
AJIS vol. 8 no. 1 September 2000

FRAMEWORK ARCHITECTURE ENABLING AN AGENT-BASED DMTER-COMPANY
INTEGRATION WITH XML

KJemem J. Fellner and Klaus Turowski
Otto-von-Guericke-University Magdeburg, Institute for Technical and Business Information Systems, Business

Information Systems, P.O. Box 41 20, 39016 Magdeburg, Germany, phone: +49 (391) 67 1 - 83 86, fax: -
12 16, E-mail: {fellner|turowski}@iti.cs.uni-magdeburg.de, URL: http://www-wi.cs.uni-magdeburg.de

ABSTRACT.

More and more cooperating companies utilize the World Wide Web (WWW) to federate and further
integrate their heterogeneous business application systems. At the same time, innovative business
strategies, like virtual organizations, supply chain management or one-to-one marketing as well as trend-
setting competitive strategies, like mass customisation are realisable. Both, the necessary integration and
the innovative concepts are demanding software supporting automation of communication as well as
coordination across system boundaries. In this paper, we describe a framework architecture for inter-
company integration of business processes based on commonly accepted and (partially) standardized
concepts and techniques. Further on, it is shown how the framework architecture helps to automate
procurement processes and how a cost-saving black-box re-use is achieved following a component-
oriented implementation paradigm.

KEYWORDS: Software agents; XML/EDI; UN/EDIFACT; component-orientation

INNOVATIVE BUSINESS STRATEGIES MOTIVATING INTER-COMPANY INTEGRATION

The Internet enjoys great popularity as a universally available communication channel. The World
Wide Web (WWW) as its most popular part is changing from a media for information gathering to a
platform for distributed (business) application systems. The number of companies offering goods and
services via the WWW rises dramatically. Furthermore, companies use the WWW to federate their
mostly heterogeneous business application systems (Gaedke & Turowski, 1999).
Under these conditions innovative concepts, like virtual enterprises (Arnold, Faisst, Harding, & Sieber,
1995), supply chain management (Houlihan, 1992) or one-to-one-marketing (Filler & Schoder, 1999)
as well as trend-setting business strategies, like mass customisation (Pine II, 1993) are realizable. Mass
customisation, as the combination of the other mentioned concepts, aims at the efficient mass-
production of customer-individual products and services (Turowski, 1999a).
Competitive strategies, like mass customisation, imply the existence of state-of-the-art information
structures enabling and improving inter-company process integration. This holds especially for small
and medium enterprises (SME) participating in a cooperation (or virtual enterprise) following a mass
customisation strategy.
Guaranteeing economic and effective communication between enterprises therefore constitutes an
essential success factor when following one of the mentioned strategies. One way to improve
communication between cooperating enterprises is the utilization of techniques for electronic data
interchange (EDI). In this paper, we propose an approach how this can be done using standardized and
well-known protocols and techniques. Generally, the advantage of EDI lies in the organizational
information-based surplus values (Kuhlen, 1996, esp. p. 90), represented by, i.e., improved organization
structure, improved processes, or time and cost savings.
There is a rising demand on software that (partially) automates the business processes and that supports
exchange of information between potentially incompatible business application systems across the
borders of different enterprises. To allow a broad range of application scenarios, such software must
feature ease of installation and use, easy integration in an existing application environment, as well as a
reasonable price.
In this paper we present a framework architecture enabling inter-company integration based on
commonly accepted (and partially standardized) techniques and concepts including preparatory work
(Fellner & Turowski, 1999), (Rautenstrauch & Turowski, 1999), (Turowski, 1999a), (Fellner &
Hunger, 2000).

41



AJIS vol. 8 no. 1 September 2000

XML SGML
Mark-up languages:

Ontologies

XML/ServiceAP

Procurement
Protocols

Components

Run-time environment (WWW)

Figure 1: Framework architecture for inter-company integration

The use of a platform independent mark-up language in combination with commonly accepted
communication standards breaks down the borders caused by heterogeneous business application
systems. (We propose to use a combination of the Extensible Mark-up Language (XML) and
UN/EDIFACT (Electronic Data Interchange for Administration, Commerce and Transport).) In this
context, we introduce a (domain-specific) communication protocol for procurement processes, as well
as a domain-independent protocol for negotiating communication channels and security demand, e.g. to
ensure secure transactions. Software agents use these protocols to fulfil negotiation tasks as well as the
conversion of incompatible outputs of business application systems. The software agents are composed
from software components. This allows for cost-saving re-use and easy adaptation to company-specific
demands. A Java-based component application framework (Turowski, 1999b, pp. 5-7) for inter-
organisational communication and coordination works as agent integration platform and creates agents
to support queued (business) tasks. For each procurement task, e.g., the component application
framework generates a negotiation agent and a conversion agent. Both agents are removed after the
respective procurement task is completed.

ONTOLOGIES AND INTEGRATION WITH MARK-UP LANGUAGES

With UN/EDIFACT (UN, 1995) the United Nations established the best-known standard for inter-
organisational electronic data exchange. Due to fundamental drawbacks, the standard did not get the
expected recognition and implementation extent, (Zbornik, 1996, pp. 92-93), (Goldfarb & Prescod,
1998, pp. 106-110). Some major drawbacks of UN/EDIFACT are:
• Absence of semantic rules, e.g. for quantity or packaging units.
• Implicit assumption that every organization uses the same business processes and scenarios.
• Economic shortcomings, e.g. high implementation costs, especially for SME.
• Organizational shortcomings, e.g. slow adoption to changing business processes, complicate

adjustment of established business processes and rules.
The projects Open-EDL'object oriented-EDI (TMWG, 1998), Universal Data Element Framework
(UDEF) (Harvey et al., 1998), Basic Semantic Repository (BSR) and its successor BEACON (Steel,
1997) address the first-mentioned problems. Consequently, the focus of these projects lies in the
definition of common business scenarios and semantic rules.
In contrast, the XML/EDI Group (Peat & Webber, 1997) emphasizes on the possible surplus value
induced by the use of XML (Bray, Paoli, & Sperberg-McQueen, 1997). The XML/EDI Group, as well
as related efforts (for an overview cf. (Steffen, 2000)), aim at reducing implementation costs and
improving flexibility.

42



AJIS vol. 8 no. 1 September 2000

The mark-up language XML, a subset of the Standardized Generalized Mark-up Language (SGML)
(Cover, 2000), offers ways to define individual mark-up elements (tags) as well as document structures
that are kept available in so-called Document Type Definitions (DTD). A DTD allows the specification
of grammar for the syntax on which a data exchange is based. If the identifiers of such a DTD are taken
from a standardized format, or a term set upon which cooperating partners agreed on, messages based
on this DTD are meaningful for the receiver, because every mark-up element (XML tag) refers directly
to underlying semantics of the data.
Figure 2 shows an example message encoded in XML for an enquiry for a bicycle-saddle. The used
XML tags, i.e. MESSAGE, PRODUCT, PARTNR, as well as the allowed syntax could be defined in an
attached DTD. The enquiry itself contains information regarding the message itself (TYPE, ENQUIRY-
DATE) and the description of the demanded product (PART-NR, DESCRIPTION, MATERIAL).

<MESSAGE>
<TYPE>Enquiry</TYPE>
<ENQUIRY-DATE>20.02.2000</ENQUIRY-DATE>

<PRODUCT>
<PART-NR>230-239844-BEZ-531</PART-NR>
<DESCRIPTION>Bicycle saddle</DESCRIPTION
<MATERIAL>Leather</MATERIAL>

</PRODUCT>
</MESSAGE>

Figure 2: Enquiry encoded in XML

The basic idea behind XML-based EDI is to tag the data with (standardized) XML tags. This is utilized
in this paper in combination with a multi-agent system improving the inter-organisational
communication and subsequently the coordination of inter-organisational business processes.
We use segment names from the UN/EDIFACT-standard as field descriptors to ensure communication
between individual agents of the multi-agent system. The XML tags in figure 2, which were chosen to
be readable by humans, will therefore be replaced by UN/EDIFACT segment names.
Figure 4 shows how to replace the ENQUIRY-DATE from figure 2 to be compliant to the proposed
combination of XML and UN/EDIFACT. The now standardized message means "This enquiry is from
February 20, 2000.". One may say that this can also be seen in the message from figure 2. This holds, if
both partners agree on the term ENQUIRY-DATE, but normally one has to communicate with systems
or partners not known at the time of definition.
The names used for the XML tags correspond to the UN/EDIFACT definitions. Figure 3 shows an
excerpt from the corresponding document. The segment names are depicted in bold letters. High-level
segment names are directly used as XML tag-names (DTM). Dependent segment names (2005, 2380
and 2379) are preceded by the corresponding high-level segment name (DTM2005, DTM2380 and
DTM2379). Necessary attributes (2005) are presented as parameters of higher-level XML tags.
Optional attributes (2380 und 2379) are inserted as stand-alone, subordinate XML tags.

DTM DATE/TIME/PERIOD
To specify date, time, or period.

2005 Date/time/period qualifier, M, an..3

137 Document/message date/time, Date/time when a
document/message is issued.

2380 Date/time/period, C, an..35

2379 Date/time/period format qualifier, C, an..3

102 CCYYMMDD, Calendar date: C = Century; Y = Year;
M = Month; D = Day.

Figure 3: UN/EDIFACT segment names

As various projects are on their way to establish repositories for domain-specific XML tags based on
UN/EDIFACT, backward compatibility for the chosen naming conventions is guaranteed. The relation

43



AJIS vol. 8 no. 1 September 2000

between new terms and the UN/EDIFACT categories can be preserved (Harvey et al., 1998, esp. pp.
10-12). Beyond this, the vocabulary of the agents may be adapted using mapping repositories. For
example, an enterprise in the U.S. that uses the ANSI X12 standard may use a EDIFACT/X12-mapper
for its agents to be able to understand UN/EDIFACT based XML messages.

<DTM DTM2005="137">
<DTM2380>20000220</DTM2380>
<DTM2379>102</DTM2379>

</DTM>
Figure 4: XML-message based on UN/EDIFACT segment names

SOFTWARE AGENTS SUPPORTING INTER-COMPANY INTEGRATION

Based on the data flow in figure 5 we explain the role of software agents in the framework architecture
presented in section 1. The procurement process of a manufacturer will serve as explanatory example.
Subsequently we describe the implementation. To keep the presentation as readable as possible, we
restrict the example to one supplier.
Figure 5 shows the software agents and application systems on manufacturer's and supplier's side as
well as message exchange between them. In common, a (software) agent is defined as an autonomous
problem-solving unit that collaborates with other agents to achieve optimised results. For an in-depth
discussion of software agents we suggest (Bradshaw, 1997, pp. 4-12). It is assumed that both actors, the
manufacturer as well as the supplier, utilize an application system for production planning and control
(PPC), which, at least, provides an proprietary interface for exporting, respectively importing data in a
non-standardized format. In a mass customisation setting, e.g., the manufacturer is responsible to
procure the (customer-individual) parts necessary for producing the product configured by the
customer. Corresponding enquiries are generated by the PPC system.
The generated enquiry must be transferred automatically to possible suppliers using EDI. Therefore, the
output of the PPC system (the enquiry) is transferred to the conversion agent. The conversion agent
translates the (proprietary) output of the PPC system into an XML format agreed by all actors. Based on
the information regarding the receiver of the message (the supplier), the conversion agent also filters the
needed information to meet requirements of the addressee. This part is important to assure that critical
information, like participating suppliers, are kept secret. The conversion agent then forwards the
translated and filtered information to the addressee - the supplier's software agent. The transfer is
carried out using standardized Internet protocols (cf. section 4) enabling the use of existing Internet
connections, thereby reducing transfer costs.
On the supplier side, a listener (a system part of the framework component (cf. figure 7) that also
generates agents) waits for incoming requests, and transfers the request (the enquiry) to the
corresponding conversion agent. The conversion agent translates the enquiry to the format that is
necessary for the local PPC system. Here, only information relevant for the PPC system to generate an
offer is translated. This is possible, since each transmitted data item is marked with a standardized or
formerly agreed and therefore understandable XML tag categorizing the content (cf. Figure 2 and
Figure 4).
The supplier's PPC system (automatically) generates an offer based on the terms of delivery given hi
the enquiry. Then, it transfers the offer to the manufacturer using the same procedure and agents as
stated above. This constitutes the general communication between the manufacturer and the supplier in
a simple one-to-one-case where all terms of delivery are fixed in advance.
In real world processes, terms of delivery, like date of shipment, quantity, deadline, or price, are most
likely subject of negotiation. To include and automate these negotiation processes we propose to use
negotiation agents. Negotiation agents are especially useful, when more than one supplier is able to
deliver the required parts (cf. figure 5). Objects of negotiation are parts that have to be produced in
order to assemble a (customer-individual) product. Negotiation agents do not need to know much about
these objects. Identification and certain constraints, i.e. due dates or quantities, are sufficient. After
negotiation took place, a negotiation agent returns the terms of delivery on which one ore more
suppliers agree to deliver. The negotiation process may be carried out in several iterations with
alternating offers and counteroffers. A negotiation agent at manufacturer-side, as well as at supplier-
side may decide to generate a counteroffer, accept an offer, or abort the negotiation process. In case of
a successful negotiation, the results are passed over to the corresponding conversion agents, and
subsequently, to the respective PPC system. Last, the PPC system of the manufacturer generates an
order for the winning supplier.

44



AJIS vol. 8 no. 1 September 2000

The whole negotiation process is carried out utilizing existing conversion agents, thereby allowing
extensive re-use of definitions (i.e. XML to PPC mappings) and implementations.

Java runtime environment

WWW

Parts, dates

Supplier

Figure 5: Message exchange for procurement

COMMUNICATION AND SECURITY

Until now we supposed that cooperating enterprises and their software agents are at least technically
able to exchange the defined messages. So, those cooperating systems must communicate in a certain
way with each other. When looking at real world application systems, this may not hold. Especially
business application systems provide mainly proprietary interfaces that must be addressed explicitly.
Utilizing our approach of a multi-agent system with an explicit conversion agent may also help to solve
this problem.
A publicly known or mutually agreed communication channel must be used by the agent system to
establish the first-time communication. No critical business data is transmitted within this
communication session. It is used only to negotiate on a secure communication channel for further
transactions. We use the XML-based Service Advertising Protocol (XML/ServiceAP) (Fellner &
Hunger, 2000) for negotiation. The XML tags are based on the UN/EDEFACT QUOTE and REQUOTE
(REquest for QUOTE) messages. For instance, The enquiry for communication channels is transmitted
as XML/ServiceAP-REQUOTE and the corresponding answer is realized as XML/ServiceAP-QUOTE.
To determine all possible communication channels between two co-operating PPC systems the initiating
PPC system sends an empty XML/ServiceAP request (i.e. <XMLServiceAP
CLIENT=' BY'></XMLServiceAP>). The receiver of this message subsequently delivers the
information on all supported channels (see figure 6 for an example of this message). In this scenario the
software agents are considered as part of the process initiators, the PPC systems.
Figure 6 shows an example of a PPC system that supports communication via encrypted HTTP
(Hypertext Transfer Protocol) connections (i.e. the Secure Socket Layer Protocol (SSL) (Nusser, 1998,
pp. 124-127), the Java Cryptography Extension (JCE) (Sun Microsystems, 2000), and the (not
encrypted) Remote Method Invocation (RMI) (Sun Microsystems, 1998)). At this stage, the XML
messages contain information about possible connections only, e.g. the public key for RSA (popular
public key technique developed by Rivest, Shamir, and Adelman) encryption (Smith, 1997, pp. 203-
218). The connection itself is afterwards established using a suitable communication component for the
chosen protocol, which will be loaded at run-time (cf. Section 5). The described procedure helps to
protect critical data from improper use.
To add additional security to the submission, the channel may be randomly selected for each new
connection. In conjunction with a secure first-time connection this helps to prevent potential Internet
protocol attacks. The secure first-time connection is important in this context, because all relevant
information, like the port, or the used encryption is exchanged. As we now must know something about

45



AJIS vol. 8 no. 1 September 2000

the communicating actor's communication protocols, this restricts the utilization of our approach within
which we claim the possible communication with unknown suppliers (partners). Possible attacks on the
internal information systems may be prevented by allowing only checked (i.e. through certificates) or
known partners to connect directly. For further information on general security issues when
implementing EDI with Internet protocols we refer to (Stein, 1998) or (Stallings, 1995).

<XMLServiceAP CLIENT='BY'>

<PROTOCOL CAPTION='JCE'>
JCE:/7192.168.0.2:7002
?PUBLICKEY=b0011cb08d8689aaO...
+ALGO=RSA
+AMP=RSA/ECB/PKC S1Padding

</PROTOCOL>

<PROTOCOL CAPTION='TCP'>
TCP://192.168.0.2:7001

</PROTOCOL>

<PROTOCOL CAPTION='RMI'>
rmi://marcelpc:1100/rmiserverO

</PROTOCOL>

</XMLServiceAP>

Figure 6: Example of a PPC system offering different communication channels

Communicating PPC systems have to support communication via at least one open interface (i.e. the
Common Object Request Broker Architecture (CORBA) (OMG, 1998)). To enable a specific
connection, all participating systems must know the specific information for the chosen protocol. Table
1 shows the protocols actually supported by the prototype with the mandatory information.

Protocol / technology Mandatory information
TCP/IP

TCP/IP with CE (encryption)

Remote Method Invocation (RMI)

Object Request Broker (ORB)
without Name-Service
ORB without Name-Service

• Host-name resp. IP-Address
• Port, at which the server process runs
• Hostname resp. IP-Address
• Port, at which the server process runs
• Public key, encryption algorithm, -methodsund -padding
• URL Hostname resp. IP-Address
• Port and service provided
• Host-name resp. IP-Address and
• Service provided
• Reference number for the provided service (Object)

Table 1: Possible Protocols with necessary connection information

The software agents for inter-organisational coordination as well as the agents for negotiating the
communication protocols use the same information infrastructure. They are implemented as multi-agent
system. The multi-agent system is based on the contract net paradigm (Smith, 1980, p. 1104) and is
realized as a manager/contractor contract-net, cf. e.g. (Zelewski, 1993, p. 20). An agent represents each
actor involved in a contract net. The manager-agent addresses the contractor-agent directly. The
contractor-agent in turn answers with an offer that is collected by the manager-agent. The manager-
agent subsequently chooses the best among all offers handed in and informs each contractor-agent upon
the decision.
In our application the negotiation agent at the manufacturer-side acts as a manager-agent, the
negotiation agents at supplier-side act as contractor-agents. As the conversion agents execute the initial
distribution and receipt of enquiries and the final order placement, they are part of the
manager/contractor-net in a narrower sense. Together with the negotiation agents they fulfil the task of
so-called contract processors (Kim, 1996, p. 23).

46



AJIS vol. 8 no. 1 September 2000

With the use of XML the contract-net protocol (Albayrak & Bussmann, 1993, p. 61) is easier to set up
compared to the standard manager/contract net. It is still necessary that the sequence of messages must
be defined, but their content and its arrangement may be a superset of information mandatory for
negotiation. This holds, since the negotiation agent only extracts relevant information. Additionally, the
use of XML allows extensive, cross-organizational re-use of negotiation agents, as the negotiation
protocol may be exchanged or adapted easily. In particular, different negotiation protocols may be
served by a superset of transmitted information. On the negative side, this information overload means
higher network traffic, because each negotiating partner gets all the information independent from the
need of the implemented negotiation algorithm.
If the orders are placed and the business partners agreed on a integration of their business processes the
same multi-agent system may be used for the cross-organizational coordination of the production
process, i.e. in case of machine breakdown or failure. If a failure occurs in the production process of
one participating actor, a negotiation agent may be instantiated with the actual, changed, delivery terms.
The negotiation process stays the same as stated above, apart from the fact, that only the affected
supplier is contacted. Other suppliers are only contacted, if the negotiation with the actual supplier fails.
To coordinate these inter-organizational production processes the well-known procedures for in-house
coordination (Corsten & Gossinger, 1998) are of restricted use. Especially, because prerequisites of
these procedures, like the information allocation generally do not hold. Suppliers may, i.e., only provide
detailed information on their production plans (i.e. shift plans), when they are very closely connected to
the supplier. Furthermore, it may not hold that a solution convenient for the manufacturer causes a
positive contribution to the target function of the supplier. In a narrower sense, the multi-agent system
therefore does not carry out any planning procedures. Rather, it offers additional coordination means
for production plans of PPC systems of cooperating parties.
Another possibility to extend the described approach may be the utilization of alternative variants of the
contract-net approach. Following (Zelewski, 1997), the combination of networks for coordination
purposes and market mechanisms appears to be promising.

Implementation of the framework component

All different agents are based on the same generalized kind of software agent. With this, the same
information infrastructure can be re-used for different tasks. The underlying system architecture at the
manufacturer-side is depicted in figure 7.
The implemented prototype is written entirely in Java and comprises the individual software agents as
well as a rudimentary PPC system for demonstration purpose. The software agents are instantiated and
coordinated through an additional software component - the framework component. The initialisation of
the software agents is done as required by the business process. For instance, the framework component
is responsible for instantiating a negotiation agent for each incoming enquiry.
The different software agents are executed within a Java application and need a Java Runtime
Environment (JRE). As a Java virtual machine is available for all popular operating systems used in
business environments, this prerequisite does not restrict the potential implementation environments of
the proposed approach. Another advantage of Java is that the necessary functionality for inter-agent-
communication is already integrated in the Java application programming interface (API)
(Sun Microsystems, 1998).
In the following we describe some implementation aspects for each software agent of the presented
approach. The agents that convert the output of PPC systems are specific to a respective PPC system.
Supporting an additional PPC system implies the adaptation of existing conversion agent, or the
implementation of a new conversion agent. Besides this, the only prerequisite for PPC systems to take
part in the given scenario is an accessible interface supporting a known output and input format for
exchanging data. In a simple case, a conversion agent has to read in a text file created by a PPC system,
to extract necessary data, and to create a corresponding XML messages.
On the other hand, it is possible that the conversion agent gathers necessary information directly from
the PPC system using remote function calls. For instance, one conversion agent in the prototype uses
the Business Application Programming Interface (BAPI) to gather data directly out of the business
application system SAP R/3 (SAP, 1997). Generally, the needed communication protocols are
implemented as stand-alone components and will be loaded at run-time using the Java class-loader
facility. This allows the re-use of existing communication components in all agents as well as an easy
utilization of the XML/ServiceAP described in section 4.
Like the agents converting the PPC output into XML (PPC-to-XML), the agents responsible for
converting XML messages in a PPC system specific format (XML-to-PPC) are specific too. But the

47



AJIS vol. 8 no. 1 September 2000

effort for implementing this agents is relatively modest. This is, because the parsing of XML messages
can be implemented using freely available components, e.g. the XML-Parsers from IBM (XML4Java)
or Sun (XMLParser), and the mapping of the output can be done based on the implementation of the
PPC-to-XML conversion agent.

Agent
factory

Framework component

Agent

Figure 7: The manufacturer-side system architecture

Besides the conversion agents, negotiation agents are needed in our approach. The implemented
negotiation agents are made up of a knowledge base, a problem solver and a communication
component. This architectural pattern is used for all software agents in our approach. The conversion
agents described above, for example, consist of a knowledge base containing a simple one-to-one
mapping of XML tags to PPC system specific entries (i.e. positions in a comma-separated file), a
problem solver implementing the mapping algorithm, and the communication component containing a
XML parser and the protocols for the communication with the other agents as well as the PPC system
(i.e. the BAPI calls of SAP R/3). The main difference between the same components of different agents
(i.e. the problem solver) lies in the complexity of the supported task (i.e. mapping data vs. complex
preference functions).
The knowledge base of a negotiation agent contains all incoming offers for one enquiry, the enquiry
itself and results of a preceding negotiation within a multi-step negotiation process. The data itself is
encoded and stored in XML and can be extracted using the XML Query Language (XQL) (Robie, Lapp,
& Schach, 1998).
The problem solver (on manufacturer-side) is responsible for finding the best offer among all offers that
are handed in. When a new offer arrives, relevant information is passed over to the problem solver
utilizing the communication component. Subsequently, the problem solver determines the best offer
using a preference function. This process stops, when for each enquiry a recline or an offer has been
received. Additionally, criteria can be formulated on which the process stops immediately (i.e. time
consumption). Afterwards, the implemented preference function is used to choose the best available
offer for a given enquiry. The selected offer may also serve as the starting point for a new round of
negotiation. For instance, a new enquiry (based on the former on) is send to the supplier with the best
offer containing a new (maybe shorter) delivery time. It is important to mention that this procedure can
lead to a situation where a formerly positive offer may be withdrawn resulting in the need for a
complete new procurement process. After an offer is accepted for an enquiry, the negotiation process
stops and the other participants (negotiation agents, suppliers) are informed by the negotiation agent to
cancel their offers.
Through strict separation of the different components a negotiation agent may be re-used in similar
scenarios. For example, a company with different preference functions for products or group of
products will re-use the same negotiation agent by adapting or exchanging the problem solver. As the
negotiation agent is initiated with enterprise-specific information the same kind of negotiation agent
also may be used at the manufacturer-side as well as the supplier-side.

OUTLOOK AND CONCLUSIONS

Utilising an efficient and effective information infrastructure for inter-organizational integration is a
critical success factor for enterprises following state-of-the-art business strategies. The presented
framework architecture helps to improve necessary inter-organizational communication and

•
•

Cc

•

•

is a *

48



AJIS vol. 8 nov 1 September 2000

coordination. The framework architecture is based on commonly accepted, and, where available,
standardized techniques and concepts. The combination of XML with established communication
standards helps to bridge the gap between heterogeneous business application systems.
The use of open standards, the re-usability of essential software components, and their platform
independence allows for an easy adaptation of the framework architecture to enterprise-specific
circumstances. Especially small and medium enterprises may profit through lower initial costs.
Above the support of inter-organizational communication, the proposed approach allows a generic re-
use of multi-agent systems enabling extensive automation of procurement, coordination of production
across organizations, and negotiation on applicable communication protocols and security standards
using an identical information infrastructure.
The exploitation of the mentioned techniques may be carried out step by step. For example, after an
initial use of software agents to improve communication, a multi-agent system can be set up to automate
procurement. Last, a multi-agent system to coordinate the manufacturing may be set on top re-using the
existing components.

REFERENCES

Albayrak, S., & Bussmann, S. (1993). Kommunikation und Verhandlungen in Mehragenten-Systemen.
In H. J. Muller (Ed.), Verteilte Kiinstliche Intelligenz: Methoden und Anwendungen (pp. 55-
81). Mannheim.

Arnold, O., Faisst, W., Harding, M., & Sieber, P. (1995). Virtuelle Unternehmen als Unternehmenstyp
derZukunft? HMD, 32(185), 8-23.

Bradshaw, J. M. (1997). An Introduction to Software Agents. In J. M. Bradshaw (Ed.), Software
Agents (pp. 3-46). Menlo Park: AAAI Press.

Bray, T., Paoli, J., & Sperberg-McQueen, C. M. (1997). Extensible Markup Language (XML).
Available: http://www.w3.org/TR/PR-xml.html (1998, 06-12].

Corsten, H., & Gossinger, R. (1998). Produktionsplanung und -steuerung auf Grundlage von
Multiagentensystemen. In H. Corsten & R. Gossinger (Eds.), Dezentrale Produktionsplanungs-
und -steuerungs-Systeme: Eine Einfuhrung in zehn Lektionen (pp. 174-207). Stuttgart:
Kohlhammer.

Cover, R. (2000). SGML: General Introductions and Overviews. Oasis-Group. Available:
http://www.oasis-open.org/cover/general.html [2000, 02-30].

Fellner, K., & Turowski, K. (1999). Component Framework Supporting Inter-company Cooperation.
Paper presented at the Proceedings 1999 Third International Enterprise Distributed Object
Computing Conference (EDOC'99), Mannheim.

Fellner, K. J., & Bunger, M. (2000). Basistechnologie zum betriebsubergreifenden Austausch von
Umweltinformationen - Fachliche und technische Abstimmung. Paper presented at the BUIS 2000 -
Betriebliche Umweltinformationssysteme, Olten (CH).

Gaedke, M., & Turowski, K. (1999). Generic Web-Based Federation of Business Application Systems
for E-Commerce Applications. Paper presented at the Second International Workshop on
Engineering Federated Information Systems (EFIS'99), Kuhlungsborn.

Goldfarb, C. F., & Prescod, P. (1998). The XML Handbook. Upper Saddle River: Prentice-Hall.
Harvey, B., Hill, D., Schuldt, R., Bryan, M., Thayer, W., Raman, D., & Webber, D. (1998). Position

Statement on Global Repositories for XML. Available:
ftp://www.eccnet.com/pub/xmledi/repos710.zip [1998, 12-01].

Houlihan, J. B. (1992). International Supply Chain Management. In M. Christopher (Ed.), Logistics -
The Strategic Issues (pp. 140-159). London.

Kirn, S. (1996). Kooperativ - Intelligente Software. Information Management, / /(I) , 18-28.
Kuhlen, R. (1996). Informationsmarkt: Chancen und Risiken der Kommerzialisierung von

Wissen. (2 ed.). Konstanz: Universitatsverlag Konstanz.
Nusser, S. (1998). Sicherheitskonzepte im WWW. Berlin: Springer.
OMG (Ed.). (1998). The Common Object Request Broker: Architecture and Specification

(Revision 2.2): OMG.
Peat, B., & Webber, D. (1997). Introducing XML/EDI: "The E-business Framework". Available:

http://www.geocities.com/WallStreet/Floor/5815/start.htm [1998, 12-01].
Filler, F., & Schoder, D. (1999). Mass Customization und Electronic Commerce: Eine empirische

Einschatzung zur Umsetzung in deutschen Unternehmen. ZfB, 69(\0), 1111-1136.
Pine II, J. B. (1993). Mass Customization: The New Frontier in Business Competition. Boston:

Harvard Business School Press.

49



AJIS vol. 8 no. 1 September 2000

Rautenstrauch, C., & Turowski, K. (1999). A Virtual Enterprise Model for Mass Customizatioa Paper
presented at the Second World Manufacturing Congress (WMC'99), International Symposium
on Manufacturing Systems (ISMS'99), Durham.

Robie, J., Lapp, J., & Schach, D. (1998). XML Query Language (XQL). Available:
http://www.w3.org/TandS/Q17QL98/pp/xql.html [1999, 01-01].

SAP (Ed.). (1997). BAPIs - Einfuhrung und Uberblick. Walldorf: SAP.
Smith, R. E. (1997). Internet Cryptography. Reading, Massachusetts: Addison Wesley Longman.
Smith, R. G. (1980). The Contract Net Protocol: High Level Communication and Controll in a

Distributed Problem Solver. IEEE Transactions an Computers, 29, 1104-1113.
Stallings, W. (1995). Network and Internetwork Security. Upper Saddle River, New Jersey: Prentice

Hall.
Steel, K. (1997). The Beacon User's Guide: Open Standards for Business Systems. Available:

http://www.cs.mu.oz.au/research/icaris/beaugl.doc [1998, 12-01].
Steffen, T. (2000). Internet-Quellen zu XML/EDI. Wirtschaftsinformatik, 42(1), 78-86.
Stein, L. D. (1998). Web Security. Reading, Massachusetts: Addison Wesley Longman.
Sun Microsystems (Ed.). (1998). JDK 1.1.6 Documentation - Java Development Kit. Mountain

View: Sun Microsystems.
Sun Microsystems (Ed.). (2000). Java Cryptography Extension. Mountain View: Sun Microsystems.
TMWG. (1998). Reference Guide: "The Next Generation of UN/EDIFACT": An Open- EDI

Approach Using UML Models & OOT (Revision 12). Available:
http://www.harbinger.com/resource/klaus/tmwg/TM010Rl.PDF [1998, 12-01].

Turowski, K. (1999a). Agenten-gestiitzte Informationslogistik fur Mass Customization. In H. Kopfer &
C. Bierwirth (Eds.), Logistik Management - Intelligente I+K Technologien (pp. 199-209).
Berlin: Springer.

Turowski, K. (1999b). Ordnungsrahmen fur komponentenbasierte betriebliche Anwendungssysteme.
Paper presented at the Tagungsband des 1. Workshops Komponentenorientierte betriebliche
Anwendungssysteme (WKBA 1), Magdeburg.

UN. (1995). United Nations Directiories for Electronic Data Interchange for Administration,
Commerce and Transport. Available: http://www.unece.org/trade/untdid/Welcome.html [1998,
12-01].

Zbornik, S. (1996). Elektronische Markte, elektronische Hierarchien und elektronische
Netzwerke: Koordination des wirtschaftlichen Leistungsaustausches durch Mehrwertdienste
auf der Basis von EDI und offenen Kommunikationssystemen, diskutiert am Beispiel der
Elektronikindustrie. Konstanz: Universitatsverlag Konstanz.

Zelewski, S. (1993). Multi-Agenten-Systeme fur Prozefikoordinierung in komplexen
Produktionssystemen. Ein verteiltes Problemlosungskonzept auf der Basis von
Kontraktnetzen (Arbeitsberichte des Seminars fur Allgemeine Betriebswirtschaftslehre,
Industriebetriebslehre und Produktionswirtschafts, Arbeitsbericht 46). Koln: Universitat zu Koln.

Zelewski, S. (1997). Elektronische Markte zur Prozefikoordinierung in Produktionsnetzwerken.
Wirtschaftsinformatik, 39(3), 231-243.

50


