
AJIS vol. 8 no. 1 September 2000

INCORPORATING DATABASE DESIGN IN WARMER METHOD

Donald R. Chand
CIS Department
Bentley College

Waltham, MA 02452
dchand@bentley.edu

ABSTRACT

The Warnier method, a highly prescriptive program design approach for file-oriented solutions, has been
criticized for its lack of a database design component. This paper addresses this weakness by
incorporating a logical database design step in Warnier method. Specifically, the paper presents rules for
transforming the information in a Warnier diagram into a set of relations. With this extension the Wamier
method complements the entity-relationship approach for data analysis and logical database design.

INTRODUCTION

Warnier [(1974), (1978), (1981)] design method, first introduced as Logical Construction of Programs
(LCP) and later elaborated as Logical Construction of System (LCS), is a highly prescriptive approach
of program design for file-based, report-oriented solutions of data-processing problems. Because it is
highly prescriptive, different programmers produce almost identical programs for the same problem.
Wamier method is also self-documentary because the design is documented as the prescribed steps of
Warnier method are applied. These two attributes, self-documentation and highly prescriptive design
steps, aid in synchronizing the mental and physical efforts of a programming team.
Despite these desirable attributes and outcomes, the Warnier method was not widely used outside
France. The major criticism of Warnier method [McClure & Martin (1981)] is that it lacks a database
design component, which is central in the design of business applications. This paper addresses this
problem by incorporating in Wamier method an additional step of transforming the data in a Warnier
diagram into a set of normalized relations. The transformation rules and the incorporation of logical
database design considerations in Warnier method are illustrated in section 3. Section 2 reviews
Wamier method and section 4 discusses the broader implications this extension of Warnier method.

THE WARNIER METHOD

J. D. Warnier and his colleagues at Honeywell-Bull in Paris, France developed a systematic approach
for deriving structured programs from the logical data structures of the output reports. The premise of
Warnier approach is that it is necessary and feasible to derive the structure of the application program
from the hierarchical structure of the data. It provides a graphical tool, called the Wamier diagram, for
modelling and documenting the data and program as a hierarchy. The design method consists of
following five steps.

Stepl: Model the layout of the output report into a hierarchical data structure and document this
structure in a Wamier diagram.
Stepl: Using the structure of the output file developed in stepl, postulate a compatible input file. The
compatibility of the input file ensures that sequential processing of the records in the logical input file
yields the output records in the order prescribed on the report. Model the data structure of the
postulated compatible input file as a hierarchy in a Wamier diagram.
Step3: Using the hierarchical model of the compatible input file, conceptualised in step 2, derive a
hierarchical program structure which is again documented in a Wamier diagram.
Step4: Using the output-report of stepl as a reference, discover the operations needed to produce the
report.
StepS: Allocate at the appropriate locations in the program structure of step3 the operations discovered
in step4.

The tool used for documenting the outcome of these steps is the Warnier diagram. It is a hierarchy chart
laid on its side, where each level of hierarchy is composed of sequence, selection and repetition
structures, shown in figure (1).

17

AJIS vol. 8 no. 1 September 2000

WARNIER DIAGRAM

P
(1)

Q
(0,n)

A
(0,0

B
(0,1)

D
0,n)

X
(0,0

X
(0,0

Meaning

S is composed of one occurrence of P
and zero to many occurrences of Q

P is composed of either A or B but
not A and B. A occurs zero or one
time and B occurs zero or one time.

Q is composed of one occurrence of C
and one to many occurrences of D.

B is composed of zero or one occurrence
ofX and zero or one occurrence of not X

An Illustration of Warnier Method
Figure 1

A simple single-output problem is used to illustrate the five steps of Warnier method. The problem is to
devise a program that processes the salary records of the full-time and part-time faculty at a small
college to produce a department-wise summary report of faculty salaries. The layout of the prescribed
report is shown in figure (2).

DEPARTMENT SALARY REPORT

Dept. No. Full-time Total Part-time Total

I I

I I

. Ft-subtotal .

Total

• Pt-subtotal -

Figure(2)

Stepl: Model the output layout as a hierarchy and document the model in a Warnier diagram. The
logical data structure of the output report is shown in figure (3).

18

AJIS vol. 8 no. 1 September 2000

Report

Title
(1)
Heading (1)
(1)
Dept <
(0,n)

Subtotals-line

(1)
Total

(1)

Dept No

Full-time-Total

(1)
Part-time-Total

(0

Figure (3)

Step2: Postulate a logical input-file whose data structure is compatible to the logical data structure of
output report. A compatible input file and its data structure are shown in figures (4) and (5).

COMPATIBLE INPUT FILE

Dept2

Deptl

/

Dept-No Fac-Name Salary Codefpt] J

Figure (4)

19

AJIS vol. 8 no. 1 September 2000

INPUT FILE STRUCTURE

Input) Dept
File (n)

Fac x
(\ \ """̂

_

Dept-No
(1)

Fac-Name
(1)

Salary
(1)

Code[P,(0,i)]
(1)

Figure (5)

PROGRAM STRUCTURE

Begin Program<

(1)

Program ^ Process Dept
Structure ^ (n)

End Program*

Begin Dept

(1)

Process Fac

End Depfc
(1)

Begin Fac'

(1)

Pt-fac -
(0,1)

-C
©

Pt-fac
(0,1)

End Fac -

Figure (6)

StepS: Derive the program structure from the data structure of the logical input file. The program
structure is shown in figure (6).

20

AJ1S vol. 8 no. 1 September 2000

Step 4: Specify the operations needed to produce the prescribed output report.

Output Operations
Print Title

Print Heading
Print Dept-line
Print Subtotal-line
Print Total

Input Operations
Read first record

Read next record

Processing
Update Total

Update Ft-fac-total
Update Pt-fac-total
Update Ft-Subtotal
Update Pt-Subtotal

Initialisation
Initialise Total

Initialise Subtotals
Initialise Ft-fac-total
Initialise Pt-fac-total

Step 5: Allocate the operations to the program structure in figure (6).
program of figure (7).

This yields the structured

FACULTY SALARY SUMMARY PROGRAM

Program

Begin Program-

(1)

Print title; Print Heading
Initialize subtotals, Total
Readfirst record

Process Dept

(n)

Begin DepU

(1)

Initialize
Ft-fac-total,

_Pt-fac-total

Process Fac

End Program -

Print Dept-line
Update Ft-subtotal
Update Pt-subtotal

Begin Fac

(1)

Pt-fac \UpdatePt-
(0,1) yac-total

©
Update Ft-

fac-totalPt-fac

(0,1)

End Fac
— (1)

Read next
record

EndDept-
!— (1)

Print subtotal-line
Update total
Print total

Figure 7

The above illustration of Warnier method reveals both its strength and weakness. The strength is that it
systematizes the program composition process to a point where most designers using this method will
produce almost identical solutions. The criticisms are:
1. It is not readily applicable to applications with multiple input and output files.
2. It does not address situations where the logical input file structure does not match the structure of
the physical input file.
3. It provides no guidance for database design.
The first criticism is addressed by partitioning the application program into a set of one-output
programming problems. If n is the number of output reports of the application, the application design is
split into n one-output programming problems. Treating every output report as a programming problem
and applying Warnier method to it will yield n logical input files. These n logical input files form the

21

AJIS vol. 8 no. 1 September 2000

database for the application. In summary, this design approach of partitioning of the original
application produces a modular solution consisting of
• n one-output programs,
• a database of n logical input files, and
• programs that map the given physical inputs of the application to the n logical input files of the

database.

The second criticism is that the method does not address the case when the logical input file is not
compatible with the physical input file. This non-compatibility of the physical and logical files is
essentially the structure-clash problem, recognized and addressed in Jackson Structured Program (JSP)
methodology (1975). Jackson showed that when the logical file structure is not compatible with the
physical file structure, then the problem should not be handled in a single program. He recommends
that the problem should be partitioned into two sub-problems. One sub-problem is generating the
specified output from the logical file structure, and the second sub-problem is converting the physical
file structure to the logical file structure.
The first sub-problem is directly addressed by the Warmer approach illustrated above. This second sub-
problem can be addressed by breaking the physical data structure into its most elementary parts and
then rebuilding the logical structure. Jackson suggested that the same result can be achieved more
efficiently by breaking the physical file structure into the largest common data structure that is common
to both the physical and logical data structures. ,
The third criticism of lacking guidelines for database design is a short-coming of the original Warmer
method, and it is addressed next. It turns out that the approach of partitioning the application design
into one-output programs provides a basis for addressing this third criticism. A common business
application is used in Section 3 to illustrate the integration of a database design component in Warmer
method.

INCORPORATION OF A DATABASE DESIGN STEP IN WARNIER METHOD

A database design step is added to the Warmer method after the data structure of the compatible input
file is modelled in a Warnier diagram. In the database design step, the information in the Warmer
diagram is transformed into a set of normalized relations. Thus, the initial two steps of Warnier method
are revised as follows.

Stepl: Sketch the layout of each output report and analyse each report layout to design its compatible
input file. Model the data structure of each compatible input file in a Warnier diagram.

Step2: Apply the entity identification, key selection and key synchronization rules to transform the
compatible input file information into a set of normalized relations. These rules are introduced and
illustrated below.

The inputs to an expense-accounting system [Chand & Yadav (1980)] are checks written to pay for
expenses. Each check contains following information:

check number
date of check
payee name
amount of check
expense note (this occurs 1-20 times per check and contains expense description, expense amount,
and accounting code consisting of product line number, cost center number, and expense account
number)

22

vol. 8 no. 1 September 2000

EXPENSE ACCOUNT REPORT

EA# EA-Desc Prev-Ytd-
EA-Exp

I I
I I
I I

Curr-mth-
EA-Exp

I I
I I
I I

Updtd-Ytd-
EA-Exp

l I
I l
l l

, I I I 1 I I I

Prev-Ytd-EA-total Curr-Mth-EA-total , Updt-Ytd-EA-total ,

Figure (8)

COST CENTER EXPENSE ACCOUNT REPORT

CC# CC-Desc EA# EA-Desc Prev-Ytd- Curr-mth- Updtd-Ytd-
CC-EA-Exp CC-EA-Exp CC-EA-Exp

J L

I I

J L

J L

J L

Prev-Ytd-CC-total , Curr-Mth-CC-total , , Updt-Ytd-CC-total

Figure (9)

23

AJIS vol. 8 no. 1 September 2000

PRODUCT LINE EXPENSE ACCOUNT REPORT

PL# PL-Desc CC# CC-Desc EA# EA-Desc Prev-Ytd-PL Curr-mth-PL Updtd-Ytd-PL
-CC-EA-Exp -CC-EA-Exp -CC-EA-Exp

I I J L
L

J L
J I

J L J I

J L
J I

J L
J I

Prev-Ytd-PL-total Curr-Mth-PL-total j Updt-Ytd-PL-total

Figure (10)

The data structure of the logical files compatible to the three reports in figures (8), (9), and (10) are
respectively presented in figures (11), (12), and (13).

EA-INPUT FILE STRUCTURE

EXP-ACC
Input File

EA#

(1)

EA-Desc

(1)

Prev-Ytd-EA-Exp

(1)

Curr-Mth-EA-Exp

(1)

Figure (11)

24

AJ1S vol. 8 no. 1 September 2000

CC-INPUT FILE STRUCTURE

COST-CENTER
Input File

CC#

CC-Desc

(1)

CC-Exp-Act/1

EA#

(1)

EA-Desc

(1)

Prev-Ytd-CC-EA-Exp
(1)

Curr-Mth-CC-EA-Exp

(1)

Figure (12)

PL-INPUT FILE STRUCTURE

PL#
(I)

PL-Desc

(I)

CC#

(1)

CC-Desc

(1)

PROD-LINE^
Input File

Cost-Center < PL-CC-Exp-Act<:

EA#

(I)

EA-Desc

(1)

Prev-Ytd-PL-CC-EA-Exp
(I)

Curr-Mth-PL-CC-EA-Exp

- CD

Figure (13)

Database Design Step

This section presents and illustrates rules for transforming the information in the compatible input-file
structures into a set of normalized relations. The rules aid in identifying database entities, specifying
primary keys, and synchronizing entity keys across the file structure hierarchy.

Entity Identification Rule:

Scan the Warnier diagram sequentially from the right side. Collect all the data items in the right most
hierarchy into an entity. Remove the rightmost hierarchy and the corresponding data item in its
adjacent hierarchy from the Warnier diagram. Repeat this process until there are no more hierarchies in
the Warnier diagram.

25

AJIS vol. 8 no. 1 September 2000

The application of the entity identification rule to the file structure in figure (11) yields one entity,
which is shown below with its attributes.

Exp-Acc (EA#, EA-Desc, Prev-Ytd-EA-Exp, Curr-Mth-EA-Exp)

The entity identification rule, applied twice to the file structure in figure (12), yields the following two
entities.

CC-Exp-Acc(EA#, EA-Desc, Prev-Ytd-CC-EA-Exp, Curr-Mth-CC-EA-Exp)
Cost-Center(CC#, CC-Desc)

The entity identification rule is applied three times to the file structure in figure (13) resulting in the
following three entities.

PL-CC-Exp-Acc(EA#, EA-Desc, Prev-Ytd-PL-CC-EA-Exp, Curr-Mth-PL-CC-EA-Exp)
Cost-Center(CC#, CC-Desc)
Prod-Line(PL#, PL-Desc)

Key Selection Rule:
Identify the candidate keys in each entity definition and select as primary key among the
candidate keys the one that is most meaningful to the user.

The application of the key-selection rule updates the above entity definitions as follows.
Figure (11) Entity:

Exp-Acc (EA#. EA-Desc, Prev-Ytd-EA-Exp, Curr-Mth-EA-Exp)
Figure (12) Entities.

CC-Exp-Acc(EA#. EA-Desc, Prev-Ytd-CC-EA-Exp, Curr-Mth-CC-EA-Exp)
Cost-Center(CC#. CC-Desc)

Figure (13) Entities.
PL-CC-Exp-Acc(EA#. EA-Desc, Prev-Ytd-PL-CC-EA-Exp, Curr-Mth-PL-CC-EA-Exp)
Cost-Center(CC#. CC-Desc)
Prod-Lined^ PL-Desc)

Key Synchronization Rule:
Scan the hierarchy of the Warmer diagram sequentially from the left. Define the key of the outer most
hierarchy as the nest key. Add the nest key to the entity corresponding to the next adjacent hierarchy.
If there is a many-to-many relationship between these two entities, form a composite key by adjoining
the nest key to the key of the adjacent hierarchy. Otherwise, the nest key is added as a foreign key to
the entity corresponding to the inner hierarchy. Remove the outermost hierarchy, and repeat the process
until there is no hierarchy [Batra (1997)].

The key-synchronization rule does not apply to the hierarchy in Figure (11). Therefore, there is no
change in the following relation.

Exp-Acc (EA#. EA-Desc, Prev-Ytd-EA-Exp, Curr-Mth-EA-Exp)

The key-synchronization rule is applied once to the hierarchy in Figure (12). Since there is many-to-
many relationship between Cost-Center and CC-Exp-Acc entities, the key-synchronization rule yields
the following updated relations.

Cost-Center(CC#. CC-Desc)
CC-Exp-Acc(CC#. EA#. EA-Desc, Prev-Ytd-CC-EA-Exp, Curr-Mth-CC-EA-Exp)

The key-synchronization rule is applied twice to the hierarchy in Figure (13). Since there is many-to-
many relationship between Prod-Line and Cost-Center entities, the nest key, PL#, is concatenated with
the Cost-Center key, CC#. The product line hierarchy is removed. The nest key is now the composite
key, PL# CC#. Once again there is a many-to-many relationship between Cost-Center and PL-CC-Exp-
Acc entities, the nest key is concatenated to the PL-CC-Exp-Acc entity.key. The application of the
synchronization rule yields the following updated relations.

Prod-Line(PL#. PL-Desc)
Cost-Center(PL#. CC#. CC-Desc)
PL-CC-Exp-Acc(PL#. CC#. EA#. EA-Desc, Prev-Ytd-PL-CC-EA-Exp, Curr-Mth-PL-CC-EA-

Exp)

26

AJIS vol. 8 no. 1 September 2000

Eliminating the traditional partial and transitive dependencies, and renaming one of the entities, results
in the following set of third normal form relations.

Exp-Acc (EA#. EA-Desc, Prev-Ytd-EA-Exp, Curr-Mth-EA-Exp)
Cost-Center(CC#. CC-Desc)
CC-Exp-Acc(CC#. EA#. Prev-Ytd-CC-EA-Exp, Curr-Mth-CC-EA-Exp)
Prod-Line(PL#J PL-Desc)
Cost-CentertPLtf, CCJ)
PL-CC-Exp-Acc(PL£ CC#. EA#. Prev-Ytd-PL-CC-EA-Exp, Curr-Mth-PL-CC-EA-Exp)

This completes the illustration of a database design step in Warnier method.

IMPLICATIONS

The incorporation of a database design step frees Warnier method from the stigma and perception that
it is not suitable for designing solutions of large business applications and systems. As illustrated
above, a large business application can be partitioned into a set of one-output programs and the schema
for these one-output programs can be merged to define the database.
The extended Warnier approach presented here can serve as an effective bottom-up approach of
developing a normalized database for an application. In addition, it can complement the traditional
entity-relationship (E-R) approach. The entity-relationship approach is a popular and very successful
approach for building data models during the analysis phase of the systems development life cycle. It
has been found that the entity-relationship approach forces the analyst to acquire a deeper
understanding of the business entities and business rules and, consequently, uncover requirement errors
earlier in the system development life cycle. However, the conversion of the entity-relationship data
model into a normalized relational schema does not take into account the processing requirements.
Since the Warnier approach forces the designer to explicitly address each user output requirement in the
development of a logical database, it can be used as a means of validating whether the entity-
relationship model has missed any attributes or relationships needed by the user.
There are other benefits of this approach. First, it provides a problem structuring approach where the
problem is partitioned into program modules and each module produces a specific user output. Second,
since the logic and code of the program is derived from explicitly exploiting the data structures of the
outputs using a standard self-documenting process, the approach synchronizes the mental and physical
efforts of a team of software developers. In our judgement, this approach is an excellent approach for
teaching and learning programming and bottom-up data base design.
Since the Warnier method was invented in the 1970s, it is important to ask whether it has any role to
play in the modern computing environment of electronic commerce, distributed computing and object
orientation. We have reflected on this issue and we present our views as follows.
First, it is important to keep in mind that there are three components of software design, namely process
design, data design, and interface design. The advancements in the development and execution
technologies and the changes in application domains often thrusts one or the other component of
software design as being more prominent in terms of an area of study leading to the development of
better theories and methods of practice. For example, today's focus on electronic commerce
applications has made the interface design component more prominent. But this does not mean that
process and data design have faded or become less important. In our opinion, process, data and
interface designs are the three legs of the software stool and, all contributions to further the theory or
practice in any one of these three areas are equally important. The extended Warnier approach
presented here furthers the understanding and practice of the data design component of software
development.
Second, object-orientation is the dominant approach for developing systems software and commercial
software products and it is also diffusing, although slowly, in the business applications arena. At
present, in the information systems world the primary use of object technology is in the area of interface
design, whereas the back-end technology is still process-based and is dominated by relational database
technology. Clearly, the extended Warnier approach presented here is directly applicable to the current
back-end technology. The question is what role Warnier approach will play in the object world. At this
time we can only say that just as this paper extends the original Warnier approach to address the
database design problem, we are hopeful that future enhancements of Warnier approach with
accommodate object solutions.

27

AJIS vol. 8 no. 1 September 2000

REFERENCES

Batra, D. (1997), "A Method for Easing Normalization of User Views," J. Mgt. Info. Sys. Vol.14,
No. 1, pp. 215-233.

Chand, D. R. & Yadav, S.B.(1980) , "Logical Construction of Software," Comm. of ACM, Vol. 23,
No. 10, pp. 546-555.

Jackson, M. A.(1975), Principles of Program Design, Academic Press, London,
McClure, Carma & Martin, James (1995), Structured Techniques, Prentice Hall
Warnier, J. D.(1974), Logical Construction of Programs, Van Nostrand Reinhold, N.Y.
Warmer, J. D.(1978), Program Modification, Martinus Nijhoff
Warnier, J. D.(1981), Logical Construction of Systems, Van Nostrand Reinhold, N.Y.

28

