
AJ1S vol. 8 no. 1 September 2000

EVOLUTION OF WEB-BASED APPLICATIONS USING DOMAIN-SPECIFIC MARKUP
LANGUAGES

Guntram Graef, Martin Gaedke

Telecooperation Office (TecO), University of Karlsruhe, Vincenz-Prlefinitz Sir. 1, 76131 Karlsruhe, Germany,
Tel.: +49 (721) 6902-89, Fax: -16, E-Mail: {graej\gaedke}@teco.edu.
URL: http://www.teco.edu -or- http://webengineering.org

ABSTRACT

The lifecycle of Web-based applications is characterized by frequent changes to content, user interface,
and functionality. Updating content, improving the services provided to users, drives further development
of a Web-based application. The major goal for the success of a Web-based application becomes therefore
its evolution. Though, development and maintenance of Web-based applications suffers from the
underlying document-based implementation model. A disciplined evolution of Web-based applications
requires the application of software engineering practice for systematic further development and reuse of
software artifacts. In this contribution we suggest to adopt the component paradigm to development and
evolution of Web-based applications. The approach is based on a dedicated component-technology and
component-software architecture. It allows abstracting from many technical aspects related to the Web as
an application platform by introducing domain specific markup languages. These languages allow the
description of services, which represent domain-components in our Web-component-software approach.
Domain experts with limited knowledge of technical details can therefore describe application
functionality and the evolution of orthogonal aspects of the application can be de-coupled. The whole
approach is based on XML to achieve the necessary standardization and economic efficiency for the use
in real world projects.

KEYWORDS: Web Engineering, WebComposition, Domain Component, Domain Engineering,
Evolution

INTRODUCTION

By offering ubiquitous access to any kind of information and applications the World Wide Web (Web)
was able to establish itself as the dominant platform for the delivery of hypermedia applications. Under
the influence of increasing competition, especially in the area of electronic commerce, these
applications are subject to constant change concerning their functionality, their application interfaces or
the information they offer (Cusumano & Yoffie 1999). These applications, that we will also refer to as
Web-applications, can be strongly characterized by their underlying implementation model. Due to the
rapid speed of technological innovation common to the Web the lifecycles of Web-applications become
very short. The applications have to undergo an evolutionary process that never stops. Nevertheless, in
the large majority of cases no disciplined approach is employed to address the increasing complexity of
Web application (Barta & Schranz 1998, Gellersen & Gaedke 1999).
The insight that the development and evolution of Web applications requires a dedicated support
through models, methods and principles of software engineering, comparable to that employed during
the development of traditional applications, seems to suggest that Web application development should
be based on a solid foundation of software engineering methodology. From a software engineering
point of view the World Wide Web with its unique character is a new application domain (Gaedke et al
1999a). This new discipline that during the last three years has established itself as Web Engineering
offers both a cost reduction and an increase in quality during the development and evolution of Web-
applications (Gaedke & Rehse 2000).
Web Engineering implicitly considers Berners-Lee's central demand for heterogenity of the system and
autonomous administration of its resource (Berners-Lee 1990). This demand that we will refer to as the
basic principles of the Web is a major obstacle for current approaches to the development and
maintenance of Web-applications, which will become obvious in section 2 of this contribution.
Furthermore, a fine-grained and reuse-oriented implementation is necessary to allow for the federation
of existing Web-applications or application parts into new applications (Gaedke & Turowski 2000).
The positive experiences with component-based software development and its advantages (McLure
1997, Lim 1998, Tracz 1995, Szyperski 1997) make it desirable to be able to use a dedicated
component technology for the development and evolution of Web-applications. This is also a
prerequisite to be able to fully take advantage of applying modem reuse oriented software engineering
processes to Web-technology.
In the following sections of this contribution we will present a framework in which the evolution of a
Web-application can take place. In the third section we will describe the WebComposition Markup
Language that can be used to describe Web-applications as components. We will introduce the concept
of domain specific markup languages in the fourth section and describe how it can be used to further

51

AJIS vol. 8 no. 1 September 2000

facilitate the development and evolution of functionality for the Web. A commercial application that is
based on the described architecture will briefly be described in the fifth section. Te last section contains
a conclusion and an outlook on further research.

Evolution Framework

The requirements for a software system change as time goes by. It is obvious that many kinds of
influences are responsible for this, such as new regulations, changes in corporate identity or an
extension of functionality. Such maintenance tasks are difficult to handle if the application has not been
designed with the possibility of later changes and extensions in mind (Gaedke & Turowski 1999).
To allow for a disciplined and manageable evolution of a Web-application in the future it makes sense
not to design the initial application on the basis of the concrete requirements identified at the start of the
project. Instead the initial application should be regarded as an empty application that is suitable for
accommodating functionality within a clearly defined evolution space.
This approach is based on domain engineering, which has been described as a process for creating a
competence in application engineering for a family of similar systems (SEI 1999). During an analysis
phase the properties of an application domain are determined. During a design phase this information is
transformed into a model for the application domain. From this the required evolution space can be
determined and, during the implementation phase of the domain engineering process, the initial
application can be constructed as a framework ready to accommodate any kind of functionality that lies
within the evolution space of the domain.
This view can be extended to several application domains. Therefore the term basic evolution bus has
been introduced in (Gadeke & Graef 2000) to describe the basic architecture of a Web-application. The
evolution bus is the initial application for all abstract application domains of a Web-application.

Application
Domain

Application
Domain

Web-Application Evolution Bus

Application
Domain

Application
Domain

Evolution by extending the domain set

Domain specific evolution by integrating domain
specific services

Figure 1: Dimensions of a Web-application's evolution space

It enables the management and collaboration of domain-components, i.e. components that implement
specific application domains such as Web-based procurement, reporting or user driven data exchange.
These initial domain-components also represent prototypes for future domain-components of the same
application domain. The evolution can take place in two clearly defined ways (Figure 7):

• Domain specific evolution - The extension of a domain through new domain-components,
e.g. by prototyping an existing domain-component. Another possibility is that the domain itself
changes or that it receives more functionality, which requires the modification of the domain's
initial component that serves as a prototype for other domain components.
• Evolution of the domain set - The evolution of an application is also possible through the
modification of the domain set. The extension of an application's functionality by adding a new
application domain takes place e.g. when a shopping basket and corresponding functionality is

52

AJIS vol. 8 no. 1 September 2000

added to a Web-based product catalogue. The integration of a new domain is realized by
connecting a new initial domain component to the evolution bus.

A framework for implementing the evolution bus and the domain components can be developed with
the WebComposition Markup Language that will be introduced in the following section.

WEBCOMPOSITION-APPROACH FOR COMPONENT-BASED WEB ENGINEERING

WebComposition Component Model

The abstract WebComposition Component Model, introduced in (Gellersen et al 1997), extends the
implementation model of the Web to circumvent its semantic limitations for the modeling of
applications. It enables the development of components from which Web-applications can be
composed. Such components are a code-abstraction of an arbitrary target language. Via a mapping
mechanism from the component model to the Web implementation model it is possible to map
components to Web-resources that contain e.g. HTML, WML (Wireless Markup Language) or script-
code. In contrast to Web-resources WebComposition components can encapsulate design artefacts of
arbitrary granularity. This can range from simple HTML element properties such as the used font-type
to complex business processes or the implementation of design patterns. It is also possible to create a
new component as a composition of existing components.
The WebComposition Component Model offers object-oriented semantics that can be employed to
define relations between components such as inheritance, aggregation and polymorphism. In contrast to
class based languages such as Java or C++ WebComposition uses prototype instance inheritance as
described in (Ungar & Smith 1987). Hereby, new variants can be created from prototypes that can be
modified by overloading individual properties. During the description of a new component each
existing component of the model can be referred to as a prototype.
The WebComposition Component Model addresses the problems related to reuse on the Web and the
mapping of fine-grained design entities to a document based implementation model by supporting the
implementation of a Web-application within a fine-grained component model.
The evolution of Web-applications takes place through the manipulation or the addition of components
that are kept persistent and accessible in a component store during their whole lifecycle.

WEBCOMPOSITION MARKUP LANGUAGE

The WebComposition approach suggests the WebComposition Markup Language (WCML) to support
the development of components. This language has already been introduced in (Gaedke et al 1999b)
and will thus only be briefly described here. WCML is an application of the extensible Markup
Language (XML) and therefore inherits some of its advantages. The syntax of WCML documents can
easily be checked against a Document Type Definition (DTD). WCML is platform independent and
easy to process. The development of tools is strongly facilitated through the availability of XML-
parsers and libraries in the public domain. Furthermore a variety of existing tools can be used such as
XML-editors. For a more detailed language description and further information the reader may refer to
(Gaedke 1999).
Components can be stored in a Component Store. This can be a database, but file-systems or Web-
servers can also serve as Component Stores. Via an URI-addressing scheme several Component Stores
can be integrated into Virtual Component Stores to allow for component reuse beyond a single
Component Store. With the help of Web-servers and Virtual Component Stores, components can be
directly reused worldwide via the Internet.
In (Gaedke et al 2000) a compiler has been introduced that performs a mapping of WCML-components
to Web-resources, as visualized in Figure 2. The compiler uses a freely available XML parser
component and employs it to read WCML components from a Virtual Component Store, to create a
parse-tree and to perform a syntax check against a WCML DTD. Then the compiler resolves all
references and inheritance relationships between WCML components. Finally the presentation methods
of the components are executed and the required target resources are generated. This completes the
mapping to the implementation model of the Web (or another target platform).

53

AJIS vol. 8 no. 1 September 2000

Rle system

Database

Virtual Component
Store

<wcml>
<component>
<protype

is="MainContent"/>
</component>
</wcml>

XML Beschreibung

Figure 2: Use of the WCML-Compiler

Description of Services with WCML

Considering the business applications accessible via Web-technology one can state that in general
applications offer a set of services to a user in order to support him during various tasks. Examples are
the retrieval of information, the ordering of products or the issuing of a complaint. In a broader context
via each service an enterprise offers a product to its customers that is not necessarily limited to the
scope of the Web-application system. It could also involve existing business applications or the whole
enterprise.
Therefore in (Gaedke et al 1999a) the concept of services as entities for modelling Web-applications
has been described in more detail. In that contribution a service is described as consisting of several
components. First, a service contains information that an organization associates with it. This content is
usually available in a media representation such as text or graphics. Second, a service contains layout
and navigation that are used to make the service content available. It also contains directives describing
the user-interaction and the consequences triggered by user-actions. Another important part of a service
is the implementation of the business process i.e. the technical description of the interaction with the
business application systems such as Enterprise Resource Planning Systems.
Technically a service can be represented as an object with an inner state that can be manipulated by the
user. The audiovisual representation during run-time and the user-interface of a service are determined
by Web pages. The definition of the process is contained in process components in the back-end. Data,
presentation and process are separated. Thus it is e.g. possible to accommodate different human-
machine or machine-machine interaction modalities by simply exchanging the presentation. In (Gaedke
& Turowski 2000) it has been described how the most important aspects of a service can be
encapsulated within several WCML components:

• Service Content: A WCML component describing the properties and information content of a
Service (e.g. textual content).

• Service Layout and Navigation: WCML components defining with which layout a service
should be displayed and how the information should be made available to the user. This
includes how navigation between pages should take place. An example would be a
component that implements the Web design pattern decorator to display the service
according to the corporate identity of an organization. Furthermore the Web design pattern
guided tour may be used to provide a guided navigation through the pages of a service.

• Service User-Interaction: A WCML component that controls the interaction process between a
user and the service. This controls the access to the service content by the user-interface.

• Service Processing: A sequence of calls to components to perform further processing in
business application systems. These calls reflect the automated part of the business process.
They use a middleware layer within the application framework to access (legacy)
application systems.

A service can be composed from these components and therefore in itself represents a component. A
service can also serve as a prototype. This makes a service reusable by inheritance.

54

AJ1S vol. 8 no. 1 September 2000

Service Example: Ordering Mobile Phones

The following example clarifies the definition of services with WCML. A service-component shall offer
a product (in this case a mobile phone) for sale. The service must describe the phone (content), it must
display the information in a browser (layout and navigation) and it must define the ordering process for
the telephone (process).
Each WCML component can be identified via a unique name (UUID). The description of a service for
selling mobile phones (SellMobilePhone) is based on a component for the description of standard
products. The component StandardProduct (Figure 3) defines the properties common to all products. A
property can be an attribute or a parameterless function of the component.

<?xmlversion='1.0' ?>
<!DOCTYPE wcml SYSTEM "wcm!2.dtd">
<WCML>
<COMPONENT uuid='StandardProduct'>

<PROPERTYname='currency'>EUR</PROPERTY>
<PROPERTYname='unitName'>piece</PROPERTY>
<PROPERTYname='unitNamePlural'>pieces</PROPERTY>
<PROPERTYname='quantity'>l</PROPERTY>
• ••

</COMPONENT>

Figure 3: Content component for products

Now this component can be used as a prototype by the content component of the SellMobilePhone
service to add all data relevant for the mobile phone (Figure 4).

<COMPONENT uuid='CellphoneModel 123'>
<PROTOTYPE is='StandardProduct'/>
<PROPERTY name='bandInfo'>dual</PROPERTY>
<PROPERTY name='price'>229.99</PROPERTY>

</COMPONENT>

Figure 4: Content component for a certain product

The component CellphoneModell23 assumes the properties of the prototype through inheritance from
StandardProduct. With the inherited properties e.g. the currency of the provided price of 229.99 is now
clearly defined as in Euro (EUR).
The component Userlnteraction234 describes the user-interaction. The code extract in Figure 6 shows a
simple user-interaction for the input of the quantity of a product order. The example makes use of
ordered multiple-inheritance in WCML to access several prototype components at once.

55

AJIS vol. 8 no. 1 September 2000

<COMPONENTuuid='UserInteraction234'>
<PROTOTYPE is='User!nteraction'/>
<PROTOTYPE is^NumericInputField1^
<PROPERTYname='datafield'>quantity</PROPERTY>
<PROPERTY name='minvalue'>K/PROPERTY>
<PROPERTYname='maxvalue'>99</PROPERTY>
•••

</COMPONENT>

Figure 5: User-interaction component

The presentation components and process components are also defined in WCML. All components are
now composed to a service by a service component (Figure 6).

<COMPONENT uuid='SellMobilePhone'>
<PROTOTYPEis='CellphoneModell23'/>
<PROTOTYPE is='UserInteractionl23'/>
<PROTOTYPE is='Layout'/>
<PROTOTYPE is='Navigation'/>
<PROTOTYPE is='OrderProcess'/>

</COMPONENT>
•••

</WCML>

Figure 6: Service component

By exchanging the content component CellphoneModell23 the same service could be used for selling
other types of mobile phones. By changing the process component the underlying business process
could be changed, e.g. to offer the phone in a bundling action. By changing the layout component or the
navigation component the presentation of the service can be modified.
The processing of the business data that results from use of the various services takes place within the
business application systems of the organization. These can be heterogeneous environments with
several legacy systems. Within the application framework each system is represented by an agent. The
communication with these applications must take place via a simple and standardized distributed
mechanism to make the services built above this mechanism reusable. For the business process a
business-to-business communication between the applications of several organizations might be
necessary. A suitable approach based on widely accepted communication standards has already been
introduced in (Gaedke & Turowski 2000).

Domain-specific Markup Languages

To further facilitate the domain specific evolution of an application we are going to introduce the
concept of Service Domain Markup Languages (SDMLs). SDMLs are domain specific languages based
on XML. They are used to standardize domain components and to support the interaction between
domain components and the evolution bus.
An SDML abstracts from those properties of a service common to all services of a service domain. It
serves as a tool to easily specify individual services in the context of a service domain. The semantics
and complexity of such a language corresponds exactly to the decision space available to a service
developer working within a service domain.
Figure 7 shows an extract from the Document Type Definition of a very simple SDML for the domain
"product ordering" in the context of an existing E-Commerce system. The labelling of the language
elements (tags) has been based directly on the vocabulary used by experts in the corresponding domain.

56

AJIS vol. 8 no. 1 September 2000

The language enables a domain expert without advanced programming knowledge to describe all
aspects of a specific product ordering service. A service developer can describe the structure and
content of an order via an order object (ORDER) while he can define the user-interaction in the
SERVICE_FORM part of the SDML document tree. With the MESSAGE Tag the developer can define
a confirmation message displayed after the order has been accepted.

^Sdml.dld -XML Authority HS E3

Ft!-T€d! .View. TdoteC,V*idow Help ' \^-'" .'"' '"• T • • • • ; . . ' r ' $: '-" V ', v- ' • ' •' . ' • . • ' " • • ' • • • ;-:

SDM. J —

p ORDER wf-

I—_«^?EL?.«|
OSID7J

NAME ? J

SHCf?T_DESCRIPT10N? J

INFORMATION? J

PRICE ?J

CiJRRENCY.COOE?]̂

TAX? J

QUANTITY? J

ORDER_BY? J

OROER.FOR?^

BJU-.TO?,.,!

TYPE?y|

— ORDER LINE" <>!

.. i i : i

— oispj
TYPEJ

QUANTITY J

NAME J

SHORT_DESCRIPTION (.J

INFORMATION J

SUPPLIER J

PRICE J

CURRENCY_COOE J

TAX J

1 — TOTAL J

—(MESSAGE ? S

r— OLSID?W|

FeXINAME? !̂

TYPE? J

P?J

VALUE 7 J

FaDSIZE?^

MAXLENOTH?J

COLUMNS? J

ROWS?W|

EVENT ?J

SCRIPT ?J

STORE VALUE ? <,|

naj.COUNT?^

SgE7«>|

ITEM- J

— DISABLED? J

Figure 7: Document Type Definition of an SDML

Figure 8 shows an extract of a service description for a concrete product ordering service for mobile
phones. In the first part general properties of the service and the associated order such as service name,
standard price and value added tax rate are defined. Then various order lines are described within the
ORDER_LINE tag. The code example shows an order line for Dl-telephone cards that can be included
as accessories with a mobile phone order. Inside the SERVICE_FORM tag the various user-interface
elements are defined in the same order, as they will be displayed later. The example code given
describes a text input field whose content is linked to the quantity-property of the order.

57

AJIS vol. 8 no. 1 September 2000

<?xml version-1.0' encoding='ISO-8859-l'?>
<?xml:stylesheet type="text/xsl" href="ServiceCompiler.xsl" ?
<!DOCTYPE SDML SYSTEM "orderservice_sdml.dtd">
<SDML>
<ORDER>

<GUSPID>
<OSID>
<NAME>
<SHORT_DESCRIPTION>
<INFORMATION>
<PRICE>
<CURRENCY_CODE>
<TAX>
<QUANTITY>
<ORDER_BY>
<ORDER_FOR>
<BILL_TO>
<TYPE>

</GUSPID>
</OSID>
</NAME>

<STRING>HandyOiderService</STRING>
<STRING>HandyOSID</STRING>
<HTMl>Handy OrdeiService</HTMI>
<HTML>Service for ordering mobile phones</HTMlX/SHORT_DESCRIPTION>
<HTML>If you have any questions call 5214</HTML>^INFORMATION>
<NUMBER>199.00</NUMBER> </PRICE>
<STRING>EUR</STRING> </CURRENCY_CODE>
<NUMBER>16.00</NUMBER> <fTAX>
<NUMBER>1.00</NUMBER> </QUANTITY>
<VARIABLE>USERIIX/VARIABLE> </ORDER_BY>
<VARIABLE>USERIIX/VARIABLE> </ORDER_FOR>
<VARIABLE>USERIEXVARIABLE> </BILL_TO>
<STRING></STRING> </TYPE>

<ORDER_LrNE>
<OLSID>
<TYPE>
<QUANTITY>
<NAME>
<SHORT_DESCRIPTION>
<INFORMAT1ON>
<SUPPLIER>
<PRICE>
<CURRENCY_CODE>
<TAX>
<TOTAL>

</ORDER_LINE>
<ORDER_LINE>

</ORDER_LINE>
</ORDER>
<SERVICE_FORM>

<WIDGET>
<OLSID>
<FIELDNAME>
<TYPE>

<STRING>OLSID-D1</STRING>
<STRINGx/STRING>
<NUMBER> 1 </NUMBER>
<HTMI>D 1 -CARD</HTML>
<HTML>D1-Telephone Card</HTML>
<HTMLx/HTMI>
<STRING>Deutsche Telekom</STRING>
<NUMBER>29.0</NUMBER>
<STRING>EUR</STRING>
<NUMBER>16.0</NUMBER>
<NUMBER>33.64</NUMBER>

</OLSID>
</TYPE>
</QUANTITY>
</NAME>
</SHORT_DESCRIPTION>
</INFORMATION>
</SUPPLIER>
</PRICE>
</CURRENCY_CODE>
</TAX>

<VALUE>
<FIELDSIZE>
<MAXLENGTH>

</WIDGET>
<WIDGET>

</WIDGET>
</SERVICE_FORM>

<MESSAGE>Danke fur Ihre Bestellung!</MESSAGE>
</SDML>

<STRING></STRING> </OLSID>
<STRING>Quantity</STRING> </FIELDNAME>
<STRING>textfield</STRING> <nTPE>
<STRING>HandyOSID.Quantity</STRING></ID>
<STRING>1</STRING> </VALUE>
<STRING>5</STRING> </FIELDSIZE>
<STRING>4</STRING> <MAXLENGTH>

Figure 8: SDML description of an order service

In this example the service developer can modify service content (ORDER section) and user-interaction
(SERVICE_FORM section). Layout, navigation, certain aspects of content and user-interaction and the
processing are the same for all services of this service domain and are therefore not part of the SDML.
They are encapsulated within WCML-components of the framework and are maintained by experts such
as Web-designers and Web-engineers. In other service domains the decision space might be quite
different though. The SDML for another domain may e.g. contain processing statements or layout
properties.

Service Factory

A Service Factory does the transformation of a service description into a functioning service. The
concept of a service factory is based on the factory design pattern by (Gamma et al 1995) and has been
introduced in (Gaedke et al 1999a). In our case a mapping is performed from an SDML to a service

58

AJ1S vol. 8 no. 1 September 2000

component in WCML. That generated service component usually is tightly integrated with existing
framework components via inheritance and composition operators. The mapping rules for a single
SDML are encapsulated in a factory method that is selected and invoked from a control function.
Because both SDMLs as well as WCML are based on XML such a factory method is easily
implemented with either the extensible Stylesheet Language (XSL) [21] or by using special WCML
language constructs for the definition of factory methods [22]. In both cases using XML as the
underlying technology significantly contributes to the efficiency and flexibility of the described
approach.

Virtual Component
Store

^ SDML Document ^

Service Editor

SDML Document

WCML Components

Service Factory

WCML Components

Figure 9: System architecture

Domain-specific Evolution

Domain-specific evolution takes place by the description of new services with an SDML and by the
extension of an SDML itself together with the underlying WCML component framework. An example
would be the extension of the previously described SDML for order services by a multi-lingual order
confirmation. Various sub tags could extend the SDML, e.g. the MESSAGE tag and the framework
component for the visualization of order confirmations could be extended with multi-lingual support.
The factory method for the SDML would have to be extended by XSL mapping templates for the new
XML tags added to the SDML.

59

AJIS vol. 8 no. 1 September 2000

-N

F
ac

to
ry

 C
on

tro
l F

un
ct

io
n

=*

Order Service
Factory Method

Information Service
Factory Method

• • •

Figure 10: Internal Architecture of the Service Factory

Evolution of the Domain Set

Developing a new application domain can extend the domain set. This is done by defining a new SDML
and by extending the WCML component framework by adding a new service prototype component. To
enable the mapping of SDML service descriptions to WCML components an XSL style sheet that
implements a factory method for the Service Factory has to be added.

Tools

Using XML based markup languages for describing services facilitates the development of special
development tools. Various tools and libraries for dealing with XML documents are publicly available
and XML itself provides a clearly defined structure that forms the basis for easy manipulation of
documents. Figure 11 shows an editor that can be used to visually program order services. It is based on
the SDML introduced in the previous example. The editor maps the SDML bijectively to the graphical
i/o-elements of the user-interface. It has been developed in Java using an XML parser component that is
freely available. Such an editor provides a domain expert with a tool that allows her to develop simple
services without sophisticated programming knowledge. A service developed with such a tool can also
be used as a starting point for a Web-engineer who may use the generated WCML components and
extend them to develop a new service leaving the boundaries of the current domain.
Figure 9 shows how a service editor and a Service Factory work together with the system components.
The exchange of design artefacts between the various instances takes place indirectly via the Virtual
Component Store that stores WCML components and a repository for SDML service descriptions.

60

AJIS vol. 8 no. 1 September 2000

lE'Seivice Facloiy |D:Wvh<iridy180699b xml

He EfBt Add Sendee Help

1 [Sl̂ lHl1 1&~ Hi ' ISISHIMP

i Y I — 1 rage i &;
j Q Radiobutton (OLSID-D1)[kartej|p

Q Radiobutton (OLSlD-D2)[karte) '.!,-•:

Q Radiobutton (OLSID-EP)[karte) | j:!i;
r^ t lib!

, [j Checkbox (OLSID-LT) 1 1|

I Q <coolbreak/> (PAOEBREAK-1) j j|

Q Selectfleld (OLSID-Handy) j| }

Q none (OLSID-HTML-Code) pjjjj:

Q unknown (OLSID-MSO) !;||

I 11 'C*
K^
i
P
Im

L ... , 1 y

" ". - . - •:*;; / . • • ••

Ĵ BHigH • • ' :

fPropertfes (Description) Î SWSS
' " •

j Service ProductlD.
. (niustbeequeltoDBID)

i Service Name
i - .

i Short Description

i Price-- '.•'.''• ' . '•••'
\ . • . - , < • • • • • - . '

j Currency Code.

Tax ' ' '."

-•r^-- ' .S
j ChacqeVatue of Hew Service '

.- ..„ —_, ..,

BEE!

'.: . " ' ' ' :

HandySlD

Mobile Phone Order Service

Select, configure and order mobile phoi;

199.0 ; . I

FBJR

160

' ' Cancel ;

— - • ; - - / -. .

Figure 11: Visual editor for order services

APPLICATION OF THE APPROACH

In a joint project between the Telecooperation Office (TecO) at the University of Karlsruhe and
Hewlett-Packard (HP) a service-oriented e-commerce application, Eurovictor, has been developed
based on the WebComposition Component Model and domain-specific markup languages. The aim of
the project was to develop a support system that enables development, management, maintenance and
evolution of services within the heterogeneous environment of the European intranet of HP. An
evolution bus was realized as part of the project. The evolution of the application took place through
the integration of several domain specific services such as presentation of information, software orders
or product purchase. These services serve as prototypes for the domain specific evolution of the
application.
Figure 12 shows the Web-application's start page. The left part contains a menu that allows for a
selection of services. In the middle and on the right side two special services can be found: A service
for the adaptation of the application to the behaviour of the current user and another service offering
shopping basket functionality. The adaptation service demonstrates the flexibility the application gained
due to the domain-component specific architecture it is based on.
A large part of the domain specific evolution of the application has been triggered by its international
scope. As an example new services are constructed through inheritance that are adapted to national
layouts, languages or legal regulations. Meanwhile in almost all European countries services are
developed in a distributed and decentralized manner and made available via the Eurovictor system.

61

AJIS vol. 8 no. 1 September 2000

* Victor Home O ̂
^ Hardware Order
» Software / Accounts
w Telecommunication

^ Telephone
* Installation
* Relocation
+ Removal

^ Telephone-Display
* Change

"r Call Redirection
» New
* Add
* Delete

^ Voice-Mail
* New
* Relocate
* Delete

Mobile-/HomeOffice
Additional Services
News
Profile
About

Hello Guntram

your last login was at 9/24/9910:11:02 AM

Changes to your application

Recently you have used the services Telephone: Installation and yojgB-MailLNBw. We
added the following services to your application that might be related:

Telephone; Relocation
Telephone: Removal
Telephone-Display: Change
gajl Redirection^ New
Call Redirection: Add
gall Redirection^DeleJe
Voice-Mail; Relocate
Voice-Mail: Delete

Some services were removed from your application. Click for more information.

Visibility of service Shop^ssMant^Content has been increased due to frequent use.
Visibility of service News: Company Stories, has been decreased due to infrequent use.

El̂

, Shop Assistant

Your basket currently
contains i item,

Copyright © 1«W Hewtett-fedun! Company

- J J

Figure 12: The Euro victor system

CONCLUSION

The Web has been established as a major platform for applications, although the underlying
implementation model complicates the development and evolution of Web-applications. To manage the
evolution of complex Web-applications during their complete lifecycle it is necessary to use a
development model that allows us to compose applications from reusable components of moderate
complexity and arbitrary granularity. The WebComposition Component Model with the language
WCML is suitable for that purpose.
We further facilitate the development and evolution of Web-applications by introducing domain
specific markup languages for Web-Services and the related mechanism of a Service Factory. Services
are based on initial domain components that each serve as a prototype for a service domain. The
prototypes of all service domains are based on an evolution bus as a basic framework. A Web-
application can evolve within this evolution bus in two different ways. First, an evolution can take place
within a service domain by modifying the initial service component or by adding a new service
component to the component set of a domain - usually by proto-typing. Second, the domain set itself
can evolve by adding new initial domain components and connecting them to the evolution bus.
Different aspects of a Web-application can be separated and assigned to people with different roles
working on different levels of abstraction. This ranges from the visual programming of a simple service
by a domain expert to the modification of an initial domain component by a Web-engineer.
The approach described in this contribution has been successfully applied to a large and internationally
distributed Web-application at Hewlett-Packard.

ACKNOWLEDGEMENTS

An earlier version of this paper was presented at the first XML conference (XML2000), Heidelberg,
Germany, May 3-4, 2000. Comments from participants of this conference are gratefully acknowledged.
The authors would further like to thank U. Stegemiiller of the Hewlett-Packard Corporation, Germany
for their cooperation, thoughtful feedback, and for providing inspiration for some of the ideas
developed in the approach presented here.

62

AJIS vol. 8 no. 1 September 2000

EXAMPLES

WCML-Compiler and code examples are available at http://webengineering.org

REFERENCES

Barta R.A. and M. W. Schranz, "JESSICA: an object-oriented hypermedia publishing processor,"
Computer Networks and ISDN Systems, vol. 30(1998), pp. 239-249, 1998.

Berners-Lee T., "Information Management: A Proposal," , vol. 1998: CERN, 1990.
Cusumano M.A. and D. B. Yoffie, "Software Development on Internet Time," IEEE Computer, vol.

32, pp. 60-69, 1999.
Gaedke M., H.-W. Gellersen, A. Schmidt, U. Stegemuller, and W. Kurr, "Object-oriented Web

Engineering for Large-scale Web Service Management," presented at Thirty-Second Annual
Hawaii International Conference On System Sciences (HICSS-32), Island of Maui, USA, 1999a.

Gaedke M. and J. Rehse, "Supporting Compositional Reuse in Component-Based Web Engineering,"
presented at 2000 ACM Symposium on Applied Computing (SAC 2000), Villa Olmo, Como,
Italy, 2000.

Gaedke M. and K. Turowski, "Integrating Web-based E-Commerce Applications with Business
Application Systems," Netnomics Journal, Baltzer Science Publishers, vol. 2, pp. 117-138, 2000.

Gaedke M. and K. Turowski, "Framework for Maintaining Evolution of E-Commerce Applications in
the Web," presented at 12th International Conference - Software and Systems Engineering and their
Applications (ICSSEA '99), Paris, France, 1999.

Gaedke M. and G. Graef, "Development and Evolution of Web-Applications using the
WebComposition Process Model," presented at 2nd Web Engineering Workshop at the 9th
International World Wide Web Conference (WWW9-WebE), Amsterdam, The Netherlands,
2000.

Gaedke M., D. Schempf, and H.-W. Gellersen, "WCML: An enabling technology for the reuse in
object-oriented Web Engineering," presented at Poster-Proceedings of the 8th International
World Wide Web Conference (WWW8), Toronto, Ontario, Canada, 1999.

Gaedke M., "WebEngineering.org Homepage," , vol. 2000, 1999.
Gaedke M., C. Segor, and H.-W. Gellersen, "WCML: Paving the Way for Reuse in Object-Oriented

Web Engineering," presented at 2000 ACM Symposium on Applied Computing (SAC 2000),
Villa Olmo, Como, Italy, 2000.

Gamma E., R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable object-
oriented software. Reading, Mass.: Addison-Wesley, 1995.

Gellersen H.W. and M. Gaedke, "Object-Oriented Web Application Development," IEEE Internet
Computing, vol. 3, pp. 60-68, 1999.

H.-W. Gellersen, R. Wicke, and M. Gaedke, "WebCompostion: an object-oriented support system for
the Web engineering lifecycle," Computer Networks and ISDN Systems, vol. 29, pp. 1429-1437,
1997.

Graef G. and M. Gaedke, "An Evolution-oriented Architecture for Web Applications," presented at
Second Nordic Workshop on Software Architecture (NOSA'99), Ronneby, Sweden, 1999.

Lim W.C., Managing software reuse : a comprehensive guide to strategically reengineering the
organization for reusable components. Upper Saddle River, NJ: Prentice Hall, 1998.

McClure C.L., Software reuse techniques : adding reuse to the system development process. Upper
Saddle River, N.J.: Prentice Hall, 1997.

Tracz W, Confessions of a used program salesman : institutionalizing software reuse. Reading,
Mass.: Addison-Wesley Pub. Co., 1995.

Szyperski C., Component software: beyond object-oriented programming. Reading, Mass.: ACM
Press; Addison-Wesley, 1997.

SEI, "Domain Engineering," , vol. 1999: Software Engineering Institute, Carnegie Mellon University,
1999.

Ungar D. and R. B. Smith, "Self: The Power of Simplicity," presented at OOPSLA '87, 1987.
Segor C. and M. Gaedke, "Crossing the Gap - From Design to Implementation in Web-Application

Development," presented at Information Resources Management Association International
Conference, Anchorage, Alaska, USA, 2000.

63

