
AJIS vol. 8 no. 1 September 2000

PLUGGING FILES IN DATABASE FEDERATIONS

Uwe Hohenstein & Andreas Ebert
Siemens AG, Corporate Technology, ZT SE 2, D-81730 Munchen, GERMANY

E-mail: {Uwe.Hohenstein,Andreas.Ebert}@mchp.siemens.de

ABSTRACT

In order to use files in database federations, we propose to migrate file data into a relational database.
Integrating the database in a federation is then well-understood. This procedure has the advantage that a
,/eal" database is handled supporting transactions and SQL; files obtain a high-level interface for free.
This paper presents a specification-based approach to support the process of migrating file data into a
relational database, and vice versa. A specification language provides powerful concepts to describe the
contents of files and directories. In contrast to similar work, directory structures are taken into account,
because they contain useful semantics. Given some descriptive specification of file contents, an adapter is
generated moving data from several files into the database, and the other way round.

INTRODUCTION

Federated DBSs provide solutions to handle data stored in several autonomous sources (Sheth and
Larson (1990), Conrad et al. (1997), Conrad et al. (1999)), giving a user the illusion of a homogeneous
..database system" (DBS). A unified and consistent view of the stored data resolves discrepancies
(Saltor et al. (1992)) and conflicts (Spaccapietra and Parent (1994)) between database schemata, which
result from representing real world situations in different ways. A transparent access ensures that users
are not aware of the location of items in a particular system. With all that, the autonomy of the
constituent systems is preserved.
Research in the field of federated DBSs has brought up several prototypes (Huck et al. (1994), Kuno
and Rundensteiner (1996), Roantree et al. (1999)) and results such as integration methodologies (Reddy
et al. (1994), Schmitt and Saake (1996)), languages for view definitions (Kaul et al. (1990)), global
transaction management and query processing. Most effort is dedicated to ..real" database systems;
incorporating files is neglected. But there are huge amounts of interesting data kept in ordinary files.
For example, engineering applications could not live with the bad performance of relational DBSs for
handling complex structures. In absence of object-oriented DBSs, those applications were forced to
keep persistent data in files, and they still do due to the legacy problem. Besides legacy applications,
files also get new importance in the context of the world-wide web (WWW): Web pages are stored in
files, and generated pages can also be seen as files. Other examples for maintaining persistent data in
files are electronic documents and genome databases. These all are important information sources, and
thus candidates for being plugged in database federations.
According to the architecture of Sheth and Larson (1990), any data source in a federation requires an
adapter that is responsible for homogenizing the data according to a canonical data model. An adapter
maintains a view of the data in the canonical model. Moreover, the adapter has to provide a
corresponding interface which must be implemented on top of the local source (Roantree et al. (1999)).
Implementing ah adapter for files is very cumbersome because files are somewhat different to
databases: They do not possess an explicit schema, and they provide only a simple interface for reading
and storing data. Nowadays as object-oriented canonical data models are frequently used, e.g., Huck et
al. (1994), Radeke (1995), Hohenstein and Ebert (1999), Roantree et al. (1999), the gap to bridge has
become even huger; particularly if the semantic power of the canonical model is used, and if a complete
interface such as ODMG OQL (Cattell and Barry (1997)) is supported.
Papers such as Hoding (1996) emphasize the necessity to take files into account for federations and
analyze the problems that occur. But there are still no adequate solution to ease the integration of files.
Abiteboul et al. (1993) show how to generate a parser that provides an object view of file data. But this
parser must be manually enhanced with semantic actions that collect information in a structured way
and build objects. This is a complex task that requires a lot of knowledge in compiler technology, even
if compiler-compilers like Yacc are used. So far, this is a manual task to be done for each file again.
Other helpful solutions are coming from the field of semi-structured data. Most work here relies on
light-weight data models (Buneman et al. (1997), Nestorov et al. (1997)) that define a merely untyped
node structure being less strong than classical models. In order to organize file data according to that
data model, files are wrapped.
A manual implementation of wrappers is often impractical if the format of sources changes frequently,
as it is especially the case for die WWW. Hence, Ashish and Knoblock (1997) suggest a semi-
automatic way to generate wrappers around internet data sources. Keywords are taken as tokens of

100

AJIS vol. 8 no. 1 September 2000

interest, and the nested document structure is derived from the source. Ashish and Knoblock (1997)
present regular (Lex) expressions for detecting usual representations such as headings and emphasizing
tags. These are heuristics, whereupon a wrapper is generated. The wrapper then allows users to query
web documents in a database-like fashion. However, the overall approach is tailored very much to
internet sources.
Kushmerick et al. (1997) propose wrapper generation, too. But the paper makes more assumptions
about the data to be looked for. A powerful approach has also been developed in the TSEMMIS project
(Papakonstantinou et al. (1995), Hammer et al. (1997)). On the basis of specified templates that model
file data in OEM (Object Exchange Model), wrappers are generated. They claim that regular
expressions are simpler to use for specifying templates. Sattler and Hoding (1999) propose a similar
solution and discuss how to extract relational schemata from web sources. Besides being tailored to
WWW sources, all those approaches lack of two important points:
• They take into account single files and do not cover the semantics of directory structures. But

sometimes, records in several files constitute an object type of interest. Moreover, directories are
often used to express relationships.

• They stress on querying (mostly the web) and are not concerned with updates and transactional
support. This limits their usage in database federations.

This paper now provides an effective solution to incorporating files in a database federation thereby
abolishing the above deficits. We suggest using a relational database as intermediate storage for
handling files. This seems to be an unnecessary indirection, but has some obvious advantages:
• Provided we store file data in a fine-granular manner in tables, the federation can use SQL to query

and manipulate the data. Similarly, the transactions of the database system can be taken. Users of
the federation are synchronized by the DBS, as the database is just a ,,cache" for file data. Certainly,
external users of files must be locked until modified data is written back to files. That is, although
the locking unit is a file, federation users can work concurrently. Using DBS features thus makes the
implementation of an adapter much easier.

• Furthermore, the step of expressing the semantics of file data in a high-level canonical data model
can be divided into two simpler steps:
(a) Giving file data a simple relational structure first, and then
(b) enhancing the semantics in a semantic enrichment process (Hohenstein and Komer (1995))
Afterwards, the federation framework of Hohenstein and Ebert (1999) can take benefit from the
higher semantic level.

The remainder of this paper discusses both steps (a) and (b) in more detail and presents an adequate
support. The next section elaborates on the underlying generative principle, which relies on two
corresponding generators: The first one produces a file wrapper that converts file data into relational
tables in a structured manner. The wrapper is also responsible for writing data back into files after
modifications (Abiteboul et al. (1995)). This releases one from the tremendous task of building Yacc
programs as it is necessary in Abiteboul et al. (1993). A second generator produces an ODMG adapter
for the relational database to be plugged in our federation approach (Hohenstein and Ebert (1999)).
Both generators perfectly cooperate and provide together a real object-oriented view of data and a
corresponding ODMG access to files.
However, the generators need some input. This is done by means of logic-based specifications. The
third section presents the essentials of a first specification language ODLF,ie for specifying file contents.
An ODLFik specification is input to the generator that produces the migration into the database. Several
examples will demonstrate the expressiveness of the specification language. Relevant file formats are
discussed, and it is shown how to handle them. In addition to our previous work in Ebert et al. (1999),
we introduce some new features to incorporate several files and their directory structure. It is important
to keep this kind of semantics. Furthermore, we present concepts to handle WWW sources. In contrast
to other proposals, e.g., Ashish and Knoblock (1997), and Hammer et al. (1997), our language is very
general and suited for any kind of files.
The fourth section presents a second language ODLR that enables specifying semantic enrichment of
relational databases. We discuss how the language enhances the semantic level of a relational database.
The focus lies on concepts that are important for giving tables with file data a further upgrade.
In the conclusions, we summarize our ideas and outline some future work we are planning to do.

101

AJIS vol. 8 no. 1 September 2000

GENERATIVE PRINCIPLE

Figure 1 gives an overview of the principle of having a generator for migrating data from files in a
relational database and plugging the database in a federation. There are two generators with
corresponding specification languages.
A generator GENFii,. produces a file adapter, consisting of a parser and an unparser. The generator
requires some input given by a specification. A corresponding specification language ODLFik has the
goal to define a ,,schema" for file contents in a certain sense. The syntax of ODLFiie is a mixture of the
ODMG ODL (Cattell and Barry (1997)) and an enhancement of Yacc.
1. A subset of ODL is used to describe the schema of data files in an intuitive way. File contents are

modelled independently of the physical file structure.
A Yacc-part then defines a context-free grammar. The grammar precisely describes the contents of
files and is the basis for a parser. Using a Yacc-style eases the later generation of a parser by means
of this compiler-compiler. We extended Yacc to ease the writing of specifications. For example, the
specification language offers repetition groups known from SGML, and concepts to express
hyperlinks between files.
Parsing a file, the collected information has to be organized according to the ODL schema. So-
called assignment rules now relate the parsed information to objects in the ODL schema. It is
important to note that objects can be built from several files in several directories. Assignment rules
handle that, too.

2.

/ODU7____XGE^
/Spec/ /

ODMG
OML/OQL

i

1

h

r

installs schema

/uuLpik / \ V
/Spec / -*3ENFlb>

L r Z. /-—
Yacc program+
semantic actions -f

Yacc

generation
access

Figure 1: Generating Parser and Unparser

The ODL part (1) of an ODLFae specification is used to derive adequate relational tables. It may be
surprising why we use the higher ODL to format file data in relational tables, and although ODL is
used, why not the full power but only a subset. On the one hand, we rely on ODL because multi-valued
attributes are necessary to specify nested structures. Using only flat tables, the association between
nesting and foreign keys is difficult to express, as we will see later. On the other hand, we use only
..complex objects"; subtypes and explicit relationships between object types are omitted. Although
useful from the point of modeling file data, we cannot really benefit from the object-oriented schema,
because we have to map it afterwards onto flat tables. Moreover, subtypes and relationships are difficult
to handle because their representations in files are much more manifold than those discussed by
Castellanos and Saltor (1991) and Chiang et al. (1994) in the field of semantic enrichment of relational
databases. Such an enrichment of files should better be done by a successive semantic enrichment step,
e.g., using the specification-based approach discussed later in this paper.

102

AJIS vol. 8 no. 1 September 2000

The generation of tables is very straightforward. There are no big problems as an ODLFUe schema does
not contain subtypes and relationships. Each object type is mapped to a base table, and any multi-
valued attribute gets an additional table in the sense of normalization. This table takes the values entry
by entry. Each entry possesses a foreign key to its related base table.
The generator uses the grammar (2) of the specification and produces a Yacc program that is able to
parse files. But a parser is not enough, since it only complains if a file does not satisfy the specified
grammar. Assignment rules (3) provide some abstract information that allows the generator to enrich a
Yacc-parser with semantic actions. Those semantic actions build objects from parsed file records
according to the ODL schema. Afterwards transferring complex ODL objects into the relational
database takes place.
Unfortunately, there is no tool support for building unparsing. Consequently, the part of GENFik for
generating unparsers must be implemented from scratch.
Aa second generator GENR produces an ODMG adapter that presents a real object-oriented view of the
relational data and provides an OML/OQL access. In order to control the building of the view, a
semantic enrichment specification in a language ODLR is necessary. The ODMG adapter can be
plugged in a federation as discussed in Hohenstein and Ebert (1999).
The data collected by GENFiie and GENR is stored in a meta-database similar to (Roantree and Murphy
(1997)). The meta-data consists of any information found in specifications, i.e., ODL schemata, the
structure of the grammar, the assignments as well as the mapping of an ODL schema to a relational
schema. This makes the implementation of the generators easier, as producing the Yacc program does
not need to be done during parsing a specification.

SPECIFICATION LANGUAGE ODLme

This section presents several schematic examples that sketch out in a systematic manner how to handle
important file formats by ODLpiie. We start with commonly used organizations of objects in a single file
and then switch to directory structures, before discussing some special topics such as hyperlinks.

Handling Single Files
a) Table structures in files
We start with a single file that contains records in tabular form to outline the basic principle of ODLFi|e.
The most common format is the ,,dbase" format, which stores objects horizontally value by value. The
first line of the file introduces the structure of the data: A name Ol for the table and three attributes
Attrl, Attr2, and Attr3. Each row is then an object* = (Valueil, Valuei'2, Value/3). A marker "-" should
denote records that are deleted.

File:

Ol Attrl
Valueil
Value21
Value31

Attr2
Value 12
Value22
Value32

Attr3
Value 13
Value23
Value33

Specification 1:

/* ODL part + assignment rules */
interface O\from OT1[OK!="-"]
{ attribute int attrl = ATTR1 ;

attribute String attr2 = A TTR2 ;
attribute int attr3 = ATTR3 ;

/* grammar */
file(Ol.tab,DATAl);
DATA1: _ID " "_ID " " _ID " " _ID _EOL OT1[1-];
OT1: OK[0-1] ""ATTR1 "" ATTR2 " " ATTR3 _EOL;
OK: "-";
ATTR1: _NUMBER;
ATTR2: _ID;
ATTR3: .NUMBER;

103

AJIS vol. 8 no. 1 September 2000

The ODL schema defines a corresponding interface Ol. The structure of Ol represents the table
directly. This part is the logical view of file contents. It does not depend on how objects are organized
in the file. According to our standard mapping strategy, the ODL part is mapped on a relation Ol(attrl
int, attr2 varchar, attrS int) directly.
The grammar defines the structure of the file. It first introduces a start symbol DATA1 for the file
,,Ol.tab" by means of a file clause. DATA1 possesses a rule DATA1: ... that defines the file contents,
starting with _ID and a sequence of " " _ID just to skip the headline; the _IDs are not used as
information. After an end-of-line (_EOL), one or more ([!-]) OT1-records can occur. The rule for OT1
describes the structure of a single row of the table. Such a record consists of an optional marker "-"
(OK), a number (ATTR1), a string (ATTR2), and a number (ATTRS), all separated by a blank " ".
Terminal symbols denote the characters found in the data file. They are embedded in quotation marks.
Furthermore, there are several predefined non-terminal symbols. For example, _NUMBER stands for
an optionally signed number. Similarly, _ID represents a sequence of letters, _DIGIT any digit, _BYTE
any byte character, _EOL an end-of-line, and so on. The predefined non-terminals are useful because
they make specifications shorter and thus improve readability.
We extended Yacc in order to ease the writing of specifications. The specification language offers
repetition groups known from SGML. <non-terminal>[n-m] determines that <non-terminal> may occur
at least n, but at most m times, [n-] means at least n times, [-m] almost m times, and [n] exactly n times.
The optional marker can thus be expressed by OK[0-1].
Assignment rules now relate the parsed information to objects in the ODL schema. The rules extend the
ODL schema by means of a from clause and attribute equations. These parts are put in italics in the
above example. Ol from OT1 determines that the non-terminal OT1 characterizes Ol objects.
Technically speaking, any time the rule for OT1 is passed by a parser, a new object of type Ol is
created. Such a rule fixes an object as ..current". Equations then describe how to fill attributes of the
current object by using the values of non-terminals. Each non-terminal has a certain value. This value is
a string, which arises as a concatenation of the values of the non-terminals on the right side of its rule:
The value of ATTR1 is exactly the number that is parsed, e.g., "11" after analyzing the second row.
This value is exported to set the attribute attrl of Ol by means of attrl = ATTR1. The value of OT1 (if
used) is computed by concatenating the value of ATTR1, a blank (which naturally has the value " "),
the value of ATTR2, a blank, the value of ATTR3, and an end-of-line.
The approach allows one to filter records. Filtering is important as there are some file formats that do
not really remove records. Instead they only mark records in a file as deleted to increase performance.
Consequently, it is no good to export those records because they should not be there. ODLFae offers
special conditions that restrict exporting records. For instance, OT1[OK!= "-"](int) determines to
export only those records that have no marker "-". Each condition is related to a non-terminal and
requires a data type, since the comparing non-terminal is usually not used as an attribute value.
Please note the above file content has a style similar to defining tables in HTML:

<TABLE... >
<TRALIGN=left><TH> Attrl </TH><TH> Attr2 </TH><TH> AttrS </TH></TR>
<TR ALIGN=left> <TD> Valuel 1</TD> <TD> Valuel2 </TD> <TD> ValuelS </TD> </TR>

</TABLE>

A specification must handle <TABLE> etc. as terminals in addition to Specification 1.
Just to demonstrate the power of our approach, we show another representation of tables that stores
objects vertically. An object/ = (Value/1, Value/2, Value/3) is built from one column. This table form
sometimes occur in HTML files, if the number of entries is fixed, but the number of columns is subject
to changes. This form has advantages as the record structure can grow vertically.

File:

Attrl
Attr2
AttrS

Value 11
Value 12
ValuelS

Value21
Value22
Value23

ValueS 1
Value32
ValueSS

Specification 2:
interface Ol from ATTR1
{ attribute int attrl = ATTR1;

attribute String attr2 = ATTR2;
attribute int attrS = ATTRS;

104

AJIS vol. 8 no. 1 September 2000

file(vertical.tab,FILE);
FILE: _ID " " ATTRlfl-j _EOL

_ID " " ATTR2[1-] _EOL
_ID " " ATTR3[1-];

ATTR1: NUMBER " ";

This specification is a little tricky because the creation of Ol objects is bound to ATTR1: Any time
ATTR1 is passed, a new Ol object has to be created.

b) Several objects of several types in one file
There are several possibilities how records of different structure or type can be found in files. The next
example discusses several ways to separate records (objects) and fields. We assume a file f

01 ...ol
02 ... o2
03 ... o3

where objects are arranged according to their type, ol should be an object of type Ol, o2 an object of
type O2 etc.

Specification 3:
interface Ol from OT1
{ attribute int attr 1 = ATTR11;

attribute int attr2 = ATTR 12;
};
interface O2 from OT2
{ attribute String attr 1 =ATTR21 [EBCDIC];

attribute int attr2 = ATTR22;
attribute String attr3 =ATTR23;

};
interface O3 fromOT3
{ attribute int attr 1 = ATTR31;

attribute int attr2 = ATTR32;
};
file(f,FILE);
FILE: OT1[1-] _EOL OT2[1-] _EOL OT3[1-];
OT1: ATTR11 " " ATTR12 ""; // (1) separator blank
OT2: ATTR21 ATTR22 ATTR23; //(2) fixed-size
OT3: VAL31&VAL32[0-1]; //(3) token-based
ATTR11: _NUMBER;
ATTR12: _NUMBER;
ATTR21: _BYTE[4];
ATTR22: _DIGIT[5];
ATTR23: _LETTER[2];
VAL31: " Attr31:" _COLON ATTR31 _EOL;
ATTR31: _NUMBER;
VAL32: "Attr32: " _COLON ATTR32 _EOL;
ATTR32: .NUMBER;

The ODL schema models three object types Ol, O2 and O3, each one possessing certain attributes.
The non-terminals OT1, OT2, and OT3 directly correspond to the object types: A rule OT1 = ...
describes the structure of Ol objects, and so on. The example presents three approaches for separating
fields in a record. Again, each interface O; describes a corresponding table Oi.
1. Using separators, e.g., blanks (" ") between values for OT1; the blank is necessary because

otherwise we do not know where the first integer stops.

105

AJIS vol. 8 no. 1 September 2000

2. OT2 records have a fixed size: ATTR21, ATTR22, ATTR23 have a fixed length defined by
_BYTE[4], _DIGIT[5] and _LETTER[2]. That is, predefined terminal symbols are useful to
describe fixed-sized records.

3. OT3 is token-based: Tokens "Attr31:" etc. denote that the subsequent values belong to this attribute.
Typical examples for this style are bibtex files and WWW pages. '&' expresses that the ordering of
occurrences is irrelevant, i.e., VAL31 and VAL32 may occur in any order within the data. It is
cumbersome to describe this variable order by only using alternatives '|' as provided by Yacc.

The separation of records in the file is just done by ordering the objects and indicating a switch of type
by means of _EOL.
If the structures defined by OT1, OT2 and OT3 characterize the records of each type uniquely, then no
_EOL is necessary. Above, the records are not identifiable because a record 111D22223D 18 causes
trouble: Is it an object (111,22223) of type OT1, or an object (" 111D",2222, "3D") of type OT2?
If several clusters of object types occur in a file, e.g., "Ol" ol...ol "O2" o2...o2 "Ol" ol...ol "O3"
o3...o3, a token has to introduce the change of object type. A specification then looks like:

FILE: DATA[1-];
DATA: TYPE1 & TYPE2 & TYPE3;
TYPE1: "Ol" OT1[1-];

Again, if the structure of types is unique, then no special tokens are needed to distinguish the objects in
the file.
Sometimes, brackets are used to separate records, e.g.:

FILE:"(" OT1[1-] ")("OT2[1-] ")("OT3[1-] ")".

Those context-free dependencies are easily expressible in a grammar. This type occurs in HTML files
that for instance mark tables by means of <TABLE>... </TABLE>.
ODLpue offers a possibility to distinguish between different encodings such as ASCII or EBCDIC. An
assignment attrl = ATTR21 [EBCDIC] could specify that the parsed ATTR21-value should be
EBCDIC-decoded before being assigned to attrl of the current Ol-object. ASCII-decoding is the
default.

c) Nested objects
The following example shows a file that expresses a nested structure as it occurs quite often (Ashish
and Knoblock (1997)).

File:
ol

o2
o3o3...o3

o2
o3o3...o3

ol

Specification 4:
interface Ol from OT1

(key attrl)
{ attribute int attrl = ...;

attribute Set<O2> setO2 = DATA2[1-];
};
interface O2 from OT2

(key attrl)
{ attribute int attrl = ...;

attribute Set<O3> setO3 = OT3[1-];
};
interface O3 from OT3

18 The symbol 'D' should denote a blank.

106

AJ1S vol. 8 no. 1 September 2000

{ attribute int attrl = ...;
};
file(f,FILE);
FILE: DATA1[1-];
DATA1: OT1 DATA2[1-];
DATA2: OT2OT3[1-];
OT1: ...
OT2: ...
OT3: ...

The indentation denotes the nesting, i.e., ol contains several o2 objects that in turn possess o3
components. The ODL schema defines the nesting by means of multi-valued attributes setO2 and setO3,
each one referring to a set of subordinated objects. Any of the collections (Set, Bag, List, Array) can be
used as attribute domains.
The grammar uses repetition groups, e.g., DATA2[1-], to express the nesting. Those terms are directly
taken in assignment rules for filling the set-valued attributes. Hence, setO2 = DATA2[1-] means that
the value of DATA2[1-] is taken to fill setO2. The value itself is computed by concatenating the
DATA2 values.
This concept is very powerful, as we are able to express nested structures in any depth. For example, it
is easy to analyze the nesting of headings in WWW pages or \(sub)section{...} in Tex files.
The generated tables to keep the file data will then look like Ol (attrl int, ...), O2 (attrl int, ..., setO2fk
int), and O3 (attrl int, ..., setO3fk int). setO2fk is a foreign key that refers back to the key of table Ol to
establish the relationship set02, and similar for setO3flc. In order to insert values for foreign keys in
tables, we need a primary key. That is why interface Ol and O2 must fix a key attribute by means of
key. The key can certainly be composite.
Here we see why we use complex objects in the ODL part instead of flat relational structures. It is
difficult to specify a nesting by having some kind of ,,flat table" specification. A first try may look in
pseudo notation like

table O2 from OT2
{ attribute int attrl = ...;

attribute int setO2fk = ??? }

We are confronted with the problem of how to find the foreign key value for setO2fk since the context
of rule OT2 is progressed too far; no right side of OT2 carries this information. Using multi-valued
attributes is thus much easier.

Handling File Systems
So far, we have considered one file containing the objects of one or more types. Then it is sufficient to
specify a grammar for the file, and to associate the filename with this grammar. But it might happen that
the objects of one type are spread over several files. In order to collect objects from several files and to
take into account the directory structure for modeling file contents, advanced concepts are required. As
far as we perceived, the literature has not presented a solution to use this kind of semantics.

a) one file = one object type
We start with a simple extension of the previous discussion. There are isolated files, each one
containing the objects of one type. Hence, a file represents one object type.

Files:
fl :ol ...ol
£2: o2 ... o2
O: o3 ... o3

Specification 5:

interface Ol from OT1 {...};
interface O2 from OT2 {...};
interface O3 from OT3 {...};

file(fl,FILEl); FILE1: OT1[1-]; ...
file(£2,FILE2); FILE2: OT2[1-]; ...

107

AJIS vol. 8 no. 1 September 2000

file(O,FILE3); FILES: OT3[1-];...

The above lines present the principle of a specification. Each file fi obtains a starting symbol of its own,
defined by the file clause. The objects of each type may certainly be complex (in the sense of
Specification 4). Then OTi must represent the complex structure in the known manner.

b) one file = one object
In contrast, the objects of one type can be spread over several files. We assume that there are files in a
common directory dir; each file should contain one complex object. The directory denotes de-facto an
object type.

Files:
File fl: olo2o3...o3o2o3...o3...
File £2: olo2o3...o3o2o3...o3...
File f3: Olo2o3...o3o2o3...o3...

Specification 6:
interface Ol from OT1
{ attribute String filename = _NAME;

file(dir/*, DATA1);
DATA1: OT1 DATA2[1-];
DATA2: OT2 OT3[1-];...

Since the objects possess the same structure, one grammar can be used for handling several files. The
file clause above determines to take all the files in dir into account. They are all parsed by the same
grammar starting with non-terminal DATA1. The grammar extracts exactly one complex object of type
Ol from each file, including subobjects of types O2 and O3.
The general form of the file-clause is file(<file>, ..., <file>, <non-terminal>). It determines the files to
be analyzed by the start symbol <non-terminal>. Each <file> possesses the form
<directoryspec>/<filespec> with <directoryspec> describing an absolute path
/<directory>/<directory>/... . <filespec> and <directoryspec> can be scoped by usual Unix wildcards '*'
(any sequence of symbols) and '?' (an arbitrary symbol) to denote several files. For example,
file(/dir?/*/P, DATA1) qualifies all the files that start with an "f and are in any directory beneath
/dill, /dir2,..., /dira, /dirb,.... This is a simple, but very effective mechanism.
Furthermore, there are predefined functions for accessing meta-information such as file and directory
names. They can be used for assignments in the same way as non-terminals. In the above example, each
object of type Ol receives the name fi of its file as value for the attribute filename; a predefined
function _NAME computes the filename. This enables us to capture this important source of additional
semantics. A function _DIR determines the directory of the current file, _PATH gives out the complete
path as a string etc. These functions enable one to navigate in the directory structure. Naturally they can
be appended, e.g., _DIR._NAME to compute the name of the directory of the current file.

c) one directory = one object type
This is an extension of b). It considers several directories din", each one containing several files. Each
file fy in directory din represents a (complex) object of type Oi:

Files:
dirl= {fll,...,flm}
dir2= {f 21,...,£2n}

Specification 7:
file(/dirl/*, DATA1);...
file(/dir2/*, DATA2);...

108

AJIS vol. 8 no. 1 September 2000

The essential feature here again is the file clause. All the files in directory din are parsed by the same
grammar with start symbol DATA;'. DATA/ defines the (complex) structure of type CM.

d) directories representing relationships
We found some file systems where a directory represents some kind of relationship between the objects
contained in its files. Let us assume several directories dirk that all contain three files fl, f2 and D each
one related to a corresponding type Ol, O2 and O3, respectively. Those directories dirk can represent a
ternary relationship, the ,,cross product" between the objects in files: Any object in fl is in relationship
with any object in fl and in D.

Files:

dirl = { f l ,C , D }
d i r 2 = { f l , f 2 , O }

Specification 8:
interface 01 from OT1
{ attribute attrl = ...;

attribute dirname = _DIR._NAME;
};
interface O2 from OT2
{ attribute attrl = ...;

attribute dirname = _DIR._NAME;
};
interface O3 fromOT3
{ attribute attrl = ...;

attribute dirname = _DIR._NAME;
};
file(dir*/fl,DATAl);
DATA1:OT1[1-];...
file(dir*/f2, DATA2);
DATA2:OT2[1-];...
file(dir*/f3, DATA3);
DATA3: OT3[1-];...

Please note that the relationship is not directly expressed in the ODL schema, because it is difficult to
describe the association between a relationship and its directory representation. Nevertheless, we use
the directory name as an attribute dirname. Using dirname, we can join the tables to compute the
relationship in SQL. Below we present some sample files and how they result in tables.

dirl: dir2:
fl: records 2,3 fl: records 3,4
£2: records 1 f2: records 3,4,5
O: records 1,2,4 f3: records 3

Ol id
2
3
3
4

dirname
dirl
dirl
dir2
dir2

02 id
2
3
4
5

dirname
dirl
dir2
dir2
dir2

O3 id
1
2
4
3

dirname
dirl
dirl
dirl
dir2

Let us now consider a typical constellation with directories representing some hierarchical relationship.

109

AJIS vol. 8 no. 1 September 2000

Files:

/dir building 1

building2

lathe 1.mac
Iathe2.mac
cutterl .mac
building.lay

latheS.mac

Specification 9:

interface Machine from MACHINE
{ attribute int mid =_NAME._TAIL(1);

attribute String type =_NAME._FRONT(1 JLEN-1);
attribute String building =_DIR._NAME;

};
interface Layout from LAYOUT
{ attribute String name =...;

attribute String building =_DIR._NAME;
};
file(dir/building*/*.mac, MACHINE);
MACHINE: ...
file(dir*/building*/*.lay, LAYOUT);
LAYOUT: ...

There are several directories building/. Each of those directories defines a building with layout data (file
extension .lay) and machines (.mac) to be placed in the building. The machines have a certain type
(e.g., lathe or cutter) and a number. Both together form a file name.
The file clause determines that all files with an extension .mac (independent of their directory) should
be analyzed by the same grammar with starting symbol MACHINE. Similarly, the files with extension
.lay are handled by LAYOUT.
Specification 9 defines interface's for machines and layouts, essentially using the MACHINE and
LAYOUT non-terminals, respectively. Since there are several machine files, each one results in a
Machine object of its own. In order to extract the type of a machine, we take the file name by means of
_NAME and decompose the name in two parts, type and number, by predefined functions. For both
machines and layouts, we use the directory name of each file as an attribute building. This enables us to
express the relationship by attribute building.
The object types are directly mapped onto tables Machine(mid int, type varchar, building varchar),
Layout(name,..., building varchar) with the same structure.

Hyperlinks in Files
A final example discusses the main principles of handling hyperlinks. We assume a file with several
entries of the form

country cities eol

where any cities (underlined) is a link to another file containing the names of cities in this country (and
maybe some other information). The following lines describe the HTML source:

Specification 10:

interface Country from COUNTRY
{ attribute String cname = COUNTRY;

attribute Set<City> cities = CITIES;
};
interface City from CITY
{ attribute name = CITY;

110

AJIS vol. 8 no. 1 September 2000

file(f.html, FILE);
FILE: DATA[1-];
DATA: COUNTRY " <AHREF=http:" _REF CITIES ">" LINK "" _EOL;
COUNTRY: _ID;
CITIES: CITYfl-];
CITY: _ID;
LINK: _ID; //name of the link in browser

Hyperlinks occur as in WWW pages. It is not enough to describe such a
hyperlink in a grammar by means of " ..." with a non-terminal CITIES
defining the structure of the addressed file. The parser will not be able to recognize the CITIES part,
because it is part of a different file referred to by http:address. The parser tries to map the address to
CITIES. This fails!
We introduce a predefined keyword _REF to remedy this: _REF CITIES tells the parser to take CITIES
as a string, the http address, during parsing. Later on, CITIES is used as a starting symbol for the
addressed file. Then the rule CITIES: CITY[1-] is applied for this file.

SEMANTIC ENRICHMENT

Having migrated data from files in a relational database, the database can be plugged in a federation. In
the framework FIHD of Hohenstein and Ebert (1999), this is done by generating an ODMG adapter that
homogenizes the relational database. Homogenizing means to remodel tables in the ODMG object
model. In the FIHD approach, we incorporate ideas developed in the context of reverse engineering
and semantic enrichment (Chiang et al. (1994), Premerlani and Blaha (1994), Castellanos and Saltor
(1991), Hohenstein and Korner (1995)). Hence, tables are not just converted to object types that
possess the simple table structure, i.e., object types without relationships and without subtyping.
Instead, the semantic level of the relational schema is upgraded: Implicit knowledge is expressed
explicitly by using higher modeling concepts.
This is advantageous, since data integration is a complex and ambitious task. Providing an integrated
access to DBSs requires a deep knowledge about the semantics of data so that inter-database semantic
relationships can be detected. Any support that can be provided previously during homogenization is
useful to let the integration concentrate on its real task.
The overall approach of homogenization with semantic enrichment resembles the one for our file
handling. It again uses a generator, relying on a specification language called ODLR (Hohenstein and
Korner (1995)): The language allows specifying how to homogenize the relational database in the
ODMG model. The advantage of our approach lies in the fact that semantic enrichment is explicitly -
precisely - specified. This gives us the opportunity to remodel schemata in various ways, making any
semantics explicit. The generator produces a corresponding ODMG OML/OQL wrapper to access the
database. Since the ODMG adapter provides an object-oriented view of relational data including
relationships and subtyping, the semantics is usable in form of high-level ODMG operations,
manipulating objects and relationships instead of isolated tuples.
The concepts for semantic enrichment are very powerful. For instance, several attributes can be joined
together to make an attribute of a predefined ODMG type or an object type nested into another. New
object types may be introduced, e.g., to bring together common attributes in a generalized object type.
It is possible to remodel typical forms of relational representations for relationships and subtypes.
Particularly, several representations for subtype hierarchies can be handled. In Hohenstein and Korner
(1995) we discuss a vertical, a horizontal and a complete materialization strategy as well as a flag
approach. Each one has pros and cons in regard to fast access, redundancy, and easy update. These
substantial strategies are orthogonal and can be applied in a mixed manner within one subtype
hierarchy. For more details about the specification language, the reader is referred to Hohenstein and
K6mer(1995).
The following specification gives an example of enriching the tables obtained by Specification 9. Let us
assume we want to see an additional object type Building, two subtypes OdmgCutter and OdmgLathe of
Machine according to the type of machines, and some explicit relationships.

interface OdmgMachine
from relation Machine[mid,type]

{ attribute int Id = Machine.mid;

111

AJIS vol. 8 no. 1 September 2000

interface OdmgCutter : OdmgMachine
from relation Machine[type= "Cutter"]
{}

interface OdmgLathe : OdmgMachine ...
from relation Machine[type= "Lathe"] ...

interface OdmgBuilding
from relation group(Machine[building])

{ attribute String Name = KEY;
relationship Set<OdmgMachine> machines = { Machine | building = KEY };

}

interface OdmgLayout
from relation Layoutfname]

{ attribute String Name = ...;
relationship OdmgBuilding belongsTo = group { Machine | building = Layout.building } ;

In contrast to ODLFiie, the full ODMG ODL is used here to express semantics. We again introduced
some amendments to express connections between object-oriented and relational schemata. The clause
from relation relates the specified
object types to tables. It is defined in what table the deep extent of a type (including objects of
subtypes) is found. The easiest case is OdmgLayout from relation Layout[name]: An object type is built
from one relation directly, name is the relational key of Layout. Keys are necessary to identify objects
in the object-oriented runtime system: The key value is directly taken as object identifier. Each tuple,
which is uniquely identified by its key value, refers to one object.
Tables without keys cannot correspond to object types. They can be used as bags nested in other types,
nevertheless. Composite keys are possible and denoted as (mid,type), cf. OdmgMachine.
The objects of subtype OdmgCutter are also found in table Machine, which contains all the machines,
cutters and lathes. However, cutters are marked in the table by a flag type which is used to separate
cutters from other machines: [type="Cutter"]. Hence, subtyping by flag is made explicit.
Concerning buildings, the attribute building of Machine is ,,objectified". Building objects are built from
table Machine. All the tuples in Machine are grouped by building, and each such group builds an
object. The keyword group expresses such a grouping. The number of objects corresponds to the
number of different building values, building is the key of a group and can be referred to by KEY.
Equations '=' occurring behind the attributes relate attributes and relationships of object types to
relational attributes. The simplest form is int Id = Machine.mid and relates an object type attribute Id of
OdmgMachine with domain int to a relational attribute mid of table Machine directly.
Relationships are specified similarly. OdmgBuilding belongsTo = group { Machine | building =
Layoutbuilding } expresses a reference to OdmgBuilding for interface OdmgLayout. Remember,
buildings are part of table Machine, and the relationship is relationally represented in tables Machine
and Layout by an attribute building. belongsTo is computed as follows: Take the set of tuples in
Machine that have a building-value equal to the layout's building, and then group the set according to
building (that is the key of OdmgBuilding).
Similarly, the relationship machines is expressed as all the tuples in Machine that possess a building
equal to the key.

CONCLUSIONS

In this paper, we presented a specification-based approach to incorporate files in a federation approach
based on the ODMG standard (Cattell and Barry (1997)). The procedure consists of two steps:
Migrating data from several files and directories into a relational database, thereby giving the data a
first structure. And then building an ODMG adapter on top of the database; the adapter can be plugged
in a federation. The two steps together make intensive use of the ODMG object model, i.e., the
federation layer can in total benefit from a real object-oriented view of file data.
Both steps are supported by specification languages and generators. A first language allows making
semantics of files and directories explicit, i.e., giving files some structure. Such a specification is input
to a generator that produces a file adapter. The adapter is responsible for parsing and unparsing

112

AJIS vol. 8 no. 1 September 2000

(modified data is stored back into files). Moreover, an adequate relational database is installed, the
tables of which are automatically filled with parsed file data.
Providing an ODMG adapter for the relational database is done by a generator, too. Defining semantic
enrichment in a specification language makes the semantics of relational tables explicit by using object-
oriented modeling concepts. A real object-oriented view, including subtyping and relationships, is
achieved. A generator produces an ODMG2.0 conforming manipulation and query interface. This gives
the federation the opportunity to see relational data in an object-oriented way, to manipulate relational
data in terms of C++ objects.
Either step is applicable for querying the WWW by now using SQL or ODMG/OQL, respectively.
The approach is embedded in a federation framework FIHD (Flexible Integration of Heterogeneous
Data sources), which is described Hohenstein and Ebert (1999). Similar to TSIMMIS
(Papakonstantinou et al. (1995)), Information Manifold (Kirk et al. (1995)), Efendi (Radeke (1995),
OASIS (Roantree et al. (1999)) or SIGMAroB (Hoding et al. (1999)), FIHD has the goal to provide a
global view of several, heterogeneous data sources, and to support an easy access to all the data without
knowing the exact source and type of source. Relying again on a generative principle, our federation
approach uses the ODMG adapters that homogenize databases and plugs them in a federation
framework, which then gives a transparent ODMG access. Generators have been built for producing
adapters for commercial systems such as Oracle, SQLServer and Informix, or object-oriented database
systems such as Objectivity/DB and Versant.
Future work will be dedicated to a comfortable graphical support for defining specifications similar to
Hohenstein and Korner (1995). Integrating file systems into the federation framework directly, avoiding
the detour via relational databases, is another point. We also think of other types of front-end interfaces
for the federation framework. Owing to our FIHD architecture, it is easily possible to generate any type
of interface instead of ODMG2.0, e.g., ActiveX components, HTML pages, or XML to visualize
information obtained from the federation.

REFERENCES

Abiteboul, S., Cluet, S. & Milo, T. (1993) ..Querying and Updating the File", Proc. Conf. on Very
Large Databases (VLDB) 1993

Abiteboul, S. Cluet, S. & Milo, T. (1995) ,,A Database Interface for File Update", Proc. ACM
SIGMOD'95, San Jose, CA USA 1995

Ashish, N. & Knoblock, C. (1997) ..Wrapper Generation for Semi-structured Internet Sources", Proc.
of ACM SIGMOD Workshop on Management of Semi-structured Data, Tucson (Arizona) 1997,
Superseded by ACM SIGMOD Record 26(4), Dec. 1997

Buneman, P., Davidson, S., Fernandez, M. & Suciu, D. (1997) .Adding Structure to Unstructured
Data", Proc. of Int. Conf. on Database Theory (ICDT97), Delphi 1997

Busse, R., Fankhauser, P. & Neuhold, E. (1994) .federated Schemata in ODMG", Proc. of 2nd
East/West Database Workshop 1994

CACM (1994) ..Reverse Engineering", Special Issue of Communications of the ACM 37(5), 1994
Castellanos, M. & Saltor, F. (1991) ,,Semantic Enrichment of Database Schemas: An Object-Oriented

Approach", in Y. Kambayashi, M. Rusinkiewicz, A. Sheth (eds.): Proc. of 1st Int. Workshop on
Interoperability in Multidatabase Systems, Kyoto (Japan), 1991

Cattell, R. & Barry, D. (1997) ,,The Object Database Standard: ODMG2.0", 2nd edition, Morgan-
Kaufmann Publishers, San Mateo (CA) 1997

Chiang, R., Barron, T. & Storey, V. (1994) ..Reverse Engineering of Relational Databases: Extraction
of an EER model from a Relational Database", Data&KnowIedge Engineering 12, 1994

Conrad, S., Eaglestone, B., Hasselbring, W., Roantree, M., Saltor, F., Schonhoff, M., Strafller, M. &
Vermeer, M. (1997) ..Research Issues in Federated Database Systems", SIGMOD RECORD
12/1997,26(4)

Conrad, S., Hasselbring, W., Heuer, A. & Saake, G. (1997) ..Proc. of the Int. CAiSE97 Workshop
Engineering Federated Database Systems EFDBS'97", Barcelona 1997

Conrad, S., Hasselbring, W., Saake, G. (1999) ,,Proc. of the 2nd Workshop Engineering Federated
Information Systems", Kuhlungsbom (Germany) 1999

Ebert, A., Hohenstein, U. & Hoding, M. (1999) ,,An Approach for Generating File Interfaces", Proc. of
Database Systems for Advanced Applications (DASFAA), Taipeh 1999

113

AJIS vol. 8 no. 1 September 2000

Hainault, J.-L., Tonneau, C., Joris, M. & Chandelon, M. (1993) ,,Schema Transformation Techniques
for Database Reverse Engineering", 12th Int. Conf. on Entity-Relationship Approach, Karlsruhe
1993

Hammer, J., Garcia-Molina, H., Cho, J., Aranha, R. & Crespo, A. (1997) Extracting Semistructured
Information from the Web", Proc. of ACM SIGMOD Workshop on Management of Semi-
structured Data, Tucson (Arizona) 1997, Superseded by ACM SIGMOD Record 26(4), Dec. 1997

Hoding, M. (1996) ,,An Approach to Integration of File Based Systems into Database Federations",
Proc. of 10th European Research Consortium for Informatics and Mathematics (ERCEM'96) on
Heterogeneous Information Management, Prague 1996

Hoding, M., Schwarz, K., Conrad S. et al. (1999) ,,SIGMAFDB: Overview of the Magdeburg-Approach
to Database Federations", in Conrad et al. (1999)

Huck, G., Fankhauser, P., Busse, R. & Klas, W. (1994) .JRO-DB: An Object-Oriented Approach
towards Federated and Interoperable DBMS", Advances in Databases and Information Systems
(ADBIS'94), Moscow 1994

Hohenstein, U. & Ebert, A. (1999) ,A Comprehensive Toolkit for Building Database Federations",
Australian Journal of Information Systems, Vol.7, No. 1, September 1999

Hohenstein, U. & Korner, C. (1995) "A Graphical Tool for Specifying Semantic Enrichment of
Relational Databases", 6th IFIP WG 2.6 Work. Group on Data Semantics (DS-6) "Database
Applications Semantics", Atlanta 1995

Hohenstein, U. & PleBer, V. (1997) «A Generative Approach to Database Federation", in D. Embley,
R. Goldstein (eds.): 16th Int. Conf. on Conceptual Modeling - ER'97, 1997, Los Angeles, Springer
LNCS 1331

IMS (1993) ,,Proc. of Conf. on Research Issues in Data Engineering: Interoperability in Multidatabase
Systems" (RTOE-IMS'93). Vienna 1993

Kaul, M., Drosten, K. & Neuhold, E. (1990) ,,ViewSystem: Integrating Heterogeneous Information
Bases by Object-Oriented Views", Proc. Of 6th Int. Conf. on Data Engineering, Los Angeles 1990

Kambayashi, Y., Rusinkiewicz, M. & Sheth, A. (1991) (eds.) ,,Proc. of 1st Int. Workshop on
Interoperability in Multidatabase Systems", Kyoto (Japan), 1991

Kirk, T., Levy, A., Sagiv, Y. & Srivastava, D. (1995) ,,The Information Manifold", Proc. of the AAAI
Spring Symposium Series, March 1995

Kuno, H. & Rundensteiner, E. (1996) ,,The MultiView OODB View System: Design and
Implementation", Theory and Praxis of Object Systems 2(3), 1996

Kushmerick, N., Weld, D. & Doorenbos, R. (1997) ..Wrapper Induction for Information Extraction",
Int. Joint Conf. on Artificial Intelligence, Nagoya (Japan) 1997

Markowitz, V. & Makowsky, J. (1990) ..Identifying Extended ER Object Structures in Relational
Schemas", IEEE Trans, on Software Engineering 16(8), 1990

Nestorov, S., Abiteboul, S. & Motwani, R. (1995) ..Inferring Structure in Semistructured Data", Proc.
of ACM SIGMOD Workshop on Management of Semi-structured Data, Tucson (Arizona) 1997,
Superseded by ACM SIGMOD Record 26(4), Dec. 1997

Papakonstantinou, Y., Garcia-Molina, H. & Widom, J. (1995) ..Object Exchange Across Heterogeneous
Information Sources", Proc. of IEEE Conf. on Data Engineering, Taipeh 1995

Pitoura, E., Boukres, O. & Elmagarid, A. (1995) ..Object-Orientation in Multidatabase Systems", ACM
Computing Surveys 27(3), 1995

Radeke, E. (1995) .JEfendi: Federated Database System of Cadlab", ACM SIGMOD Conf. on
Management of Data 1995, SIGMOD RECORD 24(2)

Reddy, M., Prasad, B., Reddy, P. & Gupta, A. (1994) ,A Methodology for Integration of
Heterogeneous Databases", IEEE Trans, on Knowledge and Data Engineering 8(6), 1994

Premerlani, W. & Blaha, M. (1994) ,,An Approach for Reverse Engineering of Relational Databases",
Communications of the ACM 37(5), May 1994

Roantree, M. & Murphy, J. (1997) ,,An Architecture for Federated Database Metadata", hi Conrad et
al. (1997)

Roantree, M., Murphy, J. & Hasselbring, W. (1999) ,,The OASIS Multidatabase Project", ACM
SIGMOD Record 28(1), March 1999

Saltor, F., Castellanos, M. & Garcia-Solaco, M. (1992) ..Overcoming Schematic Discrepancies in
Interoperable Databases", in D.K. Hsia, E.J. Neuhold, R. Sacks-Davis (eds.): Proc. of the IFIP WG
2.6 Database Semantics Conf. (DS-5) on Interoperable Database Systems, Lome (Australia), 1992

Sattler, K.-U. & Hoding, M. (1999) ..Adapter Generation for Extracting and Querying Data from Web
Sources", Proc. of 2nd ACM SIGMOD workshop WebDB'99, 1999

114

AJIS vol. 8 no. 1 September 2000

Schmitt, I. & Saake, G. (1995) integrating of Inheritance Trees as Part of View Generation for
Database Federations", 15th Int. Conf. on Conceptual Modeling (ER'96), Cottbus 1996, Springer
LNCS 1157

Sheth, A. & Larson, J. (1990) ..Federated DBSs for Managing Distributed, Heterogeneous and
Autonomous Databases", ACM Computing Surveys 1990, 22(3)

Spaccapietra, S. & Parent, C. (1994) "View Integration: A Step Forward in Solving Structural
Conflicts", IEEE Transactions on Knowledge & Data Engineering 6(2), 1994

115

