
AJIS vol. 8 no. 1 September 2000

ADDING CONFLICT RESOLUTION FEATURES TO A QUERY LANGUAGE FOR
DATABASE FEDERATIONS19

Kai-Uwe Saltier1 Stefan Conrad2 GunterSaake1

'Department of Computer Science, University of Magdeburg,
P.O. Box 4120, D-39016 Magdeburg, Germany

Department of Computer Science, University of Munich,
Oettingenstr. 67, D-80538 Miinchen, Germany

ABSTRACT

A main problem of data integration is the treatment of conflicts caused by different modeling of real-
world entities, different data models or simply by different representations of one and the same object.
During the integration phase these conflicts have to be identified and resolved as part of the mapping
between local and global schemata. Therefore, conflict resolution affects the definition of the integrated
view as well as query transformation and evaluation, hi this paper we present a SQL extension for
defining and querying database federations. This language addresses in particular the resolution of
integration conflicts by providing mechanisms for mapping attributes, restructuring relations as well as
extended integration operations. Finally, the application of these resolution strategies is briefly explained
by presenting a simple conflict resolution method.

INTRODUCTION

Nowadays integrating heterogeneous data sources is a significant challenge to the database community.
The availability of numerous sources, ranging from legacy systems and enterprise databases to public
Internet sources, increases the demand for tools and techniques integrating, condensing and abstracting
data. Recently, several integration approaches were developed, particularly multidatabase systems
(Litwin & Abdellatif (1986), Bright et al. (1992)), mediators (Wiederhold (1992)) and federated
database systems (Sheth & Larson (1990)). More or less these approaches are based on the idea of
providing an integrated view on the sources. Defining this view is subject of schema integration. During
the integration process the individual schemata are analyzed, the global schema is defined and finally
the mapping between local and global schema is described. The mapping information provides the base
for query processing. A global query is decomposed according to the mapping and translated into sub-
queries for the individual sources. After local evaluation of the sub-queries, the sub-results have to be
combined to the global result.
Independent from the direction of the schema integration process, bottom-up - integration of all the
relevant data vs. top-down - integrating data for a given goal (Hasselbring (1999)), the designer has to
resolve conflicts resulting from the heterogeneity of the participating data sources. Examples of
conflicts are among others different identifiers for the same fact (e.g. entities or attributes), using
different modeling concepts for representing real-world entities or conflicts, arising from overlapping of
data. Resolving these conflicts is an important step in defining the mapping between local and global
schema and therefore affects the query processing.
In this paper we present the query language FRAQL, a lightweight SQL extension for defining
integrated object-relational schemata as well as formulating queries on them. This language is
implemented as part of a query system for federated databases. The main contribution is the treatment
of integration conflicts. The paper is organized as follows: After a brief survey on related work in the
following section, we introduce the query language and the underlying software architecture. Next, the
resolution of conflicts with the help of the FraQL language features is discussed. Then, we sketch basic
principles of a method which we are currently developing for resolving conflicts as part of data
integation. Finally, we conclude the paper and outline future work.

RELATED WORK

The more general problem of schema integration is addressed by several approaches (Batini et al.
(1986), Pitoura et al. (1995)). For describing conflicts arising in the integration phase various
classifications were developed, e.g. in Kim & Seo (1991), Saltor et al. (1993), Spaccapietra et al.
(1992).
Data models and query languages supporting the integration of heterogeneous sources are particularly
multidatabase languages like MSQL (Grant et al. (1993)), SQL/M (Kelley et al. (1995)) and

19 This work was supported in part by the German Research Council (DFG): FOR 345/1-1.

116

AJIS vol. 8 no. 1 September 2000

SchemaSQL (Lakshmanan et al. (1996)). Examples of system implementations are federated database
systems like IRO-DB (Gardarin et al. (1996)), Pegasus (Ahmed et al. (1991)) or IBM DataJoiner
(Venkataraman & Zhang (1998)) as well as mediator-based systems like TSIMMIS (Garcia-Molina et
al. (1997)) or Information Manifold (Levy et al. (1996)). MSQL provides basic features for accessing
schema labels and converting them into data values. SQL/M addresses mainly description conflicts by
providing mechanisms for scaling and unit transformation. More advanced conflict resolution is
addressed for example by the restructuring techniques proposed in SchemaSQL, which support the
specification of relations with data dependent output schemata.
Pegasus uses a functional object-oriented data manipulation language called HOSQL with non-
procedural features, DataJoiner is based on DB2 and therefore provides essentially standard SQL
features for conflict resolution. In mediator systems such as TSIMMIS the mediator is specified by a set
of rules. Each rule maps a set of source objects into a virtual mediator object. In this way, conflicts are
resolved by defining appropriated rules. The special problem of combining objects from different
sources (object fusion) in mediators is addressed in Papakonstantinou et al. (1996).
Furthermore, structural conflicts and resolution strategies are discussed in detail in Kim et al. (1995).
Techniques for managing schematic heterogeneity (meta conflicts) based on SchemaSQL features are
presented in Miller (1998). Resolving description conflicts by using a rule-based data conversion
language is described in Cluet et al. (1998), Milo & Zohar (1998) presents a schema-based data
translation solution. In Kent (1991) solving domain and schema mismatch problems with an object-
oriented database language is discussed.
In Lim et al. (1999) an approach is proposed, where the origin of integrated data is included as an
additional tuple attribute in order to improve the interpretation of global data. Another approach,
presented in Sciore et al. (1994), introduces the notion of semantic values enabling the interoperability
of heterogeneous sources by representing context information.

FRAQL: AN OVERVIEW

The objective of the FRAQL development is the investigation of techniques for query processing in
loosely-coupled database federations. In this context several problems arise, which make query
processing and optimization more difficult. These include: heterogeneity of data, missing or uncertain
statistical information about data distribution and access paths, the limited query capabilities as well as
non-predictable responses of the sources (Ives et al. (1999)). In the following we will focus on the
aspect of resolving conflicts caused by heterogeneity of data.
FRAQL is a query language for object-relational database federations. It extends SQL by features for
defining federations, accessing meta-data in queries, restructuring query results, and resolving
integration conflicts. This is comparable with other multidatabase languages like MSQL or
SchemaSQL, but in contrast to these FRAQL is extensible by user-defined data types and functions and
it supports dynamic integration of new sources. With this features FRAQL could form the base for
advanced data integration and fusion tasks (Sattler & Saake (1999)). In this context, FRAQL is not
intended as an end user language, but an intermediate language for specifying the integrated views.
Therefore, users can query the global integrated relations by means of usual SQL operations without
knowledge of the FRAQL extensions.
In FRAQL a federation is a set of databases consisting of relations. A database can be provided by a
full-featured DBMS or even by a Web source encapsulated by a wrapper (Roth & Schwarz (1997),
Sattler & Hoding (1999)). This wrapper has to implement the query mechanisms which are not
supported directly by the source. FRAQL is based on an object-relational data model: it supports the
definition of object types and object tables derived from types. Using object-relational features
simplifies the integration of post-relational data sources (e.g. ODBMS-based sources or XML
datastores) and provides more advanced modeling concepts for schema definition.
Object types describe the structure of objects as sets of attributes and their domains. Types can be
organized in a specialization hierarchy. Object tables represent global virtual relations of the federation,
i.e. data from the sources are not materialized, except for caching purposes in order to speed up query
evaluation. Here we distinguish between import and integration relations. An import relation is a
projection of a local relation of a data source. The import relation is defined by specifying the origin
(the identifier of the source) and, if required, a mapping between local and global attributes.

create type type_name [under type_names] (
attrib_definitions

117

AJIS vol. 8 no. 1 September 2000

create table global_name of type_name
as import from source.local_name
[mapping_definitions];

A data source is specified by the required database adapter and additional connection information:
register source source_name at >DSN=db;\JID=user,PWD=password'

using 'adaptor_name';
An integration relation is a view on other global relations combined by using operators like union, 6-
join and outer join. In addition, the standard SQL operations selection and projection are provided, too.
An integration relation is defined as follows, where the term table_expression denotes a SQL view
definition with extensions explained later.

create table global_name of type_name as table_expression;
Furthermore, FRAQL supports user-defined functions, which are stored in the database of the federation
layer (i.e., in the query processing server) and are callable in queries. These functions are implemented
in Java and registered in the query system. In order to be able to rewrite queries during optimization,
two functions can be specified as inverse to each other.

Similar to SQL, the union and join operations can be refined by an on clause specifying the comparison
attributes (for the union operator) resp. the comparison expression (for join operators), e.g.:

table 1 union table2 on attrl, attr2
tablel join table2 on tablel.attrl = table2.attr2

Both the union and join operators can be applied with an additional reconciled by clause which denotes
a user-defined function for conflict resolution (see the following section):

tablel join table2 on attrl = attr2 reconciled by func
Restructuring of relations is implemented in a way inspired by SchemaSQL. Variables of a query can
not only be bound to relations as tuple variables, but also to meta-data, like the set of attributes of a
relation or the set of relations of a schema. But in contrast to SchemaSQL, where meta-data access in
queries is implemented as a language extension, in our approach the schema catalog is used. So, the
catalog relation catalog.columns contains information about attributes of all global relations, whereas
the relation catalog.tables describes the global relations. Naturally, any global user relation with
information about other relations can be used as meta-data source, too.
As an extension to standard SQL, attributes of tuple variables in queries can be obtained during
evaluation. This means, while in SQL names of attributes and relations are constants, in FRAQL they
can be constructed from current values of other tuple attributes. This variable substitution is written in
the notation $var and can appear everywhere in a query, where names of attributes or relations are
expected. For example, the expression tbll.$(tbl2.col) means the attribute of the current tuple of
relation tbll, whose name is obtained from the current value of tb!2.col. In the same way, a relation in
the FROM clause or a query could be dynamically determined. The following query selects ISBN and
title information from all relations implementing the object type book. So it is equivalent to a union of
all these relations.

select t2.isbn, t2.title
from catalog.tables tl, $(tl.table_name) t2
where tl .type_name = 'book';

This technique enables a flexible transformation of schemata by view definition. But we have to take
into consideration the effects on query optimization. Therefore, static optimization techniques, which
create a complete query plan before beginning the evaluation, are inappropriated for queries containing
variable substitutions. Better approaches should support runtime re-optimization at certain points of
query processing (Graefe & Ward (1989), Kabra & DeWitt (1998)).
FRAQL is implemented as part of a federated query system. This system consists of the following main
components: the query parser, the decomposer and the global optimizer, the query evaluator, the Java
VM for evaluating user-defined functions, and the catalog. The adapter layer contains the management
component as well as the individual adapters providing a uniform access interface to the data sources.
The interface to the adapters and the query processor itself are implemented using CORBA. Therefore,
adapters can be plugged into the system at runtime. On top of the query interface we have developed a
JDBC driver and an interactive query tool.

CONFLICT RESOLUTION IN FRAQL

In FRAQL an integrated schema is defined only by global relations which are views on local relations.
Therefore, data integration and conflict resolution are parts of query processing, particularly view

118

AJIS vol. 8 no. 1 September 2000

decomposition, query transformation and result composition. So the main issues for conflict resolution
in FRAQL are:

• renaming of attributes as well as transformation of attribute values,
• integration operations like union and joins, and
• restructuring of relations by combining data and meta-data.

In the following we discuss the application of these techniques for description conflicts, semantic
conflicts, and structural conflicts. These are three of the four conflict classes introduced in Spaccapietra
et al. (1992). We close this section by briefly considering the remaining class of heterogeneity
conflicts.

Description Conflicts

First, we consider description conflicts. This kind of conflicts occurs, when the same real-word entity is
modeled with different properties. In FraQL we eliminate these differences by defining an import
relation. Beginning with the object type describing the desired global properties, we specify how the
local relation implements this type. Here the following rules apply to this mapping:

1. Each local attribute corresponding to an attribute defined by the global object type in terms of
identifier and type becomes an attribute of the global relation.

2. The notation g_name is l_name means renaming the local attribute to g_name. This requires
type compatibility.

3. The notation g_name is func(l_name) defines that the global attribute value is calculated by
using the user-defined function func on the local attribute value.

4. The definition g_name is @tbl(l_name, src, dest, default) means that the database table tbl is
used for mapping the values from the local attribute l_name. This value of the global attribute
is obtained by looking for the value of attribute l_name in column src and retrieving the
corresponding value of column dest. The field default denotes a default value, either as literal
or as local attribute, which is assigned to the global attribute, if the value of l_name is not
found in the table. In fact, this kind of attribute mapping is evaluated by a left outer join,
whereas the NULL value is replaced by the default value default.

5. The remaining local attributes are suppressed.
6. To all attributes of the global relation without a mapping the NULL value is assigned.

The next example demonstrates these concepts. First we define an object type book:

create type book (
isbn varchar (20),
title varchar(100),
price float);

Furthermore we assume a local relation buch from the source src, which differs from the object type by
the attribute names and the currency of the price attribute (DM instead of Dollar). Therefore, a function
dm2dollar for converting the value is required which could be implemented by accessing a database
table. Now we can define the global relation german_books as follows:

create table german_books of book as import from src.buch (
title is titel,
price is dm2dollar (preis));

Based on these definitions the global query
select title, isbn from german_books where price < 50;

is transformable into a local query. Beside renaming attributes this requires a transformation of the
selection expression. Because user-defined functions are available only at the federation layer and not
in the source itself, the selection operation has to be performed at global level or - for a constant
expression - the expression has to be pre-computed by applying the inverse function. For the given
example this results in the following transformed query:

select titel, isbn from buch where preis < 93.60;
Of course, this requires that a function, e.g. dollar2dm, is being registered in the global query system as
the inverse of dm2dollar.

Semantic Conflicts

Semantic conflicts arise, when the relations overlap, which have to be integrated, i.e. there are tuples
from both relations representing the same real-world object. First of all, this kind of conflicts can be

119

AJIS vol. 8 no. 1 September 2000

resolved in FRAQL by applying the standard SQL union operation. However, the following problems
remain:

• We have to decide, when two tuples from different relations represent the same real-world
object (tuple identity).

• How to process tuples representing the same object but containing different values for the
same attribute (data conflicts) ?

isbn isbn
author author

title title

382578 382578
Williams, T. Tad Williams
Otherland Otherland

326523 276830
Gibson, W. Stanislaw Lem
Idoru Solaris

(a) books 1 (b)books2
Fig. 1. Tuple identity conflicts

The problem of tuple identity is solved by specifying the attributes relevant for deciding equivalence, as
illustrated in Fig. 1:

create table books of book as books 1 union books2 on isbn;
The attributes have to identify the tuples of each relation uniquely, e.g. by using the primary key, in
order to avoid duplicates.

Data conflicts are resolved in FRAQL with the help of user-defined reconciliation functions. A
reconciliation function is called for each pair of tuples fulfilling the comparison condition. The affected
tuples are passed as arguments to the function, the resulting tuple is inserted into the global relation.

isbn isbn isbn
number number number

3324524 3324524 3324524
2 1 3

6710767 1267894 1267894
2 2 2

6710767
2

(a) bstorel (b) bstore2 (c) stores
Fig. 2. Resolving data conflicts

In the example from Fig. 2 we want to integrate two overlapping relations bstorel and bstore2. Both
relations contain an attribute number. In the integrated relation stores this attribute should represent the
sum of both values. Therefore we define this relation as follows:

create table stores of book as
bstorel union bstore2 on isbn reconciled by book_resolve;

The reconciliation function is implemented as a stored function in Java and registered in the query
system:

II Java
public static Book resolver (Book bl, Book b2) {

Book b = new Book ();

120

AJIS vol. 8 no. 1 September 2000

b.isbn = bl.isbn;
b.number = b 1 .number + b2.number;
return b;

// FRAQL
create function book_resolve (book, book)
returns book external 'Books.resolver';

In this example the FraQL type book is mapped to a Java type. However, in the current implementation
we use generic objects for representing tuples.

Structural Conflicts

Representing a real-world aspect by different modeling concepts results in structural conflicts during
integration. Depending on the variety of the data models several kinds of conflicts can occur. In the
following we focus only on two special kinds: partitioning and meta conflicts. The resolution of other
structural conflicts, particularly for the relational data model, is discussed for example in Kim et al.
(1995).
Partitioning occurs, when the relations which have to be integrated represent different aspects of the
global relation, but still contain semantically equivalent attributes. This kind of conflicts is usually
resolved by applying a 6-join or outer join operation. Like for the union operator a reconciliation
function can be specified for resolving data conflicts.
Meta conflicts arise, when a concept is represented as data object in one schema, whereas it is modeled
as schema object (attribute or relation) in another one.

id id id
title title title
kind

382660 017062
382660 Databases Computer

Databases
Book 361556 000102

Java CACM
017062

Computer
journal

(a) dbl.publication (b) db2.book (c) db2.journal
Fig. 3. Meta conflicts: relation vs. attribute

In the example in Fig. 3 the database dbl stores books and journals in a single relation publication,
where each tuple contains a discriminating attribute kind with possible values "book" and "journal". In
database db2 books and journals are stored in separate relations. Integrating both databases requires the
adaptation of the relations from db2 to the structure of publication. A straightforward solution would be
a union of the relations book and journal with a constant value for the attribute kind:

create table publication of publ_type as
select id, title, "book1 as kind from db2.book
union

select id, tide, 'journal' as kind from db2.journal;
In a more flexible approach the names of the relations in the FROM clause are determined from the
schema catalog by using variable substitution:

create table publication of publ_type as
select t2.id, t2.title, tl.table_name as kind
from catalog.tables tl, $(tl.table_name) t2
where tl .schema = 'db2';

In this way no modifications of the global relation are required, when new relations (e.g. representing
another publication type like reports) have to be added.

121

AJIS vol. 8 no. 1 September 2000

Without the language extension for variable substitution the above query could be evaluated by a
dynamic SQL program as illustrated in the following pseudo code:

exec sql create table publication (proj_list);
exec sql select name from catalog.tables where schema = 'db2';
foreach tuple t

qstr := 'insert into publication select id, title,' ||
tname ||' from' || tname;

exec sql prepare query from :qstr;
exec sql execute query;

end
In contrast, in FRAQL this query is processed directly by the query evaluator.

isbn isbn
price meyers

supplier jones

38934237 38934237
59.0 59.0

meyers 48.0

38934237 22660513
48.0 27.0

jones 29.0

(a)dbl.book (b)db2.book
Fig. 4. Meta conflicts: attributes vs. data values

In the second example (Fig. 4) the relation of database dbl contains books with their prices and
suppliers. For each supplier a book is represented by a separate tuple. In contrast, the relation of
database db2 contains the supplier prices as separate attributes. By using the schema catalog and
variable substitution we are able to transform the relation of db2 according to the relation of dbl.

select b.isbn, b.$(c.column_name), c.column_name
from db2.book b, catalog.columns c
where a.table = "book1 and c.column_name o 'isbn';

Heterogeneity Conflicts

This kind of conflicts occurs if the data of the local data sources is represented in different data models.
In FRAQL these conflicts are resolved mainly by the adapters which map the modeling concepts and
hide system-dependent differences (e.g. SQL dialects).

A METHOD FOR CONFLICT RESOLUTION

Based on the features discussed above we can develop a simple method for conflict resolution as part of
data integration. It is not intended as a replacement for schema integration, rather it complements
existing integration methods. In the following we sketch the basic ideas of such method.
We propose three steps reflecting the main concepts of FRAQL: object types, import relations and
integration relations:

1. First, the global types have to be defined, either top-down or bottom-up by integrating the
local types. For that 'classical' schema integration methods should be applied.

2. Next, we have to define the import relations. Here we resolve description conflicts by
specifying the mappings of attributes.

3. In the last step we try to integrate import relations representing semantically quivalent real-
world entities. In this context we have to consider two subtasks:
• Resolving structural conflicts using standard SQL operations like projection, selection,

renaming, the join operation with reconciliation functions as well as the restructuring
mechanisms provided by FRAQL.

122

AJIS vol. 8 no. 1 September 2000

• Resolving semantic conflicts by applying the union operator in conjunction with
reconciliation functions.

A stepwise integration simplifies conflict resolution, because only one kind of conflict has to be
considered at once. However, integration is often an iterative process, therefore conflict resolution
strategies should be applied and refined in every iteration.
In practice a lot of existing conflicts are not obvious from only considering the schemata of data sources
to be integrated. Therefore, classical schema integration techniques must be enhanced by additional
means to detect such conflicts. Due to the fact that data from the data sources is available at integration
time we can directly use their data to validate decisions made in the integration process. In addition,
conflicts can be detected which are only visible on the data layer. Therefore, the stepwise integration of
data sources by means of a language like FRAQL seems to be essential for obtaining an integration
result of high quality.
In particular, we expect the following kinds of contributions a stepwise integration using FRAQL can
make to database integration:

• Following the (preliminary) results of schema integration FRAQL can be used to define
corresponding queries (or views) describing the integrated relations. By applying such queries
on real data from the data sources the FRAQL system can check whether there are additional
conflicts on the data layer, e.g. not identical values for the same property of corresponding
data objects in different data sources. By presenting all non-matching values (or, in case the
number of conflicting values is too large, by presenting selected examples) the system can give
important hints for resolving such conflicts of which we were not aware when integrating the
schemata.

• Furthermore, we strive for enhancing the FRAQL system in such a way that the system can
already propose possible ways for resolving such conflicts detected when computing a query
(or view) describing an integrated relation. If the system proposes a conflict resolution it
should directly generate a reconciliation function which can be used for that query (in the
resolved by clause). Of course, such an automated generating of reconciliation functions is
only possible in certain, restricted cases, e.g. if the conflict is due to a different scaling of
numerical values in the data sources.
Assuming that a large number of conflicts occuring in practice is of a kind for which a conflict
detection and automated generation of conflict resolution functions is possible, this is an
important and valueable help in carrying out an integration.

By means of this functionality we aim at supporting an integration method based on an integration by
example principle. In particular, the third issue, i.e. giving the system examples of conflicting values
for automated conflict resolution, will be an essential part in this method.

CONCLUSION

Resolving conflicts is an important step in integrating heterogeneous data sources. Here, differences at
schema level as well as problems caused by different data representations have to be eliminated. In this
paper we have discussed conflict resolution techniques as part of the query language FRAQL.
Integration conflicts are resolved at global level by defining views on the imported relations. In addition
to the well-known SQL operations our language provides more advanced mechanisms like renaming,
value transformation as well as structural transformation. By using these mechanisms most of the
integration conflicts are resolvable. Regarding conflict resolution we see our approach as an extension
to DataJoiner and SchemaSQL. DataJoiner's query language SQL permits accessing and querying
foreign databases without further resolution mechanisms. SchemaSQL contributes among other things
features for restructuring relations and with it for resolving meta conflicts and FRAQL extends these by
additional resolution techniques for description and structural conflicts.
FRAQL is currently being implemented in C++ as part of a query processing system for loosely-coupled
database federations. Furthermore, we have implemented adaptors to the Oracle and MySQL DBMS.
Apart from the JDBC driver and the query tool mentioned before, a graphical design und query
workbench for interactive definition of integrated schemata is under development. Moreover, in the
future we will examine dynamic optimization techniques for interleaving query planning and execution.

123

AJ1S vol. 8 no. 1 September 2000

REFERENCES

Ahmed, R., De Smedt, P., Du, W., Kent, W., Ketabchi, M.A., Litwin, W., Rafii, A. & Shan, M.-C.
(1991) "The Pegasus Heterogeneous Multidatabase System", IEEE Computer, Vol. 24, No. 12, pp
19-27.

Bright, M.W., Hurson, A.R. & Pakzad, S.H. (1992) "A Taxonomy and Curent Issues in Multidatabase
Systems", IEEE Computer, Vol. 25, No. 3, pp 50-60.

Batini, C., Lenzerini, M. & Navathe, S.B. (1986) "A Comparative Analysis of Methodologies for
Database Schema Integration", ACM Computing Surveys, Vol. 18, No. 4, pp 323-364.

Cluet, S., Delobel, C., Simeon, J. & Smaga, K (1998) "Your Mediators Need Data Conversion!", In
Haas, L.M. & Tiwary, A. (eds.), SIGMOD 1998, Seattle.Washington, pp 177-188, ACM Press.

Gardarin, G., Gannouni, S., Finance, B., Fankhauser, P., Klas, W., Pastre, D., Legoff, R. & Ramfos, A.
(1996) "IRO-DB - A Distributed System Federating Object and Relational Databases", In Bukhres,
O.A. & Elmagarmid, A.K. (eds.) Object-Oriented Multidatabase Systems - A Solution for
Advanced Applications, Chapter 20, pp 684-712, Prentice Hall, Eaglewoods Cliffs, NJ.

Grant, J., Litwin, W., Roussopoulos, N. & Sellis, T. (1993) "Query Languages for Relational
Multidatabases", VLDB Journal, Vol. 2, No. 2, pp 153-171.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.D, Vassalos,
V. & Widom, J (1997) "The TSIMMIS Approach to Mediation: Data Models and Languages",
Journal of Intelligent Information Systems, Vol. 8, No. 2, pp 117-132.

Graefe, G. & Ward, K. (1989) "Dynamic Query Evaluation Plans", In Clifford, J., Lindsay, B.C. &
Maier, D. (eds.) SIGMOD 1989, Portland, Oregon, pp 358-366, ACM Press.

Hasselbring, W. (1999) "Top-Down vs. Bottom-Up Engineering of Federated Information Systems", In
Conrad, S., Hasselbring, W. & Saake, G. (eds.) Proc. 2nd Int. Workshop on Engineering
Federated Information Systems (EFIS'99), Kuhlungsborn, Germany, pp 131-138, infix-Verlag,
Sankt Augustin.

Ives, Z.G., Florescu, D., Friedman, M.A., Levy, A.Y. & Weld, D.S. (1999) "An Adaptive Query
Execution System for Data Integration", In Delis, A., Faloutsos, C. & Ghandeharizadeh, S. (eds.),
SIGMOD 1999, Philadephia, Pennsylvania, pp 299-310, ACM Press.

Kim, W., Choi, I., Gala, S. & Scheevel, M. (1995) "On Resolving Schematic Heterogeneity in
Multidatabase Systems", In Kim, W. (ed.) Modern Database Systems, Chapter 26, pp 521-550,
ACM Press, New York, NJ.

Kabra, N. & DeWitt, D.J. (1998) "Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans", In Haas, L.M. & Tiwary, A. (eds.) SIGMOD 1998, Seattle,Washington, pp 106-
117, ACM Press.

Kent, W. (1991) "A Rigorous Model of Object Reference, Identity, and Existence", Journal of Object-
Oriented Programming, June, pp 28-36.

Kelley, W., Gala, S., Kim, W., Reyes, T. & Graham, B. (1995) "Schema Architecture of the UniSQL/M
Multidatabase System", In Kim, W. (ed.) Modern Database Systems, Chapter 30, pp 621-648,
ACM Press, New York, NJ.

Kim, W. & Seo, J. (1991) "Classifying Schematic and Data Heterogeneity in Multidatabase Systems",
IEEE Computer,Vol. 24, No. 12, pp 12-18.

Litwin, W. & Abdellatif, A. (1986) "Multidatabase Interoperability", IEEE Computer, Vol. 19, No.
12, pp 10-18.

Lim, E.-P., Chiang, R.H.L. & Cao, Y. (1999) 'Tuple source relational model: A source-aware data
model for multidatabases", Data & Knowledge Engineering, Vol. 29, No. 1, pp 83-114.

Levy, A.Y., Rajaraman, A. & Ordille, J.J. (1996) "Querying Heterogeneous Information Sources Using
Source Descriptions", In Vijayaraman, T.M., Buchmann, A.P., Mohan, C. & Sarda, N.L. (eds.)
VLDB'96, Mumbai (Bombay), India, pp 251-262, Morgan Kaufinann.

Lakshmanan, L.V.S., Sadri, F. & Subramanian, I.N. (1996) "SchemaSQL - A Language for
Interoperability in Relational Multi-Database Systems", In Vijayaraman, T.M., Buchmann, A.P.,
Mohan, C. & Sarda, N.L. (eds.) VLDB'96, Mumbai (Bombay), India, pp 239-250, Morgan
Kaufinann.

Miller, R.J. (1998) "Using Schematically Heterogeneous Structures", In Haas, L.M. & Tiwary, A.
(eds.), SIGMOD 1998, Seattle.Washington, pp 189-200, ACM Press.

Milo, T. & Zohar, S. (1998) "Using Schema Matching to Simplify Heterogeneous Data Translation",
In Gupta, A., Shmueli, O. & Widom, J. (eds.) VLDB'98, New York City, New York, pp 122-133,
Morgan Kaufinann.

124

AJIS vol. 8 no. 1 September 2000

Papakonstantinou, Y., Abiteboul, S. & Garcia-Molina, H. (1996) "Object Fusion in Mediator Systems",
In Vijayaraman, T.M., Buchmann, A.P., Mohan, C. & Sarda, N.L. (eds.) VLDB'96, Mumbai
(Bombay), India, pp 413-424, Morgan Kaufmann.

Pitoura, E., Bukhres, O. & Elmagarmid, A.K. (1995) "Object Orientation in Multidatabase Systems",
ACM Computing Surveys, Vol. 27, No. 2, pp 141-195.

Roth, M.T. & Schwarz, P.M. (1997) "Don't Scrap It, Wrap It! A Wrapper Architecture for Legacy Data
Sources", In Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky, F.H., Loucopoulos, P. & Jeusfeld,
M.A. (eds.) VLDB'97, Athens, Greece, pp 266-275, Morgan Kaufmann.

Saltor, F., Castellanos, M. & Garcia-Solaco, M. (1993) "Overcoming Schematic Discreprancies in
Interoperable Databases", In Hsiao, O.K., Neuhold, E.J. & Sacks-Davis, R. (eds.) Interoperable
Database Systems, Proc. of the IFIP WG 2.6 Database Semantics Conf, DS-5, Lome, Victoria,
Australia, pp 191-205.

Saltier, K. & Hoding, M. (1999) "Adapter Generation for Extraction and Querying Data from Web
Sources", Proc. of 2nd ACM SIGMOD Workshop WebDB'99.

Saltier, K. & Saake, G. (1999) "Supporting Information Fusion with Federated Database
Technologies", In Conrad, S., Hasselbring, W. & Saake, G. (eds.) Proc. 2nd Int. Workshop on
Engineering Federated Information Systems (EFIS'99), Kuhlungsbom, Germany, pp 179-184,
infix-Verlag, Sankt Augustin.

Sheth, A.P. & Larson, J.A. (1990) "Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases", ACM Computing Surveys, Vol. 22, No. 3, pp 183-
236.Spaccapietra, S., Parent, C. & Dupont, Y. (1992) "Model Independent Assertions for
Integration of Heterogeneous Schemas", The VLDB Journal, Vol. 1, No. 1, pp 81-126.

Sciore, E., Siegel, M. & Rosenthal, A. (1994) "Using Semantic Values to Facilitate Interoperability
Among Heterogeneous Information Systems", ACM Transactions on Database Systems, Vol. 19,
No. 2, pp 254-290.

Venkataraman, S. & Zhang, T. (1998) "Heterogeneous Database Query Optimization in DB2 Universal
DataJoiner", In Gupta, A., Shmueli, O. & Widom, J. (eds.) VLDB'98, New York City, New York,
pp 685-689, Morgan Kaufinann.Wiederhold, G. (1992) "Mediators in the Architecture of Future
Information Systems", EEEE Computer, Vol. 25, No. 3, pp 38-49.

125

