
AJIS vol 9 no. 1 September 2001

SCALABLE FAULT-TOLERANT LOCATION MANAGEMENT SCHEME
FOR MOBILE IP

JinHo Ahn, Sung-Gi Min and ChongSun Hwang
Dept. of Computer Science and Engineering, Korea University

5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea

ABSTRACT

As the number of mobile nodes registering with a network rapidly increases in Mobile IP, multiple mobility (home or
foreign) agents can be allocated to a network in order to improve performance and availability. Previous fault-tolerant
schemes (denoted by PRT schemes) to mask failures of the mobility agents use passive replication techniques.
However, they result in high failure-free latency during registration process if the number of mobility agents in the
same network increases, and force each mobility agent to manage bindings of all the mobile nodes registering with its
network. In this paper, we present a new fault-tolerant scheme (denoted by CML scheme) using checkpointing and
message logging techniques. The CML scheme achieves low failure-free latency even if the number of mobility agents
in a network increases, and improves scalability to a large number of mobile nodes registering with each network
compared with the PRT schemes. Additionally, the CML scheme allows each failed mobility agent to recover bindings
of the mobile nodes registering with the mobility agent when it is repaired even if all the other mobility agents in the
same network concurrently fail.

INTRODUCTION

A Mobile IP based system extends an IP based distributed system to support mobility of nodes by providing
Mobile Nodes (MNs) with continuous network connections while changing their locations [Ghosh (1998),
Johnson (1994), Perkins (1996b), Solomon (1998)]. In other words, it transparently provides mobility for nodes
while backward compatible with the current IP routing scheme by using two kinds of Mobility Agents (MAs),
home agent and foreign agent. In the system, each home agent must maintain information about the current care-
of address of each MN registering with the home agent and forward packets, destined to the MN, to the care-of
address for the MN. Each foreign agent should offer a care-of address for each visiting MN and forward packets
to the MN. If each MN uses a collocated care-of address, it must have the same function of a foreign agent.
As mobile computing is increasingly gaining popularity, MAs should serve a large number of MNs. Thus, they
may be single points of failure and potential performance bottlenecks. Especially, if a home agent fails, all the
MNs served by it can't communicate with other nodes. The problems can be solved by allowing multiple MAs to
be assigned to the same network. Previous fault-tolerant schemes (denoted by PRT schemes) [Ghosh (1998)] to
mask failures of MAs in Mobile IP use passive replication techniques. In the PRT schemes, each MA must
always maintain bindings of all MNs registering with its network. Moreover, if each MA receives a registration
request message from a MN in these schemes, it should process the message, forward the message to its peers
and then wait until it has received all the acknowledgement messages from them. Thus, the PRT schemes result
in high failure-free overhead during registration process if the number of MAs in the same network increases and
are not scalable to the number of MNs registering with each network. Log-based rollback recovery schemes,
which use checkpointing and message logging techniques, are inexpensive during failure-free operation
compared with the schemes using passive replication techniques [Alvisi (1993)]. In this paper, we present a new
fault-tolerant scheme (denoted by CML scheme) for MAs using checkpointing and message logging techniques.
The CML scheme reduces the failure-free latency even if the number of MAs in a network increases, and
improves scalability to a large number of MNs registering with each network compared with the PRT schemes
and provides fast recovery for taking over failed MAs. Additionally, the CML scheme allows each failed MA to
recover bindings of the MNs registering with the MA when it is repaired even if all the MAs in the same
network fail.
The rest of the paper is organized as follows. In section 2, we describe the overview of Mobile IP based Systems
and problems of the previous fault-tolerant schemes respectively. In section 3, we present our fault-tolerant
scheme, explain the description of the scheme in details and prove its correctness. Section 4 compares our
scheme with others and then, in section 5, we conclude this paper.

PRELIMINARIES

System Model

In Mobile IP, each MN must have a unique home address and a home agent on its home network. If a MN moves
from its home network to a foreign network, the current location of the MN is identified as a care-of address
(COA), and the mapping between the home address and the COA of the MN is called a binding [Solomon
(1998)]. Whenever the MN enters into a new foreign network, it must register by sending a registration request
message to a foreign agent (FA) in the new network. The request message includes the home address of the MN

AJIS vol 9 no. 1 September 2001

and the IP address of its home agent (HA). Then, the FA sends a registration request message to the HA. The
message contains the home address and COA of the MM, the IP address of the HA, a registration lifetime and an
identifier which uniquely identifies the registration request message. When the HA receives the request message,
it updates the binding of the MN, and then sends a registration reply message back to the FA. When the FA
receives the reply message, it updates its own table and forwards the message to the MN. A MN in a foreign
network can obtain a COA in one of two ways as follows. First, if there is a FA in the foreign network, the MN
will attempt to obtain a care-of address from the agent by using an agent discovery protocol [Johnson (1994),
Solomon (1998)]. In this case, the IP address of the FA is used as the COA of the node. Second, if there is no FA
in the network, the MN can obtain a collocated COA in the network using a DHCP-like protocol [Droms
(1993)]. If a correspondent node (CN), which may be a MN or a FN, sends a packet to a MN, this packet is
routed to the home network of the MN when the MN is in the network. When the MN is not in its home network,
its HA intercepts, encapsulates and then tunnels the packet to the FA in the foreign network where the MN is
currently located [Perkins (1996a), Perkins (1996c), Simpson (1995)]. Then, the FA de-tunnels the packet to the
MN. If the MN currently uses a collocated COA, de-capsulation of the packet must be carried out by the MN
rather than the FA. However, this triangle routing scheme may be inefficient because the messages, destined to
each MN, should be first routed to its HA. In order to solve the problem, the route optimization scheme [Perkins
(1996d)] was proposed in which the messages are routed directly to the COA of the MN. In this scheme, each
CN maintains a binding cache containing the CO As of the communicating MNs. The drawback of the scheme is
that it forces the CN to be aware of mobility of the MNs. Each FA or HA is connected by a fixed wired network,
which provides reliable FIFO delivery of messages. Each MN can directly communicate with its local FA or HA
via a reliable FIFO wireless network only if the MN is in the network covered by the mobility agent We assume
that nodes, including FAs, HAs, other FNs and MNs, fail, in which case they lose the contents of their volatile
memories and stop their executions, according to the fail stop model [Schlichting (1985)]. Multiple FAs or HAs
can be allocated to each network in order to serve a large number of MNs on the network like in Figure 1
[Binkley (1997)]. Separate nodes or a single node on a network may have the function of HA and FA. Similarly,
the existing IP routers or separate nodes on a network may implement either function or both.
We assume that the communication network is immune to partitioning and there is a stable storage that every
MA can always access that persists beyond processor failures, thereby supporting recovery from failure of an
arbitrary number of processors [Elnozahy (1992)]. The execution of each MA is piecewise deterministic
[Elnozahy (1999), Strom (1985)]: At any point during the execution, a state interval of the MA is determined by
a non-deterministic event such as delivering a registration request message. The &-th state interval of a MA/?,
denoted by sip

k (k > 0), is started by the delivery event of the)t-th registration request message m ofp, denoted by
devp

k(m). Letp's state, sp' ={sip°, sip' sip}, represent the sequence of all state intervals up to sip'. Therefore,
givenp's initial state, sip, and the non-deterministic events, [devp, devp

2, ..., devp], its corresponding state sp is
uniquely determined. All information needed for replaying the delivery event of a message during recovery is
called determinant of the event.

Definition 1. sip is stable if a determinant ofdevp'(m) is saved on stable storage.

Definition 2. sip is volatile if it is not stable.

Definition 3. spis recoverable if the system has sufficient information for replaying its failure-free execution up
to sip in any future failures.

Lemma 1. sip' is stable ifsp is recoverable.
Proof. We prove this lemma by contradiction. Assume that sip is unstable, i.e., volatile if sp is recoverable, p can
replay devp\m) in any failure by Definition 3. To do so, it has to obtain the determinant of devp'(m) during
recovery. The stable storage is the only one that survives in an arbitrary number of failures by the fail-stop model
and the property of the storage. Thus, the determinant should have been saved on stable storage in a previous
failure free execution. Therefore, sip is stable by Definition 1. Hence, this contradicts the hypothesis.

AJIS vol 9 no. 1 September 2001

•. •*

..

cell

wireless link

Figure 1 Mobile IP Infrastructure

Lemma 2. sp' is recoverable if V/t (0 £ k < i): sip* is stable.
Proof. The proof proceeds by induction on /', the index of the state interval of each mobility agent p.
[Base case]
If sip° is stable in this case, sp° is trivially recoverable because sip° is the initial state interval of p and
deterministic.
[Induction hypothesis]
We assume that the theorem is true in case that i = n.
[Induction step]
If sp" is recoverable and there is the determinant of devp

n+l(m) on stable storage, the theorem is true forp in case
that i = n +1. In this step, sp" is recoverable by induction hypothesis because V& (0 < k <, i): (si,* is stable), and
sip

n+l is stable. Therefore, sp"*1 is recoverable.
By-the induction, sp is recoverable if V* (0 £ k ̂ /): sip

k is stable.

Problems of PRT Schemes

PRT Schemes [Ghosh (1998)] to mask failures of multiple MAs in a network use passive replication techniques.
In the PRT schemes, each MA in the network must always maintain bindings of all MNs registering with the
network. Moreover, if each MA receives a registration request message from a MN in the schemes, it should
process the message and forward the message to its peers and wait until it has received all the acknowledgement
messages from them. Thus, the PRT schemes result in high failure-free latency during registration process as the
number of MAs allocated to a network increases, and are not scalable to the number of MNs registering with
each network. Additionally, in the schemes, each failed MA cannot recover bindings of the MNs registering with
the MA when it is repaired if all the MAs in the same network fail.

AJIS vol 9 no. 1 September 2001

To illustrate the stated problems of the schemes, consider the examples shown in Figure 2 and 5. In Figure 2,
there are three MAs, MA], MA2 and MA} in network A. If MA, receives a registration request message from a
MN, named MA,, it updates MA,'s binding using the message and then forwards the message to MA2 and MA3,
respectively. After MA2 and MA3 have received the message from MA,, they update MAj's binding using the
message, and then send each an acknowledgement message to MA,. After MA, has received the
acknowledgement messages from MA2 and MA3, it sends a registration reply message to MA,. In this figure, we
can see that the total number of messages generated per registration request message and the number of
messages on the critical path for registration operation in the previous schemes increases as the number of MAs
allocated to a network increases. Thus, they result in high latency during registration process.
Additionally, in the PRT schemes, each MA in a network should still maintain bindings of all the MAs
registering with the network. For examples, in Figure 3, 6000 MNs register with network A, and MA, serves
2000 among them, MA2 serves 1000 and MA3 serves 3000. However, MA,, MA2 and MA} should respectively
maintain the bindings of 6000 MNs registering with network A. Therefore, we can see that the traditional
schemes are not scalable to a large number of MNs registering with the same network even if there are multiple
MAs in the network. Moreover, in the schemes, if MA,, MA2 and MA3 all concurrently fail in Figure 3, each of
the three MAs cannot recover bindings of the MNs registering with it from any other MA when it is repaired.

Network A

Registration Request Message
Update binding of a MN

Acknowledgement Message

Figure 2 In case of performing a registration process in the PRT schemes

Network A

2000 1000 3000

The number of MNs' bindings managed by each MA

The number of MNs served with each MA

Figure 3 In case of scalability problems of the PRT schemes

AJIS vol 9 no. 1 September 2001

THE CML SCHEME

Basic Idea

To solve the stated problems of the PRT schemes in this paper, we present the CML scheme using checkpointing
and receiver-based pessimistic message logging techniques. For example, suppose HA] is the home agent ofMNj
and MN] currently obtains a care-of address from FA] on the foreign network as in figure 1. In this case, MTV/
must send a registration request message to HA] through FA,. Receiving the message, HA/ authenticates the
message. If the message is invalid, HAt sends MTV/ a registration reply message for rejection. Otherwise, HAi
concurrently performs the following two executions: logging the message into the stable storage and updating
the binding of MTV/ using the message. After having completed both executions, it sends A/TV; a registration reply
message for acceptance. This step ensures that even if HA] fails, one among other home agents on the network,
named HAh can recover the bindings of all the mobile nodes registering with HAt by restoring the logged
registration request messages from the stable storage and replaying them. Moreover, each home agent should
periodically save the bindings of all the mobile nodes registering with it on the stable storage and remove all the
logged messages beyond the previous checkpoint from the stable storage. Therefore, the CML scheme can
reduce the failure-free overhead compared with the PRT scheme presented in [Ghosh (1998)] because in the
CML scheme, each MA need not forward each registration request message to the other MAs and wait for each
an acknowledgement message from them. Furthermore, the CML scheme improves the scalability to a large
number of mobile nodes registering with each network compared with the PRT scheme because each home or
foreign agent need to maintain the bindings of only the mobile nodes registering with it.
In Mobile IP, each MA broadcasts an agent advertisement message via its wired or wireless network interface
every few seconds. Therefore, in the CML scheme, each MA detects if other MAs fail or not by monitoring their
agent advertisement messages. For example, if HAt in network B fails in figure 1, live HAs on the network can
detect its failure because they may receive no agent advertisement message from it. In the CML scheme, one
among the live MAs, namely HAj, which currently has the minimum number of registering mobile nodes, takes
over HAi. This step ensures that the CML scheme is scalable even during takeover compared with the PRT
schemes using passive replication techniques. HAj restores the bindings of all the mobile nodes registering with
HAi and obtains the logged messages for HA, from the stable storage. Then, it can recover the latest bindings of
all the MNs, which HAj has managed before it failed, by replaying the messages in receive sequence order. After
that, HAj performs a gratuitous address resolution protocol mapping HA is IP address to HAj's hardware address
to take over HA, [Plummer (1982)]. Then, HAj serves the MNs on behalf of HA,. Therefore, the CML scheme
provides the MNs with transparency of their MA's failure and replacement.
If a failed MA, named MAh is repaired in the CML scheme, it should monitor any agent advertisement message,
including its IP address, for a few seconds and perform a gratuitous address resolution protocol mapping its IP
address to its hardware address. If no other MA has taken over the role of the repaired agent, it should restore the
bindings of all the MNs managed before it failed and obtain its logged messages from the stable storage. Then, it
can recover the latest bindings of the MNs served in its pre-failure state by replaying the messages in receipt
sequence order. If it receives an agent advertisement message including its IP address from a live MA, named
MAk, it should require from MAk the bindings of the MNs served in its pre-failure state. If MAk fails during its
recovery, MA, can recover the latest bindings of the MNs using its checkpoint and logged messages on the stable
storage. Therefore, the CML scheme allows each failed MA to recover bindings of the MNs registering with the
MA when it is repaired even if all the MAs in the same network fail.

The Description

In this part, we will first describe our fault-tolerant scheme for home agents and then for foreign agents.

The Description for Home Agents

(1) Data Structures

Every home agent in Mobile IP has the following data structures for our scheme.

• HATablef. It is a vector for saving the timer of each home agent clustered hi a network. The timer of each home
agent is used so that HAi detects whether the agent is alive or failed currently. The timer of each home agent is
initialized to INITJTIME.
• RSN,: It is the receive sequence number of the latest registration request message which was delivered to HA,.
It is initialized to 0.
• Locjinfof. It is a vector for saving the bindings of mobile nodes registering with HAt.

AJIS vol 9 no. 1 September 2001

• Logjnfof. It is a set for saving every permitted registration request message delivered to HAj beyond the latest
checkpoint and RSN, of the message. Its element is of the form e = (msg, rsri). It is initialized to 0.

(2) Checkpointing and Message Logging Algorithm

procedure Register_MN(m, mn)
if(mn's home agent is HA!) then {

authenticate m ;
if(m is permitted) then {

parallel
psections

section

save (m, RSty) into Log_Infot at the stable storage ;
section
update mn 's binding in Loc_Infai using m ;
psections end
parallel end

send a registration reply message for acceptance to mn ;
}else

send a registration reply message for rejection to mn ;
}

procedure Checkpointing!}
save Loc_InfOj and RSNt into the stable storage ;
remove all e e Log_Info, at the stable storage ;

Figure 4 Procedures for HAj's logging each registration request message during registration process and
periodically saving bindings of MNs registering with HAt into stable storage

Figure 4 shows a formal description of our checkpointing and receiver-based pessimistic message logging
algorithm. Whenever a home agent HAj receives a registration request message m from a mobile node mn, it calls
procedure Register_MN(), which first authenticates m. If m is valid, HAi performs two executions in parallel:
incrementing RSNt by one and saving (m, RSNi) into Log_Jnfoi at the stable storage, and updating mn's binding in

.Loc_Infai using m. After having completed both executions, it sends mn a registration reply message for
acceptance. Otherwise, HAi sends a registration reply message for rejection to mn.
If HAj attempts to take its local checkpoint, it calls procedure Checkpointing(). In this procedure, HA, saves
Loc_InfOi and its current receive sequence number into the stable storage. Then, it removes all the messages
logged in Log_Jnfot beyond the previous checkpoint.

(3) Failure Detection Algorithm

procedure Recv_AAM(/n,/)
HATableilf] +-INIT_TIME;
procedure FaiIure_Detect()
for all k e other home agents in the same network of/£4, st (HATablet[k] > 0)

HATable,[k] «- HATable,[k] -1 ;
for all k e other home agents in the same network of HAi st (HATable^k] = 0)
if(Election_For_Takeover(A) = 0 then take over HAk;

Figure 5 Procedures for HA,'s detecting failures of other home agents in the same network using agent
advertisement messages

The home agent failure detection algorithm using agent advertisement messages is given in figure 5. If a home
agent HAi receives an agent advertisement message from another home agent HAj, it calls procedure
Recv_AAM() to set the timer for HAj in HATable, to INIT_TIME.
Whenever ADVERTISINGJNTERVAL (2 ~ 3) seconds have elapsed, HAi calls procedure FailureJ)etect(). In
this procedure, it decrements the timer for every other home agent by one. If among the other home agents in the

AJIS vol 9 no. 1 September 2001

same network, there are ones for which timers expire, procedure Election_For_Takeover() is called so that the
remaining home agents determine which live home agents take over the failed ones. In this procedure, among the
remaining live agents, one, which serves the minimum number of mobile nodes, takes over a failed agent.

(4) Takeover and Recovery Algorithm

Figure 6 and 7 show a formal description of our takeover and recovery algorithm of a home agent, HA,. If HAt

takes over a failed agent HAj after having completed Election_For_Takeover(), it calls procedure Take_Over()
in figure 6. In this procedure, HAt restores Loc_fnfoj, Log_JnfOj and RSNj from the stable storage and then, it
updates all the bindings in Loc_JnfOj to the latest by replaying each logged message in receive sequence order.
Afterward, it performs a gratuitous address resolution protocol mapping HA/s IP address to its physical
hardware address. Then it should serve the MNs having registered with HAj, send an agent advertisement
message for HAj to other home agents every ADVERTISING_INTERVAL seconds and respond to every address
resolution protocol request message sent for HAj.
When a failed home agent HA, is repaired and rebooted, it calls procedure RecoverQ in figure 7. In this
procedure, it invokes procedure Listen_To() to listen to any agent advertisement message including its IP
address for sometime (i.e., INIT_TIME x ADVERTISINGJNTERVAL seconds). Then, it performs a gratuitous
address resolution protocol mapping its IP address to its physical hardware address. If it receives no agent
advertisement message including its IP address, it restores Loc_JnfOj, Log_Jnfoi and RSNt from the stable storage
and then updates all the bindings in Loc_lnfOi using Log_InfOi. If it receives an agent advertisement message
including its IP address from HAk, it requires Loc_Jnfoi and RSN, from HAk by remotely calling procedure
Req_Bindings() at HAk. If HAk has failed before completing the procedure, /£4, restores Loc_fnfoh Log_Jnfoj
and RSNi from the stable storage and then updates all the bindings in Loc_Jnfoj using Log_Jnfoi.

The Description for Foreign Agents

In Mobile IP, failures of foreign agents are less critical than those of home agents. It means that if a mobile node
has registered with a foreign agent in a network and the agent fails currently, the mobile node can re-register
with another foreign agent in the same network [Perkins (1996b)]. However, to do so, it should send a
registration request message to and receive a registration reply message from its home agent through the new
foreign agent.

procedure Take_Over(/)
restore Loc_InfOj, Log_Infoj and RSNj from the stable storage ;
for ail e e Log_Infoj in e.rsn order
update Loc_JnfOj replaying e.msg ;
perform a gratuitous ARP binding HAj's IP address to HAfs physical hardware address ;

Figure 6 Takeover Procedures for a home agent HAt

AJIS vol 9 no. 1 September 2001

procedure RecoverQ
£<-Listen_To(i);
perform a gratuitous ARP binding HA,'s IP address to /£4,'s physical hardware address ;

(Loc_Infoi, RSN^ <- remote call at HAk : Req_Bindings(r) ;
if(HAk has failed before completing Req_Bindings(/)) then {
restore Loc_Infot, Log_Infoj and RSNi from the stable storage ;
for all e G Z,og_/«/b, in e.rsn order
update Loc_Infoi replaying e.msg ;

}
} else {
restore Loc_Infoi, Log_Infot and RSN, from the stable storage ;
for all e G Log_Infot in e.rsn order
update Loc_InfOi replaying e.msg ;
}
procedure Req_Bindings(/)
return (Loc_InfOj, RSN/) ;

Figure 7 Recovery procedure for a home agent HA,

The re-registration process across the Internet may require high latency for recovering binding of the mobile
node. Thus, this method forces other nodes not to communicate with the mobile node until the registration
process is completed. To solve the problem of the traditional method, live foreign agents can recover bindings of
all the mobile nodes having registered with failed agents faster than the traditional method by using the same
scheme as the scheme for home agents described in the previous section. However, unlike a home agent, a
foreign agent logs a registration request message, sent from each mobile node having registered with the agent,
into the stable storage only after it has received a registration reply message for acceptance from the home agent
of the mobile node. If the foreign agent fails, another live foreign agent in the same network restores bindings of
the mobile nodes having served by the failed agent and logged messages. In this case, the live foreign agent need
not forward each logged message to the corresponding home agent when replaying the message. If the failed
foreign agent attempts to recover, but there is no live agent having taken over the failed agent, it replay each
logged message in the same manner.

CORRECTNESS

In this section, we prove the correctness of our checkpointing and message logging algorithms, takeover
algorithm and recovery algorithm for mobility agents.

Theorem 1 Our checkpointing and message logging algorithms ensure that the current state of/?, sp* (0 £ K), is
recoverable.
Proof. The proof proceeds by induction on k, the index of the state interval of each mobility agent p.
[Base case]
In this case, Sp° is the initial state interval of p and deterministic. Therefore, sp° is trivially recoverable by lemma
2 because sip is stable.
[Induction hypothesis]
We assume that the theorem is true in case that k=n.
[Induction step]
If there is the determinant ofdevp"*l(m) on stable storage because the algorithms allows sp" to be recoverable by
induction hypothesis, the theorem is true f o r p in case that A=«+l. In this step, when/? receives the («+l)-th
registration request message m beyond sp", it saves the determinant of devp (m) on stable storage by calling
procedure RegisterJMnQ. Afterwards, ifp calls CheckpointingO, it saves sp

a+\ i.e., the current bindings of the
mobile nodes registering with it on stable storage, and then removes all the determinants for p from stable
storage. Therefore, our algorithms allow sp

a+l to be recoverable.
By the induction, our checkpointing and message logging algorithms ensure that the current state of p, sp (0 <
k), is recoverable.

Theorem 2 If there are n (2 < ri) redundant mobility agents in a network and even n-l among them fail
concurrently, all the mobile nodes registering with the failed agents can communicate with other nodes in the
system after a live mobility agent has completed our takeover algorithm.

10

AJIS vol 9 no. 1 September 2001

Proof: The proof proceeds by induction on «, the number of redundant mobility agents in a network.

[Base case]

In this case, there are a failed and a live mobility agent, named MAfati and MAtive, respectively. In our protocol,
MAiive detects the failure ofMAfaii when MA,ive's tinier for MAfaii expires, and then take over MA^n by executing
procedure Election_For_Takeover(). Then, it restores from the stable storage the bindings of all the mobile
nodes having registered with MAfail, the logged messages beyond the latest checkpoint for A£4/aW, and the receive
sequence number of the latest logged message delivered to MAfail. Then, it can recover the latest bindings of the
mobile nodes by replaying each logged message in receive sequence number order. Afterward, it performs a
gratuitous address resolution protocol mapping A£4/a//'s IP address to its physical hardware address. Then it
serves the MNs having registered with MAfttih sends an agent advertisement message for MA^t to other home
agents every ADVERTISING_INTERVAL seconds and responds to every address resolution protocol request
message sent for MAfaii- Thus, MAiivt enables the mobile nodes to communicate with other nodes in the system.
[Induction hypothesis]
We assume that the theorem is true in case that n = k.
[Induction step]
For n=k+\, there are k failed mobility agents and a live one hi a network. If the live mobility agent MA,lvt has
only to take over the k-ih failed mobility agent MAfaiUi because MAtive can take over k-\ failed mobility agents by
induction hypothesis, the theorem is true in case that n = k+1.
In our takeover algorithm, MAlive can recover bindings of the mobile nodes having registered with MAfaiU[, and
then serve the mobile nodes on behalf of M4/a/tt in the same manner like base case. Thus, MAUve enables all the
mobile nodes having registered with k failed mobility agents to communicate with other nodes in the system.
By the induction, if there are n redundant mobility agents in a network and even n-l among them fail
concurrently, all the mobile nodes registering with the failed agents can communicate with other nodes in the
system after a live mobility agent has completed our takeover algorithm.

Theorem 3 Our recovery algorithm allows every failed mobility agent to recover the latest bindings of all the
mobile nodes served by it before it failed.
Proof. We prove this theorem by contradiction.
Assume that every failed mobility agent cannot recover the latest bindings of all the mobile nodes after having
completed our recovery algorithm. When a failed mobility agent MAfaa is repaired and rebooted, it calls
procedure RecoverQ. In this procedure, it listens to any agent advertisement message including its IP address for
some seconds and then performs a gratuitous address resolution protocol mapping its IP address to its physical
hardware address. There are two cases:
Case 1: There is no live mobility agent having taken over MAfaU.
In this case, the information is in the stable storage that is needed for recovering the latest bindings of the mobile
nodes served by MAfaii. The information consists of bindings of the mobile nodes, logged messages for MAfaii and
the receive sequence number of the latest message delivered to its IP address. In RecoverQ, MAfaa restores the
information from the stable storage and then recovers the latest bindings of the mobile nodes by replaying each
logged message in receive sequence order.
Case 2: A live mobility agent M4Hw has taken over MAfait. In this case, MAUve has the latest bindings of the
mobile nodes served by MAfatt. In RecoverQ, MAfat, requires from MAUvt the bindings of all the mobile nodes
served by it and the receive sequence number of the latest message delivered to its IP address by remotely calling
procedure Req_Bindings() at MAtivt. There are two sub-cases:
Case 2.1: MAUve successfully completes Req_Bindings().
In this case, MAfai, obtains the latest bindings of the mobile nodes from MAUve.
Case 2.2: MAlne has failed before it completes Req_Bindings().
In this case, M4/m/ recovers the latest bindings of the mobile nodes in the same manner like case 1.
Hence, both case 1 and 2 contradict the hypothesis.

Table 1. Parameters and their meanings
Parameter Meaning

NOMN Number of mobile nodes registering with a network
NOMA Number of redundant mobility agents in a network

11

AJIS vol 9 no. 1 September 2001

COMPARISONS

In this section, we intend to compare the CML scheme with the PRT scheme presented in [Ghosh (1998)] briefly.
Generally, performance indices used for evaluation of scalability of the two schemes are the number of MNs
whose bindings are managed by each MA in a network (denoted by NOMNMA) and the latency time for its
processing a registration request message from each MN (denoted by LTRR). For simplicity, we suppose that
each MA in a network serves the same number of MNs. It means that if the number of MNs registering with a
network is n and the number of MAs in the network is m, the number of MNs served by each agent is (n I m).
First, we evaluate scalability of the two schemes with respect to NOMNMA during failure-free operation. Table 1
shows the parameters, which NOMNMA depends on, and their meanings. IfNOMNMAs of the two schemes are
calculated using the parameters respectively, NOMNMA of the CML scheme is NOMNINOMA whereas that of
the PRT scheme is NOMN during failure-free operation. Figure 8 illustrates NOMNMA versus NOMN when
NOMA is 10. In this figure, NOMNMA increases as NOMN increases in the two schemes. However, we can see
that the increasing rate of NOMNMA in the CML scheme is significantly lower than in the PRT scheme. Figure 9
illustrates NOMNMA versus NOMA when NOMN is 6000. As NOMA increases in this figure, NOMNMA of the
CML scheme decreases whereas NOMNMA of the PRT scheme is always equal to NOMN. The reason for these
results is that each mobility agent in a network must maintain bindings of the mobile nodes registering with all
the redundant mobility agents in the same network in the PRT scheme whereas it has only to maintain bindings
of the mobile nodes registering with only it in the CML scheme. Therefore, we can see that the CML improves
scalability to a large number of mobile nodes managed by each mobility agent compared with the PRT scheme
during failure-free operation.

0 1000 2000 3000 4000 5000
NOMN

Figure 8 NOMNMA versus NOMN (NOMA=W)

Next, we evaluate scalability of the two schemes with respect to LTRR during failure-free operation. If each
mobility agent receives a registration request message from a mobile node in the PRT scheme, it should process
the message and forward the message to its peers, and wait for receiving all the acknowledgement messages
from them.

12

AJIS vol 9 no. 1 September 2001

10 12

Figure 9 NOMNMA versus NOMA (M>M7V=6000)

Thus, the total number of messages generated per registration request message in the PRT scheme is (2 x
(NOMA-l)) and the number of messages on the critical path is NOMA. However, in the CML scheme, it should
process the message and require the stable storage server to save the recovery information of the message into
stable storage, and wait for receiving an acknowledgement message from it. Thus, the total number of messages
generated per registration request message in the CML scheme is 2 and the number of messages on the critical
path is 2. Therefore, we can see that the total number of messages and the number of messages on the critical
path generated per registration request message in the CML scheme, not in the PRT scheme, are always constant.
Next, we evaluate overheads of the two schemes for taking over or recovering failed mobility agents. In the PRT
scheme, live mobility agents can take over failed agents fast because they always maintain bindings of all the
mobile nodes registering with not only itself but also its peers. Therefore, the takeover time of the CML scheme
may be longer than that of the PRT scheme because each mobility agent has only to maintain the bindings of the
mobile nodes registering with it and live mobility agents should recover the bindings of failed ones from the
stable storage. However, the takeover time of the CML scheme can be reduced using two methods. The first
method is that each mobility agent maintains only the latest in the stable storage among registration request
messages sent from each mobile node registering with the agent. This method decreases the number of logged
messages that each live mobility agent should replay when it takes over a failed agent The second method is
implementing the stable storage as a high-speed and scalable storage system such as Storage Area Network
(SAN) [IBM (1999)].
If there are live mobility agents in a network, the recovery time of failed and repaired agents are the same in the
two schemes because they can recover their bindings from the live mobility agents in the schemes. However,
otherwise, each failed agent can recover its latest bindings from the stable storage in the CML scheme whereas it
cannot recover them in the PRT scheme.

CONCLUSION

In this paper, we identified the problems in the PRT schemes using passive replication techniques; high failure-
free latency during registration process if the number of MAs in the same network increases and forcing each
MA to manage bindings of all the MNs registering with its network. Then, we presented the CML scheme using
checkpointing and receiver-based pessimistic message logging techniques. The CML scheme achieves low
failure-free latency even if the number of MAs in a network increases, and improves scalability to a large
number of MNs registering with each network compared with the PRT schemes. Additionally, the CML scheme
allows each failed MA to recover bindings of the MNs registering with the MA when it is repaired even if all the
MAs in the same network fail. However, the takeover time of the CML scheme may be longer than that of the
PRT scheme like in section 4. The takeover time of the CML scheme can be reduced using the two methods
mentioned in section 4.

13

AJIS vol 9 no. 1 September 2001

REFERENCES

Alvisi, L., Hoppe, B. & Marzullo, K. (1993) "Nonblocking and Orphan-Free Message Logging Protocols", Proc.
the 23th Symposium on Fault-Tolerant Computing, pp. 145-154.

Binkley, J. R. & McHugh, J. (1997) Secure Mobile Networking: Sixth Quarterly Report - Winter 1997,
Portland State University.

Dixit, A & Gupta, V. (1996) Mobile-IP for Linux (ver 1.00), Technical Report, SUNY Binghampton.
Droms, R. (1993) Dynamic Host Configuration Protocol, RFC 1541.
Elnozahy, E. N. & Zwaenepoel, W. (1992) "Manetho: Transparent rollback-recovery with low overhead, limited

rollback and fast output commit", IEEE Transactions on Computers, Vol 41, pp. 526-531.
Elnozahy, E. N., Alvisi, L., Wang, Y. M. & Johnson, D. B. (1999) A Survey of Rollback-Recovery Protocols in

Message-Passing Systems, Technical Report CMU-CS-99-148, Carnegie-Mellon University.
Ghosh, R. & Varghese, G (1998) Fault-Tolerant Mobile IP, Technical Report WUCS-98 -11, Washington

University.
IBM Corporation and International Data Group. (1999) Survey says Storage Area Networks may unclog

future roadblocks to e-Business, News Release.
Johnson, D. B. (1994) "Scalable and Robust Internetwork Routing for Mobile Hosts", Proc. the 14th

International Conference on Distributed Computing Systems, pp. 2-11.
Perkins, C. (1996) IP Encapsulation Within IP, RFC 2003.
Perkins, C. (1996) IP Mobility Support, RFC 2002.
Perkins, C. (1996) Minimal Encapsulation With IP, RFC 2004.
Perkins, C. & Johnson, D. B. (1997) Route Optimization in Mobile-IP, Mobile IP Working Group, Internet

Draft.
Plummer, D. C. (1982) An Ethernet Address Resolution Protocol - or - Converting Network Protocol

Address to 48 bit Ethernet Address for Transmission on Ethernet Hardware. STD 37, RFC 826.
Postel, J. B. (1981) Internet Protocol, Internet Request For Comments RFC 791.
Rose, M. T. (1990) The Open Book: A Practical Perspective on OSI, Prentice Hall, Englewood Cliffs, NJ.
Schlichting, R. D. & Schneider, F. B. (1985) 'Tail-stop processors: an approach to designing fault-tolerant

distributed computing systems", ACM Transactions on Computer Systems, Vol.1, No.3, pp. 222-238.
Simpson, W. (1995) IP in IP Tunneling, RFC 1853.
Solomon, J. D. (1998) Mobile D?, The Internet Unplugged, Prentice Hall Series.
Strom, R. B. & Yemeni, S. (1985) "Optimistic recovery in distributed systems", ACM Transactions on

Computer Systems, Vol.3, No.3, pp. 204-226.
Turner, P. (1990) NetWare communications processes, NetWare Application Notes, Novell Research, pp. 25-

81.

14

