrounding the
modem usage of legacy data and applications can be effectively reduced. Unfortunately, these
approaches do not take into account the evolutionary nature of business and the continual changes of
business activities and policies which need to be reflected in the legacy systems. Although part of the
functionality of a legacy system can be readily used, many of its business activities and policies may
change with the passage of time.
One important characteristic of business object technology, that also contributes to the critical challenge
described above, is the explicit separation of interface and implementation of a class (Eeles & Sims
1997). Business object technology takes this concept a step further by supporting interface evolution in
a way that allows the interfaces of classes to evolve without necessarily affecting the clients of the
modified class. This is enabled by minimi/ing the coupling between business components. Client and
server classes are not explicitly bound to each other, rather messages are trapped at run-time by a
semantic data object that enforces the binding at the level of parameter passing semantics.
The BALES methodology, that is under development (van den Heuvel 2001), has as its main objective
to link business objects (BOs) with legacy objects (LOs). Legacy objects serve as conceptual
repositories of extracted (wrapped) legacy data and functionality. These objects, just like business
objects, are described by means of their interfaces rather then their implementation. A business object
interface can be constructed from a legacy object interface partition comprising a set of selected
attribute and method signatures. All remaining interface declarations are masked off from the business
object interface specification. In this way, business objects in the BALES methodology are configured
so that part of their specification is supplied by data and services found in legacy objects. A business
object within the reference model can thus have a part that is directly supplied from some legacy data
and services which it integrates with data and services defined at its own level. This means that the
business object interfaces are parameterizable to allow these objects to evolve by accommodating
upgrades or adjustments in their structure and behavior.

127

AJIS vol. 8 no. 1 September 2000

Workflow

Business
Activities

Business
Object

Legacy
Activities

Legacy
Object

•*£.; -x Material-: \
Requirements Plann

Forward
Engineering
(Reference
Model)

Linking

Reverse
Engineering
(Legacy
Model)

Figure 2: Methodology of linking reference and legacy models. Workflows initiate business activities
and business activities use business objects. The dashed lines are meant to illustrate (possible)

mappings between reference and legacy elements.

The core of the BALES linking methodology comprises three phases, as illustrated on the right border
of Figure2: forward engineering, reverse engineering and linking. To illustrate this linking
methodology, a simplified example is drawn from the domain of maintenance and overhaul of aircrafts.
This example is inspired from building block definitions that are currently developed at the Department
of Defense in the Netherlands (DoDN 1997).
The upper part of Figure illustrates the reference model for the business domain (which is based on the
Defense and Aerospace reference models for SAP R/3 (SAP 2000)) in terms of workflows, business
activities and business objects. As can be seen from this figure, the reference model defines a
Request_Part workflow which comprises three business activities: Request, Prognosis and Issue. The
Request_Part workflow is initiated by a maintenance engineer who requests parts (for maintaining
aircrafts) from a warehouse. A warehouse manager can react in two different ways to a request:
1. Firstly, the manager can directly issue an invoice and charge/dispatch the requested products to the

requester. In this case, the workflow will use information from the Request activity to register the
maintenance engineer's request in an order list. This list can be used to check availability and plan
dispatch of a specific aircraft part from the warehouse. The Request activity uses the business
(entity) objects Part and Warehouse for this purpose. Subsequently, the workflow initiates the Issue
activity (see Figure). The Issue activity registers administrative results regarding the dispatching of
requested parts and updates the part inventory record by means of the Part Stock business object.
The business object Request Part Control is an auxiliary control object used during the execution of
the workflow to store and control the state of the running business activities. If the requested part is
not in stock, then an Order Part workflow is triggered (not shown in this figure). This workflow then
orders the requested parts to fulfill the request of the Request Part workflow.

2. Secondly, in case of an 'abnormal' request, for example if the customer informs the warehouse
manager about a large future purchase, the manager may decide to run a prognosis. This activity
first registers the request information provided by the Request business activity and runs a prognosis
on the basis of the availability and consumption history of the requested part. The Prognosis activity
uses information from the Part and Warehouse business objects for this purpose. After the prognosis
finished successfully, the part can be reserved. If the results of the activity Prognosis are negative
with respect to the future availability of the requested aircraft part, another workflow for ordering
parts is activated.

The lower part of Figure represents the result of the reverse engineering activity in the form of two
activities (wrapped applications and related databases) Material_Requirements_Planning and
PurchaseJRequisition. These activities make use of five legacy objects to perform their operations.

128

AJIS vol. 8 no. 1 September 2000

Figure also indicates that the reference workflow draws not only on "modern" business objects and
activities, but also on existing (legacy) data and functionality to accomplish its objectives. For example,
business activities such as Request and Issue on the reference model level are linked to the legacy
activities MateriaI_Requirements_Planning and Purchase _Requisition by means of solid lines. This
signifies the fact that the activities on the reference model level reuse the functionality of the activities
at the legacy model level. The same applies for business objects at the reference model level such as
Part, Part_Stock and Stock_ Location, which are parameterized with legacy objects. In this simplified
example we assume that problems such as conflicting naming conventions and semantic mismatches
between the reference and legacy models have already been resolved.

/'I. Reference Modeling 2. CDL-Specification 3. Instantiate the Meta-CDL Reference Model

Forward Engineering Phase ir—

Linking Phase

Cross
mappable
constructs

7. Query Model to find
Potentially Mappable Constructs

Reverse Engineering Phase ±

8. Define BOs and
business processes
in terms of
LOs & processes
inCDL

AJjyt!fS!iate tne Meta-CDL Legacy Model ,.''

Figure 3: The BALES linking methodology.

Figure illustrates the integration approach of the BALES methodology and the individual steps applied
during its three phases. The forward engineering phase transforms a conceptual reference model (e.g.,
SanFrancisco (Abinavam et al. 1998) Reference Models specified in the UML notation (Booch et al.
1999)) into CDL and maps this CDL definition to a Meta-CDL Model which serves as a basis for
comparison between business and legacy enterprise models. This phase comprises the activities which
correspond to steps 1, 2, and 3 in Figure. In the second phase of the BALES methodology, we represent
the legacy objects and activities in terms of CDL and link them to a Meta-CDL Legacy Model. The
activities during the reverse engineering phase, which correspond to steps 4, 5, and 6 in Figure 3, are
similar to those performed during the forward engineering phase. The actual linking is then done in step
7, and the cross-mapping specification is constructed in the final step 8. Below, we illustrate the
BALES methodology for constructing a cross-mapping specification by means of the aircraft
maintenance and overhaul example following those steps:
1. Reference Modeling:
The forward engineering activity starts with the given reference model. The reference model reveals the
activities, structure, information, actors, goals, and constraints of the business in terms of business
objects, activities, and workflows, and is illustrated by the reference workflow in the upper part of
Figure 2.

129

AJIS vol. 8 no. 1 September 2000

2. CDL-Specification of the Reference Model:
The interface descriptions of the business objects and activities need to be constructed on the basis of
the reference model. To formally describe the interfaces of business objects, we use a variant of the
CDL that has been developed by the OMG (DAT 1997). CDL is a declarative specification language —
a superset of the OMG Interface Definition Language (IDL) and the ODMG Object Definition
Language (ODL) with specific extensions for business modeling and, in particular, cross-mapping
specification. A specification in CDL defines business object interfaces, structural relationships
between business objects, collective behavior of related business objects, and temporal dependencies
among them (DAT 1997). Detailed descriptions of the CDL syntax can be found in DAT (1997) and
some practical experience with the use of CDL is discussed in Hordijk (1998).
The reference model represented in the upper part of Figure 2, serves as a starting point to specify the
business object/activity in CDL. Figure 4 gives an extract of the CDL specification involving a business
object with interesting dynamic behavior, namely the Request_Part_Control object. This CDL
specification describes the interface of the business control object Request_Part _Control (see Figure 2)
and shows that this business object encapsulates three business activities: Request, Prognosis, and Issue.
The dynamic behavior of the encapsulated Prognosis activity should be interpreted as follows: the
Prognosis activity is triggered by the incoming signal register_expected_stock. After this signal is
received, the activity moves from the state initial to the state forecasting. This is expressed with the
state transition rule (STR) Start_forecasting. While the Prognosis activity resides in the state
forecasting, it can perform the forecast operation. This operation stochastically estimates the required
stock on the basis of past data (stock levels) in the warehouse (warehouselD) and required future
demand of the part (partED) for a specific period (consumptionPeriod).
The manualReorderPlanning business operations of the Prognosis activity refers to the situation where
the user has to define the reorder point and the safety stock him/herself. This approach is in contract to
the automatic reorder planning (method where both parameters are automatically forecasted).
Reorder planning is a special category consumption-based planning that calculates the reorder point on
the basis of past and future consumptions, delivery lead times, etc. In this planning strategy, the
available stock is compared with the reorder point; if the actual stock gets below the reorder point, the
system automatically creates an order form (Keller, G. & Teufel, T. 1998).

3. Instantiating the Meta-CDL Reference Model:
The CDL descriptions of both the forward- and backward-engineered models have to be connected to
each other in order to be able to ascertain which parts of the legacy object interfaces can be re-used
with new applications. To achieve this, we represent both business and legacy CDL specifications in a
repository system. For this purpose we utilize the ConceptBase system (Jeusfeld et al. 1998), which has
an advanced query language for abstract models (like the CDL meta model) and it uniformly represents
objects at any abstraction level (data objects, model components, modeling notations, etc.). The
advantage of this repository approach is that the content of the repository, viz. Meta-CDL models, is
subject to automated analysis, mainly by means of queries.

130

entity Request_Part_Control
// this object comprises all three business activities and registers
// the state of them (initial, processing or handled).

activity Prognosis
relationship boRPC IsPartOf Request_Part_Control inverse bpP ;
relationship wflR Many 0..* Request_art_Workflow inverse bpP ;
attribute String consumptionHistory;
attribute Date consumptionPeriod;
attribute Integer expectedSpecialSale;
attribute Integer totalExpectedConsQualityinPeriod;
Void manualReorderPlanning (in Integer partID, in Integer stockID,

in Integer warehouselD);
signal register_expected_stock ();
states prognosis (initial, manual_planning, forecasting, stopped);
during (prognosis==forecasting) withForecast
attribute Integer partID;
attribute Integer stockID;
Void forecast (in Integer partID, in Integer stockID, in

Integer warehouselD, in Date consumptionPeriod,
in String consumptionHistory);

,
apply StateTransitionRule Start_forecasting
trigger = register_expected_stock();
source = initial;
target = forecasting

; // End: Prognosis
activity Issue_Part .. ;
activity Request

,- # end entity Request_Part_Control

Figure 4: The CDL specification for the reference business (entity) object Request_Part_Control.

After the interfaces of the business objects and activities have been specified in CDL, the CDL
specifications are instantiated according to a Meta-CDL reference model. This meta model depicts the
instantiations of the CDL model elements. It defines how the CDL constructs are related to each other,
and provides information about their types. The CDL meta-modeling step is used as a basis to infer how
the constructs found in a Meta-CDL reference model can be connected to related constructs found in
the legacy models (see below). In summary, the Meta-CDL model serves as a shared description (could
be compared to the 'canonical data model' in federated database systems (Sheth & Larson 1990)) to
which the forward and the reverse engineered CDL models will be linked in order to ascertain which
(portions of) legacy elements can be linked to the reference model level. In this way, it is possible to
parameterize reference model elements with related legacy elements for linking them to each other in
the cross-mapping specification.

4. Reverse Engineered Legacy Model:
The reverse engineered model represents the wrapped legacy data and functionality. To construct the
legacy objects, we rely on techniques that combine object wrapping and meta-modeling with semantic
schema enrichment (Papazoglou & Russel 1995, Papazoplou & van den Heuvel 2000). The legacy
object model comprises a distinct legacy object and activity layer in the BALES methodology (see
bottom part of Figure 2).

131

AJIS vol. 8 no. 1 September 2000

Reverse engineered legacy activities such as Material_Requirements_Planning and
Purchase_Requisition and wrapped objects like Part, Plant, Warehouse, etc., are represented in the
reverse engineered model as illustrated in Figure 2. The legacy activity
Material_Requirements_Planning is used to determine the requirements for parts at an aircraft
maintenance location.

Figure 5: The CDL specification for the legacy (entity) object Warehouse.

Legacy_entity Warehouse
relationship ordered_for Many Part inverse ordered_by;
relationship has Many Plant inverse of;
attribute Integer plantID;
[required] attribute String warehouse_name, warehouse_address,

warehouse_place;
state orderinginitial, planning, planned

// Definition of the Material Requirements Planning legacy process
Legacy_activity Material_Requirements_Planning
relationship loP Many 0..* Part inverse mrpLpP ;
relationship loW Many 0..* Warehouse inverse mrpLpW ;
relationship loPl Many 0..* Plant inverse mrpLpPl ;
attribute String consumptionHistory;
attribute Date consumptionPeriod;
attribute Integer totalExpectedConsQualityinPeriod;

signal register_expected () ;
signal register_expected_stock ();
Void forecastStochModel (in Integer partID, in Integer stockID, in
Integer warehouselD, in Date consumptionPeriod,
in String consumptionHistory) ;
states prognosis (initial, manual_planning, forecasting, stopped);

apply StateTransitionRule START_FORECASTING
trigger = register_expected_stock();
source = initial;
target = forecasting

r

; // end Warehouse entity

5. CDL Specification of the Legacy Model:
The interfaces of the legacy objects and activities are described in CDL in the same way as we
explained for reference activities and objects. Figure 5 presents an example interface of the legacy
object Warehouse. As can be seen from this example, the legacy object Warehouse offers the legacy
activity Material_Requirements_Planning. This legacy activity can be used to plan all the part
requirements in the warehouse. For this purpose it uses the legacy operation forecastStochModel (where
stochastic planning is a special form of consumption-based planning, see the business operation
forecast).
The definitions in the legacy object Warehouse will subsequently be used as a basis to construct the
interface of the reference business object Warehouse.

6. Instantiating the Meta-CDL Legacy Model:
After the CDL specifications of the legacy components are available, they are also instantiated into the
meta-model repository.

7. Link Phase of the CDL Meta Models:
When both the forward and reverse engineered CDL descriptions have been instantiated by means of
the Meta-CDL model in ConceptBase, the actual linking of business objects and activities to legacy
objects and activities can take place. At first, a measure of similarity between a given CDL description
of the reference model IQ and (a set of) CDL description(s) of the legacy system(s) l\— In is calculated.

This measure is used to identify (part of) the CDL description of the legacy components in the set that

132

AJIS vol. 8 no. 1 September 2000

fit(s) best to the given CDL definition of the reference (enterprise) model. In step 8 (see below), we
actually define the (partial) mapping based on these measurements.
The algorithm to calculate the similarity of two (or more) CDL specification deals with type
conformance issues like covariance (e.g., of the method results) and contra-variance (e.g., of method
arguments). However, it leaves semantic integration of both schemes outside the scope.
Semantic interoperability has been extensively investigated in the field of (federated) database systems,
f.e., in the context of data scheme integration. Most solutions comprise (a combination of) ontologies,
meta-data or contexts (Kashyap 1998). Semantic integration of a reference model and a reverse
engineered model of a legacy system is even harder as the terminology used in both specifications is
inherently totally different: reverse engineered CDL code often includes obscure, "empty" names
derived from code variables, whereas the reference model is mostly stated in (standardized) business
terminology. For example, the legacy variable DSAG_TAS_LDD that has automatically been reverse
engineered into a legacy attribute of a legacy object DSAG_TAS in a legacy model is semantically
equivalent to the attribute product_name of the business object Product of a corresponding reference
model.
Therefor, we propose to firstly compare type skeletons, that we call type trees (see Figure 6), of both
legacy and reference objects. Later on, we will resolve any remaining semantic mismatches. In a type
tree, a leaf represents a type, and a node represents a typed entity. A type-tree is a directed acyclic
graph G=(N,E,S,C,R), where N is the set of nodes, and E is the set of edges. The leaves L c N of
G are nodes, with no outgoing edges. The leaves are marked by Simple Type, all other nodes by
Composite Type. The inner nodes in E - L are called constructor nodes. The predefined set Simple
Types includes types as Integer, String, etc. The predefined set Composite Types includes type
constructors like operation and during. Both sets may be enhanced by user defined types. One can
assign a role to some edges, e.g., for a node with the constructor method, attribute,return type, input
type, and output type. Both sets may be extended by user defined types. The function S: L ^Simple-
Types maps a simple type to each leaf. The function C: E-L •> Composite Types assigns to each
constructor node a composite type. The partial function R: E ̂ Roles can be used to assign a role to
an edge (Heuvel, W.-J. van den & Reussner, R. 2000).
Given two type trees t j , t2 the algorithm computes a number, which is a measurement for the

similarity of t j and t2 . The higher this number, the greater the similarity. The algorithm is

implemented as a set of active rules and queries to compare the (linked) legacy and reference models
that are stored in the ConceptBase system.

Figure 6: The type-tree matching process for the reference model and the legacy enterprise model.

Figure 6 illustrates the result of the type-tree matching process for the CDL examples. At the left hand
side of this figure, the type tree of the reference (enterprise) model is depicted. The right hand side
expresses the reverse engineered (SAP R/2) legacy system model, and has been derived from Figure 5.
The algorithm now calculates the match between (parts of) both type trees. The result is graphically

133

AJIS vol. 8 no. 1 September 2000

expressed as the grey area at the left hand side of Figure 6; the arrows point to the constructs that we
compared.
The linking algorithm results in an equivalence rate of 139/180 (=77%) for the business activity
Prognosis and the legacy activity Material_Requirements_Planning. The equivalence rate of the
business operation forecast with the legacy operation forecastStochModel is obviously 1 (thus a full
match). For details on the algorithm, we refer the reader to van den Heuvel (2001).

8. CDL Specification of the Cross Mapping:
The BALES methodology results in a CDL specification of reference elements in terms of their related
legacy counterparts. The interfaces that are most likely to match according to the linking algorithm,
now need to be checked by the designer to resolve semantic conflicts. The syntactically and
semantically matched constructs thereafter need to be specified in the resulting parameterized business
(/task) object(s). For this purpose we use the initial CDL specification for reference objects from step 3,
in which we connect reference element specifications with links to equivalent (mappable) legacy
component specifications that we identified by means of the matching algorithm.
An example of such a mapping is given in Figure 7. This (simplified) example defines the reference
object operation forecast in terms of the legacy operation forecastStochModel (part of the
Material_Requirements_Planning legacy activity/program) which is embedded in the business object by
means of the linking operator ->.
This linking process is followed for each legacy system that shall be integrated into the common
reference model.

Figure 7: The CDL specification for the reference business object's operation forecast in terms of the

activity Prognosis
relationship boRPC IsPartOf Request_Part_Control inverse bpP ;
relationship wflR Many 0..* Request_art_Workflow inverse bpP ;
attribute String consumptionHistory;
attribute Date consumptionPeriod;
attribute Integer expectedSpecialSale;
attribute Integer totalExpectedConsQualityinPeriod;
Void manualReorderPlanning (in Integer partID, in Integer stockID,
in Integer warehouselD);

during (prognosis==forecasting) withForecast
attribute Integer partID;
attribute Integer stockID;
// Mapping of forecasting method to legacy process component MRP
Void this.forecast --> Warehouse.Material_Requirements_Planning.
forecastStochModel(in Integer partID, in Integer stockID, in Integer
warehouselD, in Date consumptionPeriod, in String consumptionHistory)

/

apply StateTransitionRule Start_forecasting
trigger = register_expected_stock() ;
source = initial;
target = forecasting

,
; // End: Prognosis

legacy operation forecastStochModel.

CONCLUSIONS AND FUTURE RESEARCH

In this paper, we present a top-down approach to enterprise application integration, whereby reference
models are used as starting point for the integration process. The linking of reference and legacy models
combines forward and reverse engineering techniques employing the BALES methodology. A resulting
cross-mapping specification defines the mapping from the reference model to the individual legacy
models. The BALES methodology has as its main objective to inter-link parameterizable business
objects to legacy objects. Legacy objects serve as conceptual repositories of extracted (wrapped) legacy
data and functionality. These objects are, just like business objects, described by means of their
interfaces rather than their implementation. Business objects in the BALES methodology are configured

134

AJIS vol. 8 no. 1 September 2000

so that part of their implementation is supplied by legacy objects. Future research includes considering
similarity weights in the matching algorithm.
The reference models serve as the starting point in the integration process with the top-down approach.
The overall integrated system will be more scalable than with the bottom-up approach, because the
integrated reference models do not grow linearly with the number of component systems. The
decentralized responsibility for maintaining the cross-mapping specifications reduces the central
coordination needs and distributes the maintenance cost. Starting with the reference models should
avoid changes to the fundamental structure of these models, making the integration more usable and
scalable. For integrations with a small number of local/component systems, the top-down approach may
not offer the optimal solutions, but for integrations with a large number of connected systems, we will
obtain a more usable and maintainable overall systems architecture.
In practice, we can also expect a yo-yo approach, as discussed in Hasselbring (1999): the integration
process alternates with bottom-up and top-down steps. For instance, the bottom-up process may provide
input for extending the reference models. In the presented example, that was taken from a project with
the Department of Defense in the Netherlands, it turned out that the existing reference models (the so
called Defense and Aerospace Solution Maps (SAP 2000)) for SAP R/3 did not cover all requirements
of this Dutch setting. These problems are currently addressed by SAP through extending then-
respective reference models according to these additional requirements. The development process must
take feedback, which is based on experience with actual applications, into consideration. Anyway, it is
important to start at the top (with the common models). To take the analogy of the yo-yo toy: when the
game starts, the reel should be coiled up.

REFERENCES

Abinavam, S. et al. (1998) San Francisco Concepts & Facilities. Technical Report SG24-2157-00,
IBM International Technical Support Organization, 1998.

Booch, G. et al. (1999) Unified Modeling Language User Guide. Object Technology Series.
Addison-Wesley, Reading, MA, 1999.

DAT (1997) Data Access Technologies, OMG Business Object Domain Task Force,. Business object
architecture (BOA) proposal BOM/97-11-09, 1997.

DoDN (1997) Department of Defense Netherlands. Methodiek voor bet inrichten van de
informatievoorziening op basis van bouwstenen ten beboeve van bet ministerie van defensie,
1997.

Eeles, P. & Sims, O. (1997) P Building Business Objects. John Wiley & Sons, New York, 1998.
Hasselbring, W. (1999) Top-down vs. bottom-up engineering of federated information systems. In

Engineering Federated Information Systems (Proc. EFIS'99), pages 131-138. Infix-Verlag,
1999.

Heuvel, W.-J. van den & Reussner, R. (2000) Matching Component Interfaces, Technical Report
Infolab, Tilburg University, The Netherlands and Interner Bericht at the Department of Informatics,
University of Karlsruhe, Germany

Hordijk, W. et al. (1998) Working with business objects: A case study. In OOPSLA'98 Business
Object Workshop IV. Springer-Verlag, 1998.

Jeusfeld, M. et al. (1998) ConceptBase: managing conceptual models about information systems. In
P. Bermus, K. Merlins, and G. Schmidt, editors, Handbook on Architectures of Information
Systems, pages 265-285. Springer-Verlag, 1998.

V. Kashyap and A. Sheth (1998) Semantic Heterogenity in Global Information Systems: the Role of
Metadata, Context and Ontologies. In Papazoglou and Schlageter, editors, Cooperatve
Information Systems, Academic Press, 1998.

Keller, G. & Teufel, T. (1998) SAP R/3 Process-Oriented Implementation, Addison Wesley
Longman 1998

Papazoglou, M.P & Russell, N.(1995) A semantic meta-modeling approach to schema transformation.
In N. Pissinou, A. Silberschatz, E. K. Park, and K. Makki, editors, CIKM-95: Int'l. Conf. on
Information and Knowledge Management, Baltimore, Maryland, 1995. ACM Press.

Papazoglou, M.P. & van den Heuvel, W.-J. (2000) Leveraging legacy assets. In M. Papazoglou,
S. Spaccapietra, and Z. Tari, editors, Advances in Object-Oriented Modeling. MIT-Press, 2000.
(in press).

SAP (2000) SAP Aerospace & Defense, available at http://www.sap.com/products/uidustry/aero/.
Sheth, A. & Larson, J. 1990) Federated database systems for managing distributed, heterogeneous, and

autonomous databases. ACM Computing Surveys, 22(3): 183-236, 1990.

135

AJIS vol. 8 no. 1 September 2000

van den Heuvel, W.-J. (2001) Integrating Business Applications with Legacy Systems. PhD thesis,
Tilburg University, 2001. (in preparation).

136

