
AJIS vol. 8 no. 1 September 2000

TRANSITIONING EXISTING CONTENT:
INFERRING ORGANIZATION-SPECIFIC DOCUMENTS

Arijit Sengupla', Sandecp Purao1'2

1: Department of CIS, Robinson College of Business, Georgia State University, Atlanta, GA 30302. Tel: +1
(404)651-3880 Fax: +1 (404)651-3842 E-mail: {asengupt,spurao}@gsu.edu, URL:

http://www.cis.gsu.edu
2: Institutt for Informasjonvitenskap, Agder University College, Tordenskj 65, Kristiansand, Norway

ABSTRACT

A definition for a document type within an organization represents an organizational norm about the way
the organizational actors represent products and supporting evidence of organizational processes.
Generating a good organization-specific document structure is, therefore, important since it can capture a
shared understanding among the organizational actors about how certain business processes should be
performed. Current tools that generate document type definitions focus on the underlying technology,
emphasizing tags created in a single instance document. The tools, thus, fall short of capturing the shared
understanding between organizational actors about how a given document type should be represented. We
propose a method for inferring organization-specific document structures using multiple instance
documents as inputs. The method consists of heuristics that combine individual document definitions,
which may have been compiled using standard algorithms. We propose a number of heuristics utilizing
artificial intelligence and natural language processing techniques. As the research progresses, the
heuristics will be tested on a suite of test cases representing multiple instance documents for different
document types. The complete methodology will be implemented as a research prototype

KEYWORDS: Document Management, Document Models, Reverse Engineering, Heuristics,
Document Type Definition

INTRODUCTION

Documents are a central part of every organizational process. They are used to capture information for
archival, publication or as intermediate records of organizational processes. With the advent of the
world-wide-web, a distinct shift is being felt toward the use of documents as the source of corporate
data. Instead of proprietary formats, more and more businesses are exploiting the web for their data
creation, storage and distribution requirements. The introduction of XML and with it, higher control
over the document structures and meta-data has clearly increased the potential of document data
management on the web (Goldfarb and Prescod 2000). Along with the power of representation,
however, XML has introduced newer problems of structural inconsistencies. XML was designed for
evolutionary data management, where authors did not need to conform to a fixed structure to create
valid documents. In XML, a document can be easily parsed so long as it is well-formed, a constraint
that allows parsers to build the document hierarchy without requiring a pre-defined document type. The
property of well-formedness ensures that an electronic representation of the hierarchical structure of the
document can be constructed from source documents without ambiguity. However, in many cases, it is
necessary to capture and store the metadata as a document type definition (DTD) or a schema. A DTD
can be constructed, using standard algorithms, from the structure evident in a marked-up instance
document (Shafer, 1995; Garofalakis, 2000; Herman and Diaz, 1999; Kay, 2000). Such reverse-
engineered DTDs, however, simply end up capturing decisions about markup by the author of the XML
instance document. The markups may not be sufficiently generic, may enforce incorrect cardinality,
may even be too generic, or may use inappropriate nesting. All these can significantly reduce the
usefulness of the generated DTD, rendering them less usable.
If XML is to succeed, we must bring into fold existing documents and reconcile, where necessary,
implicit assumptions underlying their content and structure. The well-documented benefits of XML
(Goldfarb and Prescod 2000) cannot be realized unless the large base of documents that do not yet
conform to the XML infrastructure are provided the required infrastructure. Ensuring that a class of
documents conforms to a common, shared intent and structure, therefore, will require a reconciliation of
the various, probably different, declarations of tags, metadata and structure that different organizational
actors may assign to comparable parts of different instance documents. For example, consider a memo
that contains information about a customer complaint and its resolution. The parts of such a memo,
disregarding the headers, may be variously declared as <text (complaint, resolution)> or <body
(complaint, complainttype, resolved, comments)> or <response (complaint, action)> or something else.
Inferring organization-wide document structures that may be shared by these actors should, then,
improve and streamline the related processes. Further, the benefits of aggregating the information

91



AJIS vol. 8 no. 1 September 2000

available in these instance documents should be clear. Resolution of different structures and tags that
different actors may impose on individual instance documents is, therefore, a prerequisite for this
reconciliation.
Our goals in this research are to create techniques and tools that can facilitate this process of
reconciliation. The objective of this research, therefore, is to: develop a methodology to semi-
automatically generate high-quality, organization-specific document type definitions from the instance-
specific DTDs compiled using standard algorithms. A DTD reconstruction tool such as DDbE will
generate a DTD that is guaranteed to parse the source document(s). Our intent, instead, is to capture the
core document model, and generate a DTD that will parse a large proportion of the source documents,
and could be used for conversion, exchange, and creation of standardized and organization-specific
documents.

RELATED RESEARCH

Document Management

Documents can capture meanings and purposes utilized and produced by organizational actors, by
exploiting technological features necessary for the storage and processing of that information
(Tyrvainene and Paivarinta, 1999). Electronic document management is the capture, management and
manipulation of documents in an organized manner. A rich stream of research exists on document
management (Sprague, 1995). A document, among other things, can be considered as recorder of
contents, evidence of action or proof of authenticity. (Tyrvainene and Paivarinta, 1999), in fact,
describe as many as eleven different facets of documents, which they identify based on an analysis of
writings in IS research. Markup languages such as SGML and XML are technologies, which, along with
others, can make electronic document management easier and more effective. Standardization of
documents, whether using these technologies or otherwise, is an important aspect of document
management. Several ongoing research efforts (see, e.g. Jyvaskyla, 2000) emphasize the importance of
document standardization and report on the high costs in terms of time, money and effort that
organizations incur when they embark on document standardization projects. Standardization of
documents may involve the standardization of usage or content of documents. The first requires an
understanding of and conformance to organizational processes as well as buy-in from organizational
actors. In contrast, standardization of the second involves analysis and reconciliation of varying
perspectives that are made explicit by the organizational actors. Our focus in this research is on the
latter. Current research suggests that when performed manually, this kind of standardization can be a
long and arduous process, taking much effort and involving much expense. In the context of XML
technology, this translates to standardization of the document type definition (DTD) or schema. Since
the schema standard (XSchema, 2000) is still fairly new, our focus in this paper is on the
standardization of organizational DTDs.

Automatic DTD Generation

A number of approaches, research prototypes and state-or-the-art commercial tools can extract (reverse-
engineer) the document type definition from XML instance documents. DDbE (Data Descriptors by
Example) (Berman/Diaz, 1999) is a Java library from IBM Alphaworks that can generate a DTD from
an XML document. A recently developed system, XTRACT (Garofalakis et al, 2000) is under patenting
process from Bell Labs which also has similar functionality, but can generate more optimized DTDs for
single productions. A somewhat more dated, but quite well known tool, Fred (Shafer, 1995) is also
capable of generating DTDs from arbitrary SGML documents (and hence can also work with most
XML documents). A web-based tool called DTD Generator for this purpose using the Saxon XML
parser is also available (Kay, 2000). All of these tools aim at generating DTDs for the purpose of
validating. The techniques they use include different ways of 'guessing' the intended structure from
different combinations of the same set of tags (Berman/Diaz, 1999; Garofalakis et al, 2000). Some of
these tools also try to distinguish the special attributes such as links, IDs, IDREFs, and so on, using
heuristics based on the number of times an attribute value is used (Kay, 2000).
The tools described above excel at constructing a DTD for a given instance document. They can infer
cardinalities, nesting of elements, default values of attributes, as well as references (links) between
elements. The tools, however, clearly fall short of generating a standardized DTD that may be
appropriate for that class of documents. Their focus, instead, is on the compilation of a DTD that can
make explicit the content and structure of the XML instance documents. Our research, then, involves

92



AJ1S vol. 8 no. 1 September 2000

use of these DTDs as inputs to infer a standardized DTD for the organization. The existence of multiple
instance documents sets apart our document structure reverse-engineering effort as opposed to those
proposed by others (FRED, XTRACT, DDbE, DTD Generator) which have focused on a single XML
instance document. In one sense, our approach mirrors that taken for database reverse engineering,
where a number of instances are considered to identify entities and attributes of interest in the relational
or conceptual schema. We can, therefore, use and extend lessons from database reverse engineering for
our problem but should be careful to account for any differences.

Database Reverse Engineering

A rich stream of research on database reverse engineering has focused on creating logical or conceptual
data models from database instances (WCRE 1999). Various problems have been addressed and solved
to varying degrees such as reverse engineering of entities, attributes, binary relationships and ternary
relationships (Chiang et al., 1994, Permerlani and Blaha 1994). The core technological model for these
efforts has been the relational data model. The research has resulted in a number of practical and
innovative results (Fahrner and Vossen, 1995, Chiang 1995). Though it is possible to extend and
augment these approaches for our context -organizational document documents - there are sufficient
differences between 'database reverse engineering' and 'organizational document standards inference'
to warrant a different approach.
First, documents can contain highly unstructured data unlike that seen in most relational databases,
making inferences based on data instances difficult. Second, unlike relational database schemas, which
have a well-established foundation, the XML schema standard (XSchema 2000) is still fairly new (May
2000), and the functionality of extended links among documents is also poorly implemented. The focus
of our efforts, therefore, is on individual document types without the benefit of exploiting information
that may be available in links across documents. Third, perhaps most important, is the nature of data
instances used as inputs. For reverse engineering of relational database schema, the inputs contain
multiple database designs, which are generated from the data by one source, say, a program written with
a second generation language. They share a common layout but do not have any metadata associated
with them. The reverse-engineering process is, then, expected to discover this metadata and its
structure. On the other hand, the document instances are marked up by different sources (e.g., different
authors) and can contain different tags indicating the same or different metadata, arranged in different
layouts. The problem of inferring a standardized document type, thus, involves more than a mere
extension of database reverse engineering approaches.
Our research question and focus - inferring organizational documents - is, therefore, shaped by three
research streams: document management, automatic document type generation and database reverse
engineering. We motivate it from a document management perspective. The automatic DTD generation
provides appropriate inputs to our process. Finally, the database reverse engineering research suggests
approaches that we adapt and extend for document type generation.

INFERRING ORGANIZATIONAL DOCUMENT STRUCTURES

A simple DTD can be directly compiled from an XML document using a tool such as the ones
described above (e.g. DDbE). For XML (as opposed to SGML), the task of generating a DTD from a
document is not very hard, since well-formedness guarantees that the document structure (the tag
hierarchy) can always be inferred from the documents. Our problem is, therefore, defined as: given a
set of documents, possibly clustered by different authors or sites, but all having the same intent, and
their associated DTDs, compiled with standard algorithms, to develop a strategy to generate a super-
DTD that captures the core model covering the document set. One fairly simple approach to this would
create a simple union of all the DTDs. However, a DTD representing such a union will be mostly
redundant, and even a union would require choices to reconcile mismatches in sequencing and nesting.
Our problem, thus, is to find a suitable DTD and its variants given a set of XML instance documents
that share the same intent but have different tagsets (due to different authors). The generated DTD
should capture the core structure of all the documents and its variants. Figure 1 below shows the focus
of our research.

93



AJIS vol. 8 no. 1 September 2000

Marked-up Instance
Document: XML

Marked-up Instance
Document: XML

Marked-up Instance
Document: XML

Figure 1: Research Focus

We use as inputs the DTDs compiled from instance documents by existing tools. These DTDs contain
elements, attributes, their sequences, cardinalities and structures. Our approach, then, is focused on
creating a core DTD plus its variants, which, taken together will cover a substantial proportion of
document instances of this document type. The core DTD and the variants may be combined with use
of ENTITY'S, that is, with the help of mechanisms resembling aggregations or inheritance, ensuring
coverage of a very large proportion of source instance documents.

DOCUMENT STRUCTURE GENERATION HEURISTICS

A number of issues need to be considered for the generation of a normative document type definition
from a set of possibly inconsistent documents with the same general structure. Although in some cases a
definitive solution can be reached, most cases require the use of some intelligence and experience to
decide on a resulting structure. In this section, we first describe the issues in generating a single
document type from possibly inconsistent document structures, propose heuristics that will result in a
potential solution, and show an application.

Elements versus attributes: Elements contain and envelop parts of a document. On the other hand,
attributes provide slots for further information about these parts. In a choice between elements and
attributes, therefore, it may be argued that the former should have primacy. There may be exceptions to
this rule, for example, if rendering of values depends upon whether a certain piece of information is an
element or an attribute.

Order of elements: Unlike a relation in a relational database, ordering between elements is important
in a document. When document instances contain different sequences, but similar sets of elements,
heuristics may generate a compromise, but not a perfect solution. On the other hand, ordering between
attributes is unimportant (W3C 1998).

Cardinality of elements: Two issues are important here. The first concerns whether the cardinality of
an element is optional or mandatory. If an element is marked as mandatory in one instance document
and optional in another, there are clearly two approaches to resolve this mismatch. One is to enforce the
mandatory cardinality, forcing instance documents conform to this requirement. This can mean a strict
interpretation, giving primacy to a more rigid set of definitions. The other is to allow an optional
cardinality, covering a larger proportion of instance documents with the definition. Additional
information may be necessary to devise a heuristic that resolves this anomaly. Another aspect of
cardinality is the choice between one or multiple occurrences if a mismatch is found between instance
documents. This can represent a choice similar to optional versus mandatory, though single occurrence
may be considered a special case of multiple elements, giving multiple occurrences higher priority
during reconciliation.

Required vs. optional attributes: A parallel to the choices above can also be seen in the choice for
required or optional attributes. This decision too, may be dictated by concerns similar to the ones

94



AJIS vol. 8 no. 1 September 2000

described above. In addition, manipulations and renderings applied to the attributes may be examined to
decide the appropriate reconciliation.

Nesting of elements: This is perhaps the most problematic issue in intelligent DTD creation. Nesting
between elements indicates the presence of some form of relationship (usually "contains") between the
elements. However, different document instances may nest the same pair of elements differently. It is
conceivable that the nesting may be reversed or may contain different levels. A set of heuristics that
combines parsing as well as tree traversal may be needed for meaningful reconciliation of any
mismatched nesting structures between document instances.

Links: Given the focus of the research - a document type, instead of schemas containing different
document types - we treat links as standard attributes. Since the linking standard is still evolving
(XLink 2000), this aspect of reconciliation can be retained for the next phase of our research project.
To address the above issues, we now define a set of heuristics that can produce a resulting document
structure from a set of DTDs.

Intelligent Heuristics

The heuristics are grouped in three categories: element reconciliation, attribute reconciliation and
structure reconciliation. We describe these below with the help of simple examples.

Element Reconciliation Heuristics

1. Partial or Complete Overlap between Element Names: An element name in one DTD may be
fully contained in an element name from another. This suggests that, in the original designs of the
document structures, the same concept was being modeled. Therefore, the element names are
parsed to find the stems and from this suggestions made to the designer about the possibility of
additional elements(s).
e.g., An application may have a "heading" element under a chapter and another may explicitly call
it "chapterheading". In such cases, designer is suggested to choose between the two or retain both.

2. Optional versus Required Elements: If it is indicated as required in at least one of the instance
documents, include it as required, with a default value.
e.g., A document instance may have a required section_no element in a section, where in another
instance it may be optional. Result: make the section_no required, with a default value.

3. Single versus Multiple Occurrences of an Element: If an element appears with more than one
cardinality in at least one document instance, include it with higher cardinality in the DTD.
e.g., A particular book structure may have "editor" as a multivalued element, where another
structure may only allow one editor. Result: make editor a multivalued element.

4. Elements that Appear More Than Once: If an element appears in more than one input DTD,
then it is added to the output DTD. It is assumed that an element that appears in more than one
DTD, it is not dependent upon naming idiosyncrasies and, thus represents an important domain
concept.
e.g., If the book element appears in at least two documents, include it as an element.

Attribute Reconciliation Heuristics

5. Elevating Attributes to Elements: An attribute is promoted to an element when it appears as an
element in one or more input DTDs and as an attribute in at least one other. Since we are
interested in creating a normative document model, if at least one document includes this as an
element, we reason that it was judged important enough to be an element and include it. A variation
of this heuristic could involve searching for attribute names that have common stems to element
names, and promoting these attributes to elements. Designer interaction may be necessary here
because of a higher possibility of error.
e.g., A document may have publication year as an element and another as an attribute. Result: make
publication year an element and retain the structure of the former document.

6. Derived Attributes: Remove derived, that is, computed attributes from the DTD. This
functionality can belong in transformations, that is, XSL.
e.g., If an element 'weight' is specified in grams (an attribute), and another element 'calories-per-
gram' specifies the calories, the computed element, 'totalcalories' need not be included in the DTD.

95



AJIS vol. 8 no. 1 September 2000

<!ELEMENT BOOK (TITLE, AUTHOR+, EDITOR, PUBLISHER, PRICE, BODY)>
<!ATTLIST BOOK PUBYR CDATA #IMPLIED>
<!ELEMENT TITLE (#PCDATA | SUBTITLE)*>
<!ELEMENT BODY (CHAPTER+, APPENDIX*, REFERENCES)>
<!ELEMENT CHAPTER (CHNO, HEADING, CHBODY)>
<!ELEMENT CHBODY (#PCDATA | SECTION)*>
<!ELEMENT SECTION (SECNO, HEADING, SECBODY)>

DTD 1. A partial Book DTD instance

<!ELEMENT BOOK (TITLE, AUTHOR+, EDITOR+, PUBLISHER, PUBYR, PRICE,
PRICEINDOLLARS, BODY)>

<!ELEMENT BODY (CHAPTER+, APPENDIX+, REFERENCES)>
<!ELEMENT CHAPTER (CHNO?, CHHEADING, CHBODY)>
<!ELEMENT CHBODY (#PCDATA | SECTION)*>
<!ELEMENT SECTION (SECNO?, SECHEADING, SECBODY)>

DTD 2. Another Partial Book DTD instance

Figure 2 Input DTDs

Structure Reconciliation Heuristics

7. Restructuring Elements: Ambiguous structuring of elements may cause additional problems in
producing a satisfactory result. It may be possible that an element is the sub-element of one element
in one structure, and of a different element in another. For example, a book may have a title, and a
chapter may also have a tide. A reasonable solution would be to include both the relationships. In
contrast, if a structure includes subtitles in titles, and another includes only character data, the result
may be an optional subtitle in title.

The heuristics we have outlined above represent a start towards an approach for reconciling the input
DTDs to create a super-DTD. Additional heuristics that are in the process of development include the
identification of core DTD, and the use of entities to combine modules to create variants. As the
XSchema standard evolves (XSchema 2000), we expect that the parsing techniques in our heuristics
will also exploit information about data types in the source documents, generating a Schema from a
group of source DTDs. The above set of heuristics, however, can be used to generate a plausible super-
DTD. We demonstrate below how these heuristics may be applied with an example.

<!ELEMENT BOOK (TITLE, AUTHOR+, EDITOR+, PUBLISHER, PUBYR, PRICE, BODY)>
<!ELEMENT TITLE (#PCDATA | SUBTITLE)*>
<!ELEMENT BODY (CHAPTER+, APPENDIX+, REFERENCES)>
<!ELEMENT CHAPTER (CHNO, CHHEADING, CHBODY)>
<!ELEMENT CHBODY (#PCDATA | SECTION)*>
<!ELEMENT SECTION (SECNO, SECHEADING, SECBODY)>

DTD 3. DTD Generated from application of heuristics.

Figure 3: Reconciled Super DTD

APPLICATION

A simple instance of the above heuristics is shown in Figures 2 and 3. Figure 2 shows the input DTDs,
compiled from source documents, marked up by different authors, in our case, different publishers.
These DTDs may have been compiled using any of the tools mentioned earlier. They contain
specification of elements, attributes, cardinalities, sequencing and nesting. The DTDs shown are partial,
that is, they show only one of the branches of the tree fully. We describe below how the heuristics may
be applied to reconcile these source DTDs.

In this example, the attribute 'pubyear' appearing in DTD 1 can be promoted to an element using
heuristic 5. The element 'heading' under 'section', is found to be similar to the 'secheading' element,
and the two have been combined using heuristic 1. Using the same heuristic, 'chheading' has been
retained in favor of 'heading' under 'chapter.' Using heuristic 2, 'chapno' and 'secno' have been made

96



AJIS vol. 8 no. 1 September 2000

required since one of the DTDs required them. The 'editor' element has been elevated to a multiple-
occurrence element using heuristic 3. Elements that have been included in the output DTD are
elements that were included in both the DTDs (heuristic 4). Heuristics 6 and 7 were not applied in this
example. Notice that since these DTDs were generated by reverse-engineering sample XML documents
from one organization, most element names were same or similar. If the element names are different but
with the same meaning, various linguistic analyses need to be performed in order to determine their
similarity.

DTD graphs (from input)

Secondary Index

External Thesaurus/
Dictionary

DTD graph (output)

Figure 4. Architecture of DTD Extractor implementation

PROPOSED IMPLEMENTATION AND TESTING

We are developing a proof-of-concept prototype for the approach. The implementation is primarily in
Java with the XP XML Parser library from James Clark. XP allows parsing of XML 1.0 compliant
documents including XML DTDs, and includes a class library that can be instantiated to process
different parts of the DTD. The input to this program consists of two or more DTDs (possibly with
sample XML content, although the XML content is currently ignored). The parsed DTDs are used to
create memory-based graph structures representing the
DTDs. The heuristics in this paper are then applied to the memory structures. The approach is similar in
spirit to other ongoing research on relational databases (Purao et al, 2000), which proposes to develop
domain models from schemas reverse-engineered from multiple relational database models. Like
entities and attributes in relational model, the elements and attributes in XML can be identified in a
generic manner. The proposed architecture of the structures and processing is shown in Figure 4 below.
Figure 4 shows the basic architecture of the system under implementation. Initially, DDbE is used to
generate DTDs from input documents (although XTRACT is the most optimized DTD generator
known, a public implementation is not yet available). These DTDs are read in memory-based graph-like
structures, and secondary indices (currently a variant of B-tree) are created on top of the graph
elements. These structures are then processed using the proposed heuristics to generate another graph
structure for the output DTD, which is then used to generate the final DTD for output. Planned
extensions to the architecture include hooks for complex processing such as linguistic analysis and the
use of external dictionaries. We will test the tool to reconcile content management DTDs created for
managing lecture and course management content. The reconciliation will be done manually as well as
with our tool in order to understand the behavior of the heuristics and how they can be improved.

97



AJIS vol. 8 no. 1 September 2000

CONCLUSION

Good document type definitions are invaluable for maintaining consistency between organizational
documents. Documents created in XML may not have a DTD, in which case one can be generated from
document instances using DTD generation tools. However, these tools fall short in capturing the
organizational document design, but simply capture the idiosyncratic naming decisions of individual
authors. This paper describes a method for generating organizational document type definitions from
multiple XML instances, possibly created from different sources. Our contribution is in using the
current methods to assist in the generation of organization-specific document models. Further research,
including development of a research prototype as well as experimentation is under way to assess the
viability of the approach, its utility, and future applications.17

REFERENCES

Berman, L., A. Diaz (1999) Data Descriptors by Example (DDbE). IBM Alphaworks Research
Project Documentation (At http://www.alphaworks.ibm.com) June, 1999.

Chiang, R., (1995) A Knowledge-Based System for Performing Reverse Engineering of Relational
Databases, Decision Support Systems, 13, pp. 295-312.

Chiang, R., T. M. Barren, V. C. Storey. (1993) Reverse Engineering of Relational Databases:
Extraction of an EER Model from a Relational Database, Data & Knowledge Engineering 12, pp.
107-142.

Fahrner, C., G. Vossen (1995) A Survey of Database Design Transformations Based on the Entity-
Relationship Model, Data & Knowledge Engineering. 15, pp. 213-250.

Garofalakis, M., A. Gionis, R. Rastogi, S. Seshadri, K. Shim, (2000) XTRACT: A System for
Extracting Document Type Descriptors From XML Documents. Proceedings of ACM
SIGMOD'2000, Dallas, June 2000.

Goldfarb, C., P. Prescod (2000) The XML Handbook. Upper Saddle River, NJ: Prentice Hall PTR,
2000.

Jyvaskyla (2000) Document Management Research Program at University of Jyvaskyla. At
http://www.cs.jyu.fi/~airi/docman.html

Kay, M. (2000) Saxon DTDGenerator - A Tool to Generate XML DTDs. Technical software
Documentation, At http://users.iclway.co.uk/mhkay/saxon/dtdgen.html. February 2000.

Premerlani, W. J., M. R. Blaha. (1994) An Approach for Reverse Engineering of Relational Databases,
Communications of the ACM. 37, 5, pp. 42-49.

Purao, S., V. C. Storey, M. Moore, A. Sengupta (2000) Reconciling and Cleansing - an Approach to
Domain Models. Working Paper, Georgia State University. February 2000.

Shaffer, K. (1995) Creating DTDs via the GB-Engine and Fred. Proceedings: SGML'95 Conference.
Boston, MA, December 1995.

Sprague, R. H. (1995) Electronic Document Management: Challenges and Opportunities for
Information Systems Managers. MIS Quarterly. 19, 1. Pp. 29-50.

Tyrvainene, P., and T. Paivarinta (1999) On Rethinking Organizational Document Genres for
Electronic Document Management. Proceedings: HICSS-32, 1999. Hawaii.

W3C (1998) XML Specification 1.0. February 1998.- http://www.w3.org/TR/1998/REC-xrnl-
19980210.

WCRE (1999) 6th Working Conference on Reverse Engineering. 6 - 8 October 1999 at Atlanta, GA.
XLink (2000) The Linking Specification for XML. http://www.w3.org/XMI7Linking.html
XSchema (2000) XML Schema Specification. At http://www.w3.org/TR/xmlschema-0/ Draft 7 April

2000.

ACKNOWLEDGEMENTS
We wish to acknowledge comments from anonymous reviewers, which have helped to considerably
improve the content and the presentation. The paper has also benefited from discussions with Airi
Salminen and Pasi Tyrvainene.

17 A preliminary version of this paper, under a different title, was presented at the conference XML
Meets Business in Heidelberg, Germany in May 2000.

98


