
REDUCING SOFTWARE FAILURES: ADDRESSING THE ETHICAL RISKS OF THE SOFTWARE
DEVELOPMENT LIFECYCLE

By Don Gotteibam
Software Engineering Ethics Research Institute,

East Tennessee State University, USA

ABSTRACT

A narrow approach to risk analysis and understanding the scope of a software project has contributed to significant
software failures. A process is presented which expands the concept of software risk to include social, professional,
and ethical risks that lead to software failure. Using an expanded risk analysis will enlarge the project scope
considered by software developers. This process also is incorporated into a software development life cycle. A tool to
develop Software Development Impact Statements is also discussed.

INTRODUCTION

Software developers and software engineers have been evolving and refining techniques to mediate risks of
developing software products that meet the needs of their clients. The risks focused on include: missed schedule,
over budget, and failing to meet the system's specified requirements. In spite of this attention to risks, a high
percentage of software is being delivered late, over budget, and not meeting all requirements, leading to software
development being characterized as a "software crisis".

SOFTWARE RISK

The Problem

In this paper I correct the meaning of "Software Failure", or more precisely, focus attention on some overlooked
meaning of "Software Failure". Software fails even when it is produced on schedule within budget and meets the
customer's specified software requirements. Software has been developed which, although meeting stated
requirements, has significant negative social and ethical impacts. By ethical impact I mean those impacts of
software which positively or negatively the circumstances, experiences, behavior, livelihood, or daily routine of
others. The ethical stakeholders in software are those who are so affected.
The Aegis radar system, for example, met all requirements that the developer and the customer had set for it.
The system designer's did not take into account the users of the software nor the conditions in which it would be
used. The system was a success in terms of budget, schedule, and requirements satisfaction, even so, the user
interface to the system was a primary factor in the Vincennes shooting down an Iranian commercial airliner
killing 263 people.
There are two factors that contribute to these professional and ethical failures; both related to those who have
something to gain or lose as a result of the software project — system stakeholders. First, there is significant
evidence that many of these failures are caused by limiting the consideration of system Stakeholders to just the
software developer and the customer. This limited scope of consideration leads to developing systems that have
surprising negative affects because the needs of relevant system stakeholders were not considered. In the case of
the Aegis radar system the messages were not clear to the users of the system operating hi a hostile environment.
Second, these types of failures also arise from the developers limit the scope of software risk analysis just to
technical and cost issues. A complete software development process requires 1) the identification of all relevant
stakeholders and 2) enlarging risk analysis to include social, political, and ethical issues. I propose to add a
process to a standard life cycle model that will help identify the relevant stakeholders and broaden the scope of
risks anticipated.

Software Quality and its Risks

The primary goal of software developers is the production of quality systems that meet the needs of the user.
"Software quality" is defined in terms of customer satisfaction. "Risk" is understood as any potential threat to
the delivery of a quality product. To meet the goal of quality software, developers focus on particular risks
including: project and schedule slips, cost increases, technical and quality risks, the timeliness of the product,
risks that the final product will not fit the business for which it was designed.
Projects are managed focusing on these risks. Tools used to help identify and manage these risks include: risk
tables, and lists of risks categorized by type, probability and impact. The checklist process is reminiscent of the
process pilots go through before take off. As airline passenger we are made more comfortable by the fact that
they go through this procedure. But unlike pilots, developers choose to ignore some risks. Risks levels are

155

determined based on the anticipated impact of the risk and its probability of occurring. Only risks above limited
specified levels are addressed.

Software Development Life Cycles (SDLC) and Risk

There are several models for developing software that reduce planning risks. All of these models contain similar
phases: develop a statement of the customer's desires - the requirements phase; design how to achieve those
desires - the design phase; code and test what was designed - the implementation phase; and determine that the
requirements are satisfied by the system developed - system testing phase. The ordering and content of the steps
through these phases called the system development life cycles (SDLC). Many SDLCs are linear and require the
documented completion of a one phase before going on to the next phase and are directed at the satisfaction of
the customer's explicit requirements. Only a few SDLCs include any risk analysis or expand the number and
type of system stakeholders considered.

Spiral Lifecycle and Risk

Barry Boehm's "spiral lifecycle" is one of the few SDLCs that specifically address risk. Following his model,
software is developed in a series of incremental releases. Each iteration through the spiral includes tasks related
to: Customer communication, Planning, Risk Analysis, Engineering the development of the next level,
Construction and Release and, Customer evaluation and assent. Each incremental element of the product that
passes through these phases has undergone risk analysis and evaluation by the customer. Although this model
introduces a focus on risks, those risks are limited to the risks identified above.

Lifecycle Measurement (LIME) and Stakeholders

LIME [Buglione, 1999] introduces a multidimensional analysis of quality and performance during software
development. This model defines quality in terms of an economic dimension from the managers' viewpoint with
particular attention to cost and schedule drivers; a social dimension from the users viewpoint, and a technical
dimension from the developer's viewpoint with particular attention to technical quality that has a different
impact during each SDLC phase. This model examines the role of a stakeholder in all phases of the project
development. Although this method includes a consideration of a stakeholder in all phases of project
development, the stakeholder is the user for whom quality is achieved by the satisfaction of the specified
requirements.

THE REAL PROBLEM

Limitations of LIME and the Spiral SDLC

Both of these models are improvements over earlier SDLCs that either had no risk analysis or had a very limited
view of system stakeholders. The Spiral model incorporates risk analysis and LIME incorporates a consideration
of an additional stakeholder throughout the development process. The risks considered by the Spiral model are
the technical risks identified earlier and LIME expands the risk analysis to include risks to one stakeholder in
terms of requirements specification.
All of these methods attempt to anticipate and avoid all potential threats to a software project. The negative
possibilities are those that would delay the delivery of the software that performs the desired functions in a
timely and cost effective manner. However, none of these methods consider the ethical issues that need to be
identified and addressed during the planning stages and re-considered throughout the development process.

Failure Research

Recent research has confirmed that inadequate identification of project stakeholders and how they are affected
by a project is a significant contributor to the project's failure. Establishing the right project scope is essential in
defining project goals. The stakeholders determine the scope of consideration. Normally, the stated needs of the
customer are the primary items of concern in defining the project objectives. Investigating 16 organizational IS-
related projects led [Farbey et al, 1993] to conclude that regarding evaluation of IT investment, "... the
perception of what needed to be considered was disappointingly narrow, whether it concerned the possible scope
and level of use of the system, [or] the range of people who could or should have been involved ...". They
discovered, with the exception of vendors, all stakeholders involved in evaluation were internal to the
organizations. The reason for this restricted involvement is that these are the only stakeholders originally
identified in the traditional project goals or system requirements. We should not limit our consideration of

156

stakeholders to those who are financing the project or politically influential. Stakeholders are individuals or
groups who may be directly or indirectly affected by the project and thus have a stake in the development
activities. Those stakeholders who are negatively affected are particularly important.
Negative effects include both overt harm and the denial or reduction of goods. So obviously the development of
medical software that delivers erroneous dosages of medicine that killed patients would have a negative effect;
but we would also include as having a negative effect software that limited people's freedom of expression.
Limitations on positive ethical values and rights are negative effects.
Many companies have gone out of business because they have only emphasized short-term efficiency and
productivity. The quantity and cost of major product recalls in terms of dollars and company reputation is
evidence of this mistaken emphasis on short-term goals. When considering software development we need to
.consider the impact of the system as a whole. In the past, the developers have restricted their involvement in the
development of a product to the technical elements of a piece of software. This self-imposed limitation has
contributed to the development of software that has been inferior and has had negative consequences for others:
software that is not socially sensitive. The systems we develop perform tasks that affect other people in
significant ways. The production of quality software that meets the needs of our clients and others requires both
the carefully planned application of technical skills and a detailed understanding of the social, professional, and
ethical aspects of the product and its impact on others.
Frequently the failure to consider social, ethical, and other risks has led to the delivery of unacceptable software
that should be recalled and modified. Because the process of recall and modification is too expensive for the
developer, the product remains on the market. The scope of a project needs to be identified in terms of its real
stakeholders.
The expansion of the scope of a project to include all relevant stakeholders will also broaden the types of risks
considered. Many companies have gone out-of-business because they have only emphasized short-term
efficiency and productivity. The quantity and cost of major product recalls in terms of dollars and company
reputation is evidence of this mistaken emphasis on short-term goals. When considering software development
we need to consider the impact of the system as a whole. In the past, the developers have restricted their
involvement in the development of a product to its technical elements. This self-imposed limitation has
contributed to the development of software that has been inferior and has had negative consequences for others.
The systems we develop perform tasks that affect other people in significant ways. The production of quality
software that meets the needs of our clients and others requires both the carefully planned application of
technical skills and a detailed understanding of the social, professional, and ethical aspects of the product and its
impact on others.

Stakeholder Identification

Some of these software development methods distinguish between direct system stakeholders—[those
who]"receive services from the system and send control information to the system"—and indirect stakeholders—
[those who] "have an interest in some of the services that are delivered by the system but do not interact directly
with it". These would include the passengers on the Iranian airliner or the driver of an automobile whose brakes
are controlled by a computer program. Unfortunately 1) these methods do not provide an ethical or
philosophical foundation for this distinction to reach beyond identifying those who have a business relation to
the customer. They would not have identified as indirect stakeholders the 47 people killed by falling debris from
a Patriot missile. These methods also fail to 2) provide a method of identifying the social and ethical impacts on
the indirect stakeholders.
We need to extend the traditional software project stakeholder list from customers and corporations or
shareholders to include all those who will be affected by the software and by its production. This enlargement of
the domain of stakeholders has been implicitly endorsed by professional societies in the paramouncy clause — "
Protect public health, safety, and welfare" in their codes of ethics. This extension has been explicitly adopted in
several legal decisions in the United States. This extended domain of stakeholders includes: users of the
software, families of the users, social institutions which may be radically altered by the introduction of the
software, the natural environment, social communities, software professionals, employees of the development
organization and the development organization itself. Given such a range of stakeholders, how is one ever to
learn how to identify the relevant and significant stakeholders?

SOFTWARE DEVELOPMENT IMPACT STATEMENT

Funded research has been done on the development of a risk management process employing software
development impact statements. The Software Development Impact Statement (SoDIS), a modification of an
environmental impact statement, is a way of addressing the need to modify project tasks in a formal way. A
SoDIS, like an environmental impact statement is used to identify potential negative impacts of a proposed

157

project and specify actions that will mediate those impacts. A SoDIS is intended to reflect both software
development process and the more general obligations to various stakeholders.
We can divide software project development into three distinct phases. They are: the Feasibility phase that
includes considerations of preparedness to start a project and managing action items needed to start the project;
the Requirements Phase that defines the specifications of a system and identifies and manages potential risks
with each requirement; and the Detailed phase that uses a detailed software project management plan to manage
each task on system development. Each of these phases has its own peculiar risks. The purpose of the SoDIS is
to identify these risks in a pre-audit of each phase.
In the Requirements phase, we can develop a high level analysis of the expected impacts of a project. A detailed
SoDIS is developed from a preliminary software development plan. The goal of the SoDIS process is to identify
significant ways in which the completion of individual tasks may negatively affect stakeholders and to identify
additional project tasks needed to prevent any anticipated problems.
A detailed SoDIS is developed from a preliminary Gantt chart. The process of developing a SoDIS encourages
the developer to think of people, groups, or organizations related to the project (stakeholders in the project) and
how they are related to each of the individual tasks that collectively constitute the project. The goal of the
SoDIS process is to identify significant ways in which the completion of individual tasks may negatively affect
stakeholders and to identify additional project tasks needed to prevent any anticipated problems. . Although all
software projects have some unique elements, there are significant similarities between projects so that a generic
practical approach can be taken to refocus the goal of a project to include a consideration of all ethically relevant
stakeholders as well as all technically relevant stakeholders

JMSoDIS Project Auditor - Welcome

• fifa Took Hefc

-I |x|

iSoDIS
Project Auditor

for Windows

Risk Analysis and Tracking
Version 30 EVALUATION COPY

: Copyright-2001; Don.Gcflerbam arri Srion Roserson
U.S.̂ and FoiwpiPatentsPehdngvy1 '-7:;; v ' . . ' '-

Welcome to the SoDIS Project Audita. Select the.stage of analysis on which you want to work.

'Cnoosc rOft&tto^y AndyStt ,• nCQurontcnts Amlysts f of Uctoocd Afvsyos vu picss OK to PTOCG&Q,

O'Beg»»Eea*a>f|y Analysis

Use Feaabiity Analysis to determine if a proposed project is ready to begn.

.Use iDetaited Analysis to identify risksiin a project's management pian

Figure 1

To aid with the major clerical task of completing this process for every task and for every stakeholder a tool -
the SoDIS Project Auditor - was developed. The SoDIS Project Auditor keeps track of all decision make about
the impact of project tasks on the relevant project stakeholders and it enables a proactive way to address the
problems identified.

158

SoDIS Stakeholder Identification

A preliminary identification of software project stakeholders is accomplished by examining the system plan and
goals to see who is affected and how they may be affected. When determining stakeholders, an analyst should
ask: Whose behavior, daily routine, work process will be affected by the development and delivery of this
project; Whose circumstances, job, livelihood, community will be affected by the development and delivery of
this project, and Whose experiences will be affected by the development and delivery of this product. All those
pointed to by these questions are stakeholders in the project.
Stakeholders are also those to whom the developer owes an obligation. The imperatives of the Software
Engineering Code of Ethics and Professional Practice and similar codes define the rights of the developer and
other stakeholders. These imperatives can be used to guide the stakeholder search. The process of identifying
stakeholders also identifies their rights and the developers' obligations to the stakeholders. Many of the
computing codes have similar imperatives. These have been reduced and categorized under five general
principles in the SoDIS process and incorporated into the SoDIS Project Auditor.
On a high level, the SoDIS process can be reduced to four basic steps: (1) the identification of the immediate and
extended stakeholders in a project, (2) the identification of the tasks or work breakdown packages in a project,
(3) for every task, the identification and recording of potential ethical issues violated by the completion of that
task for each stakeholder , and (4) the recording of the details and solutions of significant ethical issues which
may be related to individual tasks and an examination of whether the current task needs to be modified or a new
task created in order to address the identified concern.
The SoDIS process also includes a consideration of other phases of an SDLC. Some risks can be identified when
a project is first conceived or can be identified at an intermediate stage when the customer's desires are being
specified in the requirements phase. The SoDIS Project Auditor also provides a pre-audit for diese two project
phases.
A complete SoDIS process 1) broadens the types of risks considered in software development by 2) more
accurately identifying relevant project stakeholders. The utilization of the SoDIS process will reduce the
probability of the types of errors identified by Farbey. The SoDIS should be part of a SDLC.

Identification of Stakeholders

The identification of stakeholders must strike a balance between a list of stakeholders that includes people or
communities diat are ethically remote from the project, and a list of stakeholders that only includes a small
portion of the ethically relevant stakeholders.
The system provides a standard list of stakeholders that are related to most projects. This standard list of
stakeholder roles changes with each change of project type. For example, a business project will include
corporate stockholders, while a military project will not have stockholders as a standard stakeholder role. The
system also enables the SoDIS analyst to add new stakeholders roles.
The stakeholder identification form (figure 2) contains a Statement of Work that helps remind the analyst of the
project goals and facilitates the identification of relevant stakeholders. The stakeholder form and the SoDIS
analysis form are dynamic and enable the iterative process. If while doing an ethical analysis, one thinks of an
additional stakeholder he/she can shift to the stakeholder identification form, add the stakeholder, and then return
to the SoDIS analysis that will now include the new stakeholder.
Rogerson & Gotterbarn [1997] proposed a method to help identify stakeholders based on Gert's moral rules [Gert
1988]. Gert gives 10 basic moral rules. [Gotterbarn 1991] These rules include: Don't kill, Don't cause pain,
Don't disable, Don't deprive of freedom, Don't deprive of pleasure, Don't deceive, Don't cheat, Keep your
promises, Obey the law, and Do your duty. These rules carry with them a corresponding set of rights such as the
right to liberty, physical security, personal liberty, free speech, and property. How can these rules be used to
identify stakeholders?

159

QflSoDIS Pioject Auditor

ji.'Bto Edft.Ioote, fiepprt :Jle|p

Tdngjjpnt'l S^ftjft&jda^ li Anajgg^^vMlL&f!*te» MjjJ.-.

^ Project lnfamalib

. Wane: : Cyclone Launch ' ; .; ;•

"Fji :'•'"'"• ;r"D*ter

Project Statement of Work:
A GENERAL DESCRIPTION OF THE PROJECT TO AID ANALYSTS THINK OF STAKEHOLDER '

1. behavkuAvoik process wi be affected by the development 01 detveiy of this project

•Z -cinxanstance/job w8 be affected.by the development ot deSywy of this ptoject

torcfcfivef)>.o'>Wsp'oJect . .

Name:[Customer

Figure 2. Stakeholder Identification

A matrix can be set up for each ethical rule such as "Don't cause harm The column headers of the "Don't cause
harm matrix" are the stakeholders, such as the "developer" and the "customer", and there is a row for each major
requirement. The SoDIS analysts then visits each cell in the matrix asking, for each requirement whether
meeting this requirement violates that obligation to the stakeholder. Because the analysis as described is
organized by particular software requirements, it will be easy to identify those requirements that generate a high
level of ethical concern. Thus, the list will also be used to determine if particular requirements have to be
modified to avoid significant ethical problems. This method can be used at this stage to give a composite picture
of the ethical impact of the entire project from the point of view of these stakeholders.
Might the completion of this requirement cause harm to the stakeholder? ('Y' indicates that the task may cause
harm to the stakeholder group)

Req\Stakeholder
Requirement 1

Requirement 2

Requirement 3

Customer

N

N

Y

developer

N

N

N

user

N

N

Y

Community

N

Y

Y

Additional
stakeholders...

This process can be used to both identify additional stakeholders and to determine their rights The first phase of
the stakeholder identification should have identified some areas of broader ethical concern and some additional

160

stakeholders. The primary stakeholder analysis is repeated for these newly identified stakeholders. Even if there
were no new stakeholders identified, at a minimum the analysis should include software users, related cultural
groups, and society as potential stakeholders.

Identification of Tasks

Most software project management models proceed by decomposing the project into component tasks called
"work breakdown packages" that only address the technical issues. These individual task descriptions are used in
the reviewing and monitoring of the project. All of these tasks are ordered in a hierarchy of dependency on one
another.
Each of these individual tasks may have significant ethical impact. The specific SoDIS is used to help the
developer responsibly address the ethically loaded potential of each work breakdown package. This is
accomplished by including a SoDIS analysis in the standard descriptive elements of a work breakdown package
(figure 3).
IJMSoDISProiectAud.tm

'£ite;̂ '';I«*:'itofpit--H ĵ. '.^7'. l:'?f:""': '^V
•>!>))-

1

;
"1;
f

I*
}
I
$
)

.1

)

f

h
j!

li

I]

t 1

Kthjcft̂ JtStakiî Jcfe f̂ekjbn Is V^Summarylf WBPDetalj) SoDIS Arab's JAna|isis Overview j Angsts Octal]
••^;"^^"-'- ••:•.•'••»,.-..'.--,•.•••:••'•*" ', • -f>-fr» - • . • • . -«• ' • •£ , " . • l ~~

& Cyclone Launch
S-CorpComm

-CorpCommKickoff
•- Comm. Plan delivered
-Packaging
Datasheets

- Reseller kits
- Competitive comparison
- Demo script
•Working Model

Q Advertising
D Public Relations :

-Working model
B Beta Test i

r-^^^^^^^5§] ;: Mail Beta Copies
!-• Provide technical support ;
-•dose beta i

El- Internal Communications j
SI- Hardware Relationships \
H- Programs j

- Release to manufacturing 1
-Manufacture product i

L- Project announced]

i

Identification Number:
Name:
Completion Status:
Assignment Status:
Description:
Product
Category:
Predecessors):
Successor(s):

Duration:
Hours Of Effort:
Cost Estimate:
Estimated Resources:
Location:
Priority:
Completion Criteria:
Acceptance Criteria:

Risk Analysis/Resolution:
SoDIS Analysis/Resolution:
Package Manager:
Organizational Structure:
Notes:
Activity Codes/Flags:
Maintenance Concerns:

23 . ; v - : - •• •-. ' •
DevelqpJetaLis! ' .1; •

Give to staff 5 June i I
Need j list of 20 organizations to do testing i Edit

1 Edit

ji View
j1 View

16800 i Start Date: JW1 5/1 993 8:00:., if
0 End Date: 1^4/19985:00:0 1
0 1

ll VieW- | |

4 "• ' " • - • ' . , • ' • ,;' J
Review list for knowledgable testers |, Edit j '
Written approvl by customer of beta testers jj Edit | jj"""v ~ " i

New Concept, few contacts in this area j[Anak>ze 1 i
Not Started Jj Analyze | j

i]
|)

^..__.^..___.___..____.^_ ^^^ ,

Update list consistent with technology IL..-f!Jla;J r
_ '" " ""* i

,. ^=^^^^^^^

,',7'V . ' . - ' • • • ' :

Figure 3 WBP DetaU Screen;

The SoDIS analysis process also facilitates the identification of new tasks or modifications to existing tasks that
can be used as a means to mediate or avoid identified concerns. The identified tasks need to be incorporated into
the software project management plan. The early identification of these software modifications saves the
developer time and money and leads to a more coherent and ethically sensitive software product. This phase of
the SoDIS process is a pre-audit of a detailed project plan that is developed late in a software development life
cycle.

161

Identify Potential Ethical Issues

This stakeholder identification process has been modified in the SoDIS Project Auditor. Gert's ethical principles
have been combined with ethical imperatives from several computing codes of ethics to reflect the professional
positive responsibility of software developers. These principles have been framed as a set of 32 questions
related to stakeholders in a software project, and to generalized responsibility as a software professional. These
questions are placed in the bottom frame of the SoDIS Analysis screen (figure 4).
There may be some special circumstances that are not covered by these 32 questions so the system enables the
SoDIS analyst to add questions to the analysis list. When the analysis is complete there are several usage
statistics reports that give various snapshots of the major ethical issues with the project.

|̂̂ ^ .̂e»jaijf SoDIS Analysis j A^sj£0 îwJ_An^y«i$ De

WBPs/Tasks MighlthBtask RoWstakeholdw

B Cyclone Launch

t$! CorpComm

^•Advertising

B- Public Relations

Working model

BBetaTest ^^^
Deyetop Beta Ost \fj^

Ma8 Beta Copies

I i •• Provide technical support

• -dose beta

$• Internal Communications

Eg- Hardware Relationships

[p- Programs
- Release to manufacturing

| - Manufacture product
; Project announced

I cause ham to ji^li} Customer

lo': of property. propcQ

cause the unwanted modification or destruction:̂ :;;
files and programs owned or in use by the ;.'-'•*
stakehojder ,".

cause the unnecessary expenditure of the •;?«<'
resources of the stakeholder

involve the design or approval of software whrcl;$'
may lower the quality of life of the stakeholder

fail to take into consideration the needs of the
stakeholder

discriminate against the stakeholder

The Reading Audience
The Confetence Omantzeis

'(Might Develop Beta List'

fiUpScate

cause loss of information, loss of property, property
damage, or environmental impacts that affect the
stakeholder

The Audience Today?

guidance
Yes

'o
No' . ji • :NoForAII

I -Stakeholders

Figure 4 SoDIS Analysis screen;

When an ethical concern has been identified, the analyst gets an ethical concern form (figure 5) that asks the
analyst to record their concern with the task and record a potential solution. The most critical part of this process
is on this form, where the analyst is asked to assess the significance of their concern with the work breakdown
package being analyzed. If the problem is significant then they have to determine whether the problem requires
a modification of the task, deletion of the task from the project, or the addition of a task to overcome the
anticipated problem. It is these adjustments to the software requirements or management project plan that
complete risk analysis.

162

lyMSoOIS Project Auditor

F8e E&t Toojs Report' Help

! Inslwdions ji Sta^ghddei Iclentificatkin j

,1 .
[WBPsTTasks *""

SoDIS Analysis

Might this task Bofe/SiakehoUei

B- Cyclone Launch
Corp Comm

OS- Advertising
EB Public Relations

Working model
B Beta Test

Mail Beta Copies
Provide technicals
Close beta ,'

EJ3- Internal Communicator i
B- Hardware Relationship
|j-Programs «

Release to manufactuiji
Manufacture product
Project announced |

Ethical Concern1

Vii' IT he R eading Audience
'fft I The Conference Organizers

involve the design or approval of software whicr
may lower the quality of life of the stakeholder ^ .<

** ^

Once a concern has been added,it cannot be edited
Please enter a brief description of your concern:

Testing must be finished before the presentation otherwise the audience !̂
will have wasted their time

R Urgent '

r.ConfidenUal

Critical JDrticaT

Save I'! Save & Enter Solution I Cancel

' stakeholder̂
not relevant to this

Might Develop Beta List' cause the unnecessary expenditure of the
resources of

>! Concerns/Solutions.

The Audience Today?

Yes No S" -'jiiofoi~M~
ff O I "Stakehokters

Figure 5 Concern /Solution screen; gotterbarnfig5.jpg

The process of developing a SoDIS requires the consideration of ethical development and the ethical impacts of
a product - the ethical dimensions of software development. The SoDIS analysis process also facilitates the
identification of new requirements or work breakdown packages that can be used as a means to address the
ethical issues. The identified work breakdown packages need to be incorporated into the software project
management plan. The early identification of these software modifications saves the developer time and money,
and leads to a more coherent and ethically sensitive software product.
The SoDIS analysis process also facilitates the identification of new tasks or modifications to existing tasks that
can be used as a means to mediate or avoid identified concerns. The identified tasks need to be incorporated into
the software project management plan. The early identification of these software modifications saves the
developer time and money and leads to a more coherent and ethically sensitive software product. This phase of
the SoDIS process is a pre-audit of a detailed project plan that is developed late in a SDLC.
The SoDIS process also includes a consideration of other phases of an SDLC. Some risks can be identified when
a project is first conceived or can be identified at an intermediate stage when the customer's desires are being
specified in the requirements phase. The SoDIS Project Auditor also provides a pre-audit for these two project
phases.
A complete SoDIS process 1) broadens the types of risks considered in software development by 2) more
accurately identifying relevant project stakeholders. The utilization of the SoDIS process will reduce the
probability of the types of errors identified by Farbey. The SoDIS should be part of a SDLC.

INTEGRATION OF THE SODIS AND AN SDLC

Barry Boehm's modified spiral model - the Win-Win Model (WW) - comes close to meeting 1) the stakeholder
identification problem and 2) the risk limitation problem. His Win-Win spiral software development technique is
used to elicit project requirements for all stakeholders. At each phase of a project's development the analyst

163

identifies the stakeholders for that stage, determines the win conditions for each new stakeholder, and then
negotiates to have these new win condition requirements fit into a set of Win-Win conditions that have already
been established for all concerned. There is a set of win conditions for the Aegis radar customer. These
conditions would be identified and a process developed to meet those conditions. Then new stakeholders would
be identified, for example the sailor's using the system on the Vincennes, and their win conditions would be
identified. They would consider it important to be able to clearly determine if an approaching aircraft were
hostile. This win-condition would be incorporated, via negotiation, into the existing process plan.
Although this approach is similar to Rawl's wide reflective equilibrium in deriving a coherent set of
requirements through negotiation, the ethical element is missing from Boehm's method. There is no
methodology to identify ethically relevant stakeholders nor is there an ethical foundation for the negotiation
process.
The method is also limited in that it assumes all stakeholders are equal and that they will equally be aware of and
able to describe their own win conditions. The negotiation amongst stakeholders will be unjust and will likely
lead to failed systems, unless, contrary to fact, each stakeholder has such an equal identification and descriptive
skill of their own win conditions. There is also an implicit assumption that all requirements are negotiable. As
the method is constructed, all requirements have equal status—none are rejected because they are morally
impermissible or required because they are morally mandatory.
This model has two strengths. First it comes closer to properly expanding stakeholder identification than other
software engineering methodologies. Unlike all of the other approaches that presume the impact analysis is done
as a single process, the Win-Win model is iterative requiring a re-identification of system stakeholders at each
stage of the development process.
The negotiation activities include:

• Identification of system stakeholders- defined as "anyone that has a direct business interest in the
system or product o be built and will be rewarded for a successful outcome of criticized if the effort
fails"

• Determinations of the stakeholder's win conditions.
• Negotiation of the stakeholder's win conditions to reconcile them into a set of win-win conditions for

all concerned.

Although risks and stakeholders are incorporated into the model, negotiations activity 1 does not identify a broad
base of stakeholders. The sailors using the Aegis radar system and the passenger who lost their lives would not
be stakeholders.

2. rdpntify Stakeholders
van rr>nrlirkin?

5 Deiir>e r»e»l level oi product and
process • including partitions

. ^ , 3 Reconcile*m
SlaHenolders ^^/""^.L / conditions Establish

"9*1 level Directives,
constraints, alternatives.

7 Hn\iew.
_ 4. Evaluate product ana

6. validate product .S^-—^^ ^* process alternatives
ano process oetimtions

[Boehm, 1998]

The types of risks are also limited. The Project Risks include: difficulties associated with budget, schedule,
personnel (staffing and organization), resources, and customer. Technical Risks include technical uncertainty,
technical obsolescence, and difficulties in interfacing, maintenance, design and implementation. The Business
Risks include: market risk (the product no one wants), product line skew (product does not match product line),
and management risk (change in physical management or focus). These risks do not include risks to the users of
the Aegis radar system.
In a further modification to his model, Boehm adds three process milestones to help mark the completion of one
spiral. These three "anchor points" - life cycle objectives, life cycle architecture, and initial operational capacity
- provide technical information used to make decisions about whether and how the project might proceed.

164

The win-win model has the ability to analyze risk and incorporate stakeholders. The inclusion of a SoDIS
analysis as a starting point for the project and as the fourth anchor point then the Win-Win model would be an
effective SDLC which addressed the technical and ethical risks of software development.
The SoDIS process facilitates the expansion of software risk analysis to reduce software failures. Using this pre-
audit process in test in the UK and the USA facilitated the early identification of project risks. Using a SoDIS
process will make producing software of high quality and producing software that is ethically sensitive second
nature to the software engineer.

This research was partially funded by NSF Grant 9874684

REFERENCES:

Boehm, B.,"Using the WINWIN Spiral Model: A Case Study," Computer July 1998.
Buglione, L and Abran, A (1999) LIME: A Three-Dimensional Measurement Model for Life Cycle Project

Management" Proceedings of the International Workshop on Software Measurement September 1999.
Farbey B, Land F and Targett D (1993) How to assess your IT investment, Butterworth Heinemann.
Gert B (1988) Morality, Oxford University Press.
Gotterbarn D (1991) Computer Ethics: Responsibility Regained, National Forum, The Phi Kappa Phi Journal,

Vol71No3.
Gotterbarn D (1999) "Promoting Ethical responsibility in Software Development," Proceeding of the AICE

Computer Ethics Conference
Gotterbarn D and Miller K and Rogerson S (1999) Software Engineering Code of Ethics, Communications of

the ACM. 1998
http://computer.org/computer/code-of-ethics.pdf
Green R M (1994) The Ethical Manager, Macmillan Publishing.
McCarthy J (1996) Dynamics of Software Development, Microsoft Press.
Rogerson S and Gotterbarn D "The Ethics of Software Project Management", in Ethics and Information

Technology, ed. Goran Collste, New Academic Publisher, Delhi, 1998

165

