
Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 1

Spectral Methods for Immunization of Large Networks

Muhammad Ahmad
Department of Computer Science
School of Science and Engineering
Lahore University of Management Sciences
Pakistan

Juvaria Tariq
Department of Computer Science
School of Science and Engineering
Lahore University of Management Sciences
Pakistan

Mudassir Shabbir
Department of Computer Science
Information Technology University
Pakistan

Imdadullah Khan
Department of Computer Science
School of Science and Engineering
Lahore University of Management Sciences
Pakistan
imdad.khan@lums.edu.pk

Abstract

Given a network of nodes, minimizing the spread of a contagion using a limited budget is a
well-studied problem with applications in network security, viral marketing, social networks,
and public health. In real graphs, virus may infect a node which in turn infects its neighbour
nodes and this may trigger an epidemic in the whole graph. The goal thus is to select the best
k nodes (budget constraint) that are immunized (vaccinated, screened, filtered) so as the
remaining graph is less prone to the epidemic. It is known that the problem is, in all practical
models, computationally intractable even for moderate sized graphs. In this paper we employ
ideas from spectral graph theory to define relevance and importance of nodes. Using novel
graph theoretic techniques, we then design an efficient approximation algorithm to immunize
the graph. Theoretical guarantees on the running time of our algorithm show that it is more
efficient than any other known solution in the literature. We test the performance of our
algorithm on several real world graphs. Experiments show that our algorithm scales well for
large graphs and outperforms state of the art algorithms both in quality (containment of
epidemic) and efficiency (runtime and space complexity).

Keywords: graph immunization; eigendrop; closed walks

1 Introduction

Consider a large network of hospitals distributed, geographically, over a region. Due to
presence of an active pathogen, there is a danger of pandemic in the region. We assume that
pathogen can easily travel between linked hospitals. We are concerned with keeping the
maximum of the hospital network clean of pandemic. Based on their geographic vicinity (or
some other criteria), it is known for every pair of hospitals X,Y whether contamination at X
forebodes certain contamination at Y. If this is true about some pair of hospitals X,Y, we call X
and Y as linked (i.e. X and Y is an edge in the network graph).

Now a team of scientists have developed a vaccine for the pathogen. Unfortunately, due to cost
or production constraints the vaccine is only available in limited quantity and only a small
fraction of hospitals can receive it. It is assumed that once a hospital receives the vaccine it

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 2

cannot be contaminated nor can it contaminate any other hospital. Given the scarcity of the
vaccine resource it is a very serious question to ask whether a given hospital should or should
not receive the vaccine so as to minimize the overall spread of the pathogen in the region. This
question, in essence, is the topic of this work, which appears in various other scenarios. An
efficient solution to this problem can be applied to diverse array of high-impact applications in
public health. It will also be an important tool in cyber-security solutions. Finding important
players in social networks is a fundamental problem in viral marketing, online advertisement
and social networks monitoring. In its essence, the problem of finding important nodes in a
network can be reduced to the main problem of this paper.

This is known, in the literature, as the Network Immunization Problem. The problem is
studied in terms of graphs where each node represents a hospital (or any other resource-
hungry entity) and an edge between a pair of nodes represents the link between the pair of
hospitals. We use the Susceptible−Infected−Susceptible (SIS) model of infection spread in the
network that is detailed in section 3. As in (Chen 2016), we formulate the problem as follows.

Problem 1: Given a simple undirected graph G = (V,E) and an integer k find a set S of k
nodes such that if we “immunize” S, renders G least “vulnerable” to an attack over all choices
of S.

Clearly, the problem is ill-defined, unless a precise and quantifiable definition of the
vulnerability of a network is provided. To this end, it turns out that the largest eigenvalue of
the adjacency matrix of the graph is a good measure of vulnerability of the graph (Chakrabarti
2008).

1.1 Problem Formulation and solution approach

For a simple undirected graph G=(V,E) with |V|=n and |E|=m, the adjacency matrix AG (or
just A whenever the graph G is clear from the context) is an n×n binary matrix with columns
and rows representing the vertices of G and cell entries representing the edges i.e. AG(i,j)=1 if

and only if there is an edge from vertex i to vertex j. Eigen spectrum, {𝜆𝑖}𝑖=1
𝑛 , of adjacency and

Laplacian matrices has been studied a lot for certain graph properties (Chung 1997).

Of particular interest to us is the largest eigenvalue (denoted by λ1(A) or λ1(G) or λ1 when G is
obvious from the context) of the adjacency matrix also referred to as the first eigenvalue in
literature. Epidemic threshold is an intrinsic property of a network. It is well known in the
epidemiology literature that if the “virus strength” is more than the network's epidemic
threshold, then an outbreak will occur. The epidemic threshold of an undirected graph G is
directly proportional to λ1(G) (Chakrabarti 2008). For this reason in the epidemiology
community, the largest eigenvalue of graphs is used to study mathematical models of diseases
spreads and outbreaks (Ganesh 2005). In general λ1 is related to the global connectivity of a
graph. For example we know that

Δ ≥ 𝜆1 ≥ 𝑑𝑎𝑣𝑔

where Δ and davg are the maximum and average degrees in the graph, respectively (West 2001).
In the context of the discussion above it seems only logical to delete/immunize the vertices in
G such that the remaining graph has minimum possible largest eigenvalue.

Let G=(V,E) be a graph and let A be its adjacency matrix. For a subset of vertices S ⊆ V, we
denote by G-S the subgraph induced on vertices in V∖S. Similarly, for S ⊆ V, we define A-S to be
the submatrix of A obtained by deleting rows and columns in A at corresponding indices in S.
By definition of induced subgraph, it is clear that A-S is the adjacency matrix of G-S. We will
denote by GS the subgraph of G induced by vertices in S and AS denotes the adjacency matrix
of GS. The precise formulation of the above problem is given as follows:

Problem 2: Given a simple undirected graph G = (V,E) find a set S of k vertices so that
λ1(A-S) is the minimum possible over all choices of S ⊆ V.

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 3

Since λ1(G) can be computed in O(m) time (Chen 2016), the natural algorithm to find the

optimal set S takes time 𝑂 ((
𝑛
𝑘

) 𝑚), which is exponential in k. Indeed Lemma 1 asserts that

the general the problem is intractable (see Section 2 for a proof).

Lemma 1: Problem 2 is NP-Hard.

In this work we propose a novel algorithm to approximately solve Problem 2. Our algorithm is
quite intuitive, promises a better approximation compared to known approaches, and is easy
to implement. We propose a combinatorial formulation of the problem in which we construct
a subset of vertices based on a defined shield value. Our shield value measures the contribution
of the vertices towards the largest eigenvalue of the graph. Definition of our shield value uses
basic theoretical tools from spectral graph theory and relies on simple combinatorial
interpretation of largest eigenvalue. Removing vertices with high shield values would yield
optimal immunization results. We provide an efficient approximation algorithm to estimate
the shield values of vertices.

We provide detailed analysis of running time and space complexity of our algorithm. We also
empirically evaluate our algorithm on several real world data sets. The results show that our
algorithm achieves much better immunization performance compared to previously known
solutions. Moreover, ideas developed in this work are general and can have many other
potential applications. Indeed this method has been successfully used for estimating the
spectral radius of large graphs (Abbas 2017).

Rest of the paper is organized as follows. In Section 2 we provide a detailed background to
Problem 2 and discuss its computational intractability and approaches to approximate it. An
extensive literature review of the immunization problem is provided in Section 3. We propose
our algorithm in Section 4 along with its approximation guarantees and complexity analysis.
Section 5 contains results of experimentation on real world graphs. This section also provides
comparison of performance of our algorithm with other known algorithms. Afterwards we
conclude with a discussion on future directions. A preliminary version of this paper has already
been appeared in (Ahmad 2016).

2 Background

As argued earlier, the brute-force solution, that checks the eigendrop achieved by each possible

subset of size k and selects the subset achieving the largest eigendrop, has runtime 𝑂 ((
𝑛
𝑘

) 𝑚),

where m is the number of edges in the graph. This running time is exponential in size of input
(k). We prove that the problem under consideration is NP-Hard.

Proof: A simple reduction from Minimum Vertex Cover Problem goes as follows:

If there exist k vertices that cover all the edges in the graph, then from the following fact,
deleting those vertices will imply that λ1(A-S) = 0.

Fact 1: Empty graph (graph with no edges) on n vertices has eigenvalue zero with
multiplicity n.

Conversely if there exists a k-set S of vertices such that λ1(A-S) = 0, then S must be a vertex
cover; since otherwise it contradicts the following implication of the Perron-Frobenius
theorem.

Fact 2: (Serre 2002) Deleting any edge from a simple connected graph G strictly decreases
the largest eigenvalue of the corresponding adjacency matrix.

For a reduction from Max Independent Set problem that doesn't use Perron-Frobenius
theorem see appendix of (Chen 2016). Although Problem 2 is NP-Hard, the following greedy

algorithm guarantees a (1 −
1

𝑒
)-approximation to the optimal solution to Problem 2.

Approximation guarantee of GREEDY-1 follows from Theorem 1.

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 4

Algorithm 1 : GREEDY-1 (𝑮, 𝒌)

𝑆 ← ∅
𝑤ℎ𝑖𝑙𝑒 |𝑆| < 𝑘

 𝑣 ← 𝑎𝑟𝑔𝑚𝑎𝑥
v∈V∖S

(𝜆1(𝐴−𝑆∪{𝑣}))

 𝑆 ← 𝑆 ∪ {𝑣}
𝑟𝑒𝑡𝑢𝑟𝑛 𝑆

Theorem 1: (Nemhauser 1978) Let f be a non-negative, monotone and sub-modular

function, 𝑓: 2𝛺 → ℝ. Suppose 𝔸 is an algorithm, that choose a k elements set S by adding an

element u at each step such that 𝑢 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑥∈𝛺∖ 𝑆

𝑓(𝑆 ∪ {𝑥}). Then 𝔸 is a (1 −
1

𝑒
)-approximate

algorithm.

In (Chen 2016) each subset was assigned a score, called shield-value that was meant to
approximate eigendrop achieved by that set. For a set S of size k, shield value, Sv(S) can be
computed in O(k2) when the eigenvector corresponding to largest eigenvalue is known. Hence,

the straightforward method of finding the set with largest shield value takes 𝑂 ((
𝑛
𝑘

) 𝑘2) time.

Using the fact that the objective function based on shield value is sub-modular, (Chen 2016)
gave a greedy algorithm with runtime O(nk2+m). By Theorem 1 their algorithm guarantees a

(1 −
1

𝑒
)-approximation to the optimal shield value.

3 Related Work

 While the focus of this paper is to target node immunization problem using spectral graph
theoretic techniques, there is vast amount of literature on this problem with approaches from
diverse areas of the subject. Initially in 2003 Brieseneister, Lincoln and Porras (Briesemeister
2003) studied the propagation styles of viruses in communication networks. Along with this,
the effects of graph topology in the spread of an epidemic are described in (Ganesh 2005) and
the conditions under which an epidemic will eventually die out are discussed. Similarly
Chakrabarti et. al in (Chakrabarti 2008) devise a nonlinear dynamical system (NLDS) to model
virus propagation in communication networks. They use the idea of birth rate β, death rate δ,
and epidemic threshold τ, for a virus attack where birth rate is the rate with which infection
propagates, death rate is the node curing rate and epidemic threshold is a value such that if
𝛽

𝛿
< 𝜏, infection will die out quickly else if

𝛽

𝛿
> 𝜏 infection will survive and will result in an

epidemic. Virus propagation is studied in both directed and undirected graphs. For undirected
graphs, they prove that epidemic threshold τ equals 1/λ, where λ is the largest eigenvalue of the
graph. Thus for a given undirected graph, if β/δ>1/λ, then the epidemic will die out eventually.
But none of these specifically discuss the graph immunization problem.

Afterwards the problem is studied using the edge manipulation scheme. In (Kuhlman 2013)
dynamical systems are used to delete appropriate edges to minimize contagion spread. While
Tong et al. in (Tong 2012) remove k edges from the graph in a manner that eigendrop
(difference in largest eigenvalues of original and resultant graphs) is maximized. For this edges
are selected on the basis of left and right eigenvectors of leading eigenvalue of the graph such
that for each edge ex, score(ex) is the dot product of the left and right eigenvectors of leading
eigenvalue of the adjacency matrix of A.

Graph vulnerability is defined as measure of how much a graph is likely to be affected by a
virus attack. As in (Tong 2012), the largest eigenvalue is selected as a measure of graph
vulnerability, in (Chen 2016) they also use largest eigenvalue for the purpose but instead of
removing edges, nodes are deleted to maximize the eigendrop. Undirected, unweighted graphs
are considered and nodes are selected by an approximation scheme using the eigenvector
corresponding to largest eigenvalue which cause the maximum drop.

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 5

Zhang et al. and Song et al. adapt the non-preemptive strategy i.e. selection of nodes for
immunization is done after the virus starts propagating across the graph. For this they use
discrete time model to obtain additional information of infected and healthy nodes at each time
stamp. In (Song 2015) directed and weighted graphs are used in which weights represent the
probability of a healthy node being infected by its neighbours and node selection is done on
the basis of these probabilities. Then results are evaluated on the basis of save ratio (SR) which
is the ratio between the number of infected nodes when k nodes are immunized over the
number of infected nodes when no node is immunized. (Zhang 2014a) and (Zhang 2014b)
consider undirected graphs and incorporates dominator trees for selecting nodes. Results are
evaluated in terms of expected number of remaining infected nodes in the graph after the
process of immunization.

In filter placement (Erdös 2012), those nodes are identified which are cause of maximum
information multiplicity. Moreover some reverse engineering techniques are also used for
similar problems. Prakash et al. (Prakash 2012) study the graphs in which virus has already
spread for some time and they point out those nodes from where the spread started. From this
they find out the likelihood of other nodes being affected.

Another direction to look at the problem is to consider graphs in which some nodes are already
infected and these nodes can spread virus among other reachable nodes or graphs in which all
nodes are contaminated and the goal is to decontaminate the graph by using some agent nodes
which traverse along the edges of the graph and clean the nodes. The problem is usually
referred to as decontamination of graph or graph searching problem. Different models are
studied to solve the problem and most of them assume the monotonicity in decontamination
i.e. once a node is decontaminated then it cannot get contaminated again (Bienstock 1991),
(Flocchini 2008), (Flocchini 2007), (Fraigniaud 2008). But non-monotonic strategies are also
studied (Daadaa 2016).

Other work that is related to node immunization is the selection of most influential nodes in a
given network to maximize the diffusion of new information in a network. Kempe et al.
provided the provably efficient approximation algorithm for the problem (Kempe 2003).
Seeman and Singer (Seeman 2013) use stochastic optimization models to maximize the
information diffusion in social networks. Influence maximization problem is slightly different
from immunization problem as in influence maximization problem the goal is to select nodes
for seeding which will maximize the spread on new idea while in node immunization problem
goal is to select nodes which will help in minimal spread of virus.

4 Our Proposed Algorithm

In (Chen 2016) they defined shield value that was an approximation to the eigendrop. We
define our shield value to be the eigendrop and approximate the eigenvalue computation
instead. We achieve better theoretical guarantees with our shield value definition.
Furthermore, it is easy and computationally efficient to approximate our shield value.

4.1 Our shield value and its justification

We use the following well known facts from linear algebra and graph theory. Given an n×n
matrix A, let trace of A be denoted by tr(A),

Fact 3: [c.f. (Strang 1976)]

𝑡𝑟(𝐴) = ∑ 𝑎𝑖𝑖

𝑛

𝑖=1

 = ∑ 𝜆𝑖(𝐴)

𝑛

𝑖=1

Fact 4: [c.f. (West 2001) p. 455]

𝑡𝑟(𝐴𝑝) = ∑ 𝜆𝑖(𝐴𝑝)

𝑛

𝑖=1

= ∑ 𝜆𝑖(𝐴)𝑝

𝑛

𝑖=1

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 6

Clearly, for even powers p, tr(Ap) is an upper bound on 𝜆1
𝑝

 and as p grows tr(Ap) approaches

𝜆𝑚𝑎𝑥
𝑝 (𝐴) where 𝜆𝑚𝑎𝑥 = max{|𝜆𝑖(𝐴)|}. We therefore, try to remove a set S of k vertices from

the graph such that 𝑡𝑟((𝐴−𝑆)𝑝) is minimized. The goodness of a set S in this setting is defined
as

𝑓𝑝(𝑆) = 𝑡𝑟((𝐴−𝑆)𝑝) (1)

Define

𝑔𝑝(𝑆) = 𝑡𝑟(𝐴𝑝) − 𝑡𝑟((𝐴−𝑆)𝑝) (2)

Note that minimizing fp(S) is same as maximizing gp(S).

Given a graph G=(V,E), a walk W of length l in G is a sequence of vertex 𝑣0, 𝑣1, … , 𝑣𝑙 s such

that for 0 ≤ 𝑖 ≤ 𝑙 − 1 (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸. We say that W is a walk from v0 to vl. If v0 = vl, then W

is called a closed walk. For v∈ V, let ℂ𝕎𝑖(𝐺, 𝑣) be the set of closed walks of length i in G

containing the vertex v. Suppose 𝐶𝑊𝑖(𝐺, 𝑣) = |ℂ𝕎𝑖(𝐺, 𝑣)|. When X⊆V, ℂ𝕎𝑖(𝐺, 𝑋) =
⋃ ℂ𝕎𝑖(𝐺, 𝑥)𝑥∈𝑋 . We similarly denote by 𝐶𝑊𝑖(𝐺, 𝑋) to be the cardinality of the set ℂ𝕎𝑖(𝐺, 𝑋).

When X=V, we refer to ℂ𝕎𝑖(𝐺, 𝑋) as ℂ𝕎𝑖(𝐺). So ℂ𝕎𝑖(𝐺) is the set of all closed walks of
length i in G.

We use the following well-known fact from graph theory

Fact 5:[c.f. (West 2001) p.455] Given a graph G with adjacency matrix A,

𝐶𝑊𝑝(𝐺) = 𝑡𝑟(𝐴𝑝) = ∑ 𝜆𝑖
𝑝

𝑛

𝑖=1

 .

It is clear from the definitions and fact 5 that for ⊂ V,

 𝐶𝑊𝑝(𝐺) = 𝐶𝑊𝑝(𝐺−𝑆, 𝑉 ∖ 𝑆) + 𝐶𝑊𝑝(𝐺, 𝑆). (3)

This identity is same as the one already mentioned in (3). This similarly suggests a strategy

namely one should delete a set S of k vertices such that 𝐶𝑊𝑝(𝐺−𝑆, 𝑉 ∖ 𝑆) is minimized for a

large even integer p (equivalently 𝐶𝑊𝑝(𝐺, 𝑆) is maximized). The goodness of a set of vertices

S⊆V, in terms of number of closed walks is given by

 𝑔𝑝(𝑆) = 𝐶𝑊𝑝(𝐺, 𝑆) (4)

which as noted above we would like to maximize. Hence we reduced the problem of finding a
set maximizing the eigendrop to the problem of finding a set of vertices that are part of many
closed walks. We note that this latter problem is of a combinatorial nature and more amenable
to techniques from graph theory.

Algorithm 2 : GREEDY-2 (𝑮, 𝒌, 𝒑)

𝑆 ← ∅
𝒘𝒉𝒊𝒍𝒆 |𝑆| < 𝑘 𝒅𝒐
 𝑣 ← 𝑎𝑟𝑔𝑚𝑎𝑥 𝐶𝑊𝑝

v∈V ∖S

(𝐺𝑆, 𝑣)

 𝑆 ← 𝑆 ∪ {𝑣}
𝒓𝒆𝒕𝒖𝒓𝒏 𝑆

An algorithm based on this intuition is given in Algorithm GREEDY-2(G,k,p). Quality
guarantee of Algorithm GREEDY-2(G,k,p) follows from sub-modularity of the optimization
function (4) and Theorem 1. Next we show that the objective function given in (4) is non-
negative, monotone sub-modular, i.e. we show that gp(S) has the property of diminishing
return.

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 7

Lemma 2: The function gp(S) given in (4) is non-negative, monotonically non-decreasing
and sub-modular.

Proof: Since gp(S) counts the number of closed walks of length p, it is clearly non-negative. By
definition of gp(S) for X⊆ Y we have
 𝑔𝑝(𝑌) − 𝑔𝑝(𝑋) = 𝐶𝑊𝑝(𝐺, 𝑌) − 𝐶𝑊𝑝(𝐺, 𝑌)

 = 𝐶𝑊𝑝(𝐺, (𝑌 ∖ 𝑋) ∪ 𝑋) − 𝐶𝑊𝑝(𝐺, 𝑋)

 = 𝐶𝑊𝑝(𝐺, 𝑋) + 𝐶𝑊𝑝(𝐺−𝑋, 𝑌 ∖ 𝑋) − 𝐶𝑊𝑝(𝐺, 𝑋)

 = 𝐶𝑊𝑝(𝐺−𝑋, 𝑌 ∖ 𝑋) ≥ 0

where the last inequality follows from non-negativity of gp(S). Hence gp(S) is monotonically
non-decreasing function.

For sub-modularity of gp(S), let X,Y,Z⊂V such that X⊂Y and Z∩Y=∅. Let L=X∪Z and R=Y∪Z.
We have

 (𝑔𝑝(𝑅) − 𝑔𝑝(𝑌)) − (𝑔𝑝(𝐿) − 𝑔𝑝(𝑋))

 = 𝐶𝑊𝑝(𝐺, 𝑅) − 𝐶𝑊𝑝(𝐺, 𝑌) − 𝐶𝑊𝑝(𝐺, 𝐿) + 𝐶𝑊𝑝(𝐺, 𝑋

 = 𝐶𝑊𝑝(𝐺, 𝑌 ∪ 𝑍) − 𝐶𝑊𝑝(𝐺, 𝑌) − 𝐶𝑊𝑝(𝐺, 𝑋 ∪ 𝑍) + 𝐶𝑊𝑝(𝐺, 𝑋)

 = 𝐶𝑊𝑝(𝐺, 𝑌) + 𝐶𝑊𝑝(𝐺−𝑌, 𝑍) − 𝐶𝑊𝑝(𝐺, 𝑌) − 𝐶𝑊𝑝(𝐺, 𝑋) − 𝐶𝑊𝑝(𝐺−𝑋, 𝑍) + 𝐶𝑊𝑝(𝐺, 𝑋)

 = 𝐶𝑊𝑝(𝐺−𝑌, 𝑍) − 𝐶𝑊𝑝(𝐺𝑋, 𝑍) ≤ 0

where the last inequality follows from the fact that by definition ℂ𝕎𝑝(𝐺−𝑌, 𝑍) ⊆

ℂ𝕎𝑝(𝐺−𝑋, 𝑍), hence 𝐶𝑊𝑝(𝐺−𝑌, 𝑍) ≤ 𝐶𝑊𝑝(𝐺−𝑋, 𝑍)

For a vertex v, 𝐶𝑊𝑝(𝐺, 𝑣) can be computed by the powers of A i.e 𝐴2, 𝐴3, ⋯ , 𝐴𝑝. Clearly

computing all these matrices for large p when G is significantly large as well is computationally
expensive. So the Algorithm GREEDY-2(G,k,p) is practically impossible to be executed. So we
set p=4 to approximate the result and our practical experimentation shows that p=4 gives good
enough quality guarantee. Although we have also done approximation using p=6 in (Tariq
2017), which certainly gives better results, we focus on p=4 only in this paper.

First we give a closed form expression for 𝐶𝑊4(𝐺, 𝑣) in terms of degrees and codegrees. For a
given graph G, 𝑁𝐺(𝑥) = {𝑦 ∈ 𝑉(𝐺): 𝐴𝐺(𝑥, 𝑦) = 1} and 𝑑𝐺(𝑥) = |𝑁𝐺(𝑥)|. Define 𝑁𝐺(𝑥, 𝑦) = {𝑧 ∈
 𝑉(𝐺): 𝐴𝐺(𝑥, 𝑧) = 1 ∧ 𝐴𝐺(𝑦, 𝑧) = 1} to be the common neighborhood of x and y in G. Let
𝑑𝐺(𝑥, 𝑦) = |𝑁𝐺(𝑥, 𝑦)|, note that 𝑁𝐺(𝑥, 𝑥) = 𝑁𝐺(𝑥) and 𝑑𝐺(𝑥, 𝑥) = 𝑑𝐺(𝑥). When G is clear in
the context, we refer to 𝑁𝐺(𝑥, 𝑦) as N(x,y) and similarly to dG (x,y) as d(x,y).

Lemma 3: For any vertex v∈ V,

𝐶𝑊4(𝐺, 𝑣) = 2𝑑(𝑣)2 + 4 ∑ 𝑑(𝑢, 𝑣)2

{𝑢∈𝑉, 𝑢≠ 𝑣}

 .

Proof: A closed walk W:(v,x,u,y,v) of length 4 can be interpreted as the concatenation of two
walks of length 2 with same end points u and v. The number of walks of length 2 with the end
points u, v is 𝐴𝐺

2 (𝑢, 𝑣). We want to count the closed walks of length 4 that contain a fixed vertex
v atleast once. Note that v can occur at most twice in a closed walk of length 4. In a closed walk
of length 4 there are 4 positions for vertices (Since first and last vertex is same, we consider it
one position).

First we count the closed walks of length 4 that contain v exactly in one position. Call the set
of closed walks of length 4 with v at ith position as 𝐶4 (𝑣, 𝑖). This gives the total number of closed

walks of length 4 with appearance of v exactly once as ∑ |𝐶4(𝑣, 𝑖)|4
{𝑖=1} . Any closed walk in

𝐶4(𝑣, 1) is of the form (v,a,b,c,v), where a,b,c are vertices in V(G). Number of these walks is
∑ (𝐴2(𝑣, 𝑏))2

{𝑏≠ 𝑣} . Clearly (c,v,a,b,c) represents any closed walk in 𝐶4(𝑣, 2). Note that for a fixed

a,b and c, (c,v,a,b,c) is one position clockwise rotation of closed walk (v,a,b,c,v). This implies

that corresponding to every closed walk in 𝐶4(𝑣, 1) there is a closed walk in 𝑖𝑛 𝐶4(𝑣, 2) and

vice versa. Hence the number of walks in 𝑖𝑛 𝐶4(𝑣, 2) is also ∑ (𝐴2(𝑣, 𝑏))
2

{𝑏≠ 𝑣} . Similarly we get

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 8

that the number of walks in 𝐶4(𝑣, 3) and 𝐶4(𝑣, 4) is also the same. So we have ∑ |𝐶4(𝑣, 𝑖) |4
{𝑖=1} =

4 ∑ (𝐴2(𝑢, 𝑣))
2

{ 𝑢≠ 𝑣} .

Second we consider closed walks in which v appears twice. Now it is possible in two ways: 1) v
appears in 1st and 3rd position as (v,a,v,c,v) or 2) v takes 2nd and 4th position as (a,v,c,v,a).
Clearly there are 2(𝐴2(𝑣, 𝑣))2 such walks.

This gives total number of closed walks of length 4 containing a vertex v as

 𝐶𝑊4(𝐺, 𝑣) = 2(𝐴2(𝑣, 𝑣))2 + 4 ∑ 𝐴2(𝑢, 𝑣)2
{𝑢≠ 𝑣}

which is same as what we required.

We incorporate the above formula in the following algorithm. For a given vertex v, 𝑠𝑐𝑜𝑟𝑒𝐺(𝑣) =
4 ∑ 𝑑(𝑢, 𝑣)^2 − 2𝑑(𝑣)^2{𝑢∈ 𝑉(𝐺)} then ∑ 𝑑(𝑢, 𝑣)2

{𝑢≠ 𝑣} can be computed by taking the

characteristic vector 𝜒𝑣 of N(v) (a binary vector of length n where the 𝜒𝑣[𝑖] = 1 ↔ (𝑣, 𝑣𝑖) ∈ 𝐸).
Then for each 𝑣𝑒𝑟𝑡𝑒𝑥 𝑢 ∈ 𝑉 ∖ {𝑣} we go through each neighbour x of u in its adjacency list and
check if 𝜒𝑣[𝑥] = 1 to increment d(v,u).

It takes O(m) time to compute the 𝑠𝑐𝑜𝑟𝑒𝐺(𝑥) for a vertex x, to get the vertex with maximum
score it takes O(nm) time. Note that after removing k vertices (for constant k) the graph still
has O(m) edges. Now we give an efficient approximation to 𝑠𝑐𝑜𝑟𝑒𝐺(𝑥) that not only can be
computed in linear time but also can be updated after removing a vertex y in time proportional
to d(x).

We have

 (
∑ 𝑑(𝑢,𝑣){𝑢≠𝑣}

𝑛
)

2

≤
(∑ 𝑑(𝑢,𝑣)2

{𝑢≠𝑣})

𝑛
≤ (

∑ 𝑑(𝑢,𝑣)2
{𝑢≠𝑣}

𝑛
) (5)

The first inequality is the Cauchy-Schwarz inequality, [c.f (Kreyszig 1989)], while the second
follows from the fact that d(u,v) is non-negative for each u,v.

In view of the above inequality, we approximate the 𝑠𝑐𝑜𝑟𝑒_𝐺(𝑣) by 𝑠𝑐𝑜𝑟𝑒_𝐺′(𝑣) given as

 𝑠𝑐𝑜𝑟𝑒𝐺
′ (𝑣) = 2𝑑𝐺

2 (𝑣) + 4(∑ 𝑑𝐺(𝑢,𝑣){𝑢≠ 𝑣})
2

. (6)

Our motivation to use 𝑠𝑐𝑜𝑟𝑒𝐺
′ (𝑥) is that not only it is easy to compute but also after a vertex is

deleted it is easy to update the scores of all vertices in the remaining subgraph.

4.2 Algorithm

Now we give the algorithm to compute the results. First we show procedure to find 𝑠𝑐𝑜𝑟𝑒𝐺
′ (𝑣)

for graph G in Algorithm COMPUTE-SCORE(G), then in Algorithm UPDATE-SCORE(G,vi)we
give algorithm to update the scores of vertices when a certain vertex vi is deleted from the graph
and finally we discuss the greedy approach to approximate that which vertices should be
deleted in order to immunize the graph in Algorithm GREEDY-3(G,k) and along with these we
discuss the time and space complexity in this section. Now we give algorithm to compute
𝑠𝑐𝑜𝑟𝑒𝐺

′ (𝑣);

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 9

Algorithm 3 : COMPUTE-SCORE (G)

1: deg ← 𝑍𝐸𝑅𝑂𝑆(𝑛) ⊳ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑎𝑟𝑟𝑎𝑦 𝑡𝑜 𝑛 𝑧𝑒𝑟𝑜𝑠

2: 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚 ← 𝑍𝐸𝑅𝑂𝑆(𝑛) ⊳ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑐𝑜𝑑𝑒𝑔𝑟𝑒𝑒 𝑠𝑢𝑚 𝑎𝑟𝑟𝑎𝑦 𝑡𝑜 𝑛 𝑧𝑒𝑟𝑜𝑠

3: 𝑠𝑐𝑜𝑟𝑒𝐺
′ ← 𝑍𝐸𝑅𝑂𝑆(𝑛) ⊳ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑠𝑐𝑜𝑟𝑒𝑠 𝑡𝑜 𝑧𝑒𝑟𝑜𝑠

4: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 𝒅𝒐

5: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑣𝑗 𝑜𝑓 𝑣𝑖 𝒅𝒐

6: degG[𝑣𝑖] ← degG[𝑣𝑖] + 1

7: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 𝒅𝒐

8: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑣𝑗 𝑜𝑓 𝑣𝑖 𝒅𝒐

9: 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑗] ← 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑗] + degG[𝑣𝑖] − 1

10: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖𝒅𝒐

11: 𝑠𝑐𝑜𝑟𝑒𝐺
′ [𝑣𝑖] ← 2 ∗ degG[𝑣𝑖]

2 + 4 ∗ 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑖]2

Lemma 4: Runtime of Algorithm COMPUTE-SCORE(G) is O(m).

Proof: It is clear that line 6 of Algorithm COMPUTE-SCORE(G) takes O(1) time and it is
executed O(m) times. Since loop at line 5 is iterated over all neighbours of a fixed vertex, vi.
Hence for vi, line 6 is executed 𝑑𝐺(𝑣𝑖) times. Thus for all 𝑣𝑖 ∈ 𝐺, line 6 runs for
∑ 𝑑_𝐺(𝑣_𝑖){𝑣𝑖∈𝑉(𝐺)} = 2𝑚 (Bondy 1976). Same is true for line 9.

Line 11 has constant time computation while it is computed for every vertex, thus it takes O(n)
time. So total time taken to compute score of every vertex is O(m).

For a given vertex v of G, we update the score of vertices after removing v in the following way;

Algorithm 4 : UPDATE-SCORE (𝑮,𝒗𝒊)

1: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑣𝑗 𝑜𝑓 𝑣𝑖 𝒅𝒐

2: degG[𝑣𝑗] ← degG[𝑣𝑗] − 1

3: 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑗] ← 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑗] − (degG[𝑣𝑖] − 1)

4: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑣𝑘 𝑜𝑓 𝑣𝑗 𝒅𝒐

5: 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑘] ← 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑘] − 1

6: degG[𝑣𝑖] ← 0

7: 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑖] ← 0

8: 𝑠𝑐𝑜𝑟𝑒𝐺
′ [𝑣𝑖] ← 0

9: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑣𝑗 𝑜𝑓 𝑣𝑖 𝒅𝒐

10: 𝑠𝑐𝑜𝑟𝑒𝐺
′ [𝑣𝑗] ← 2 ∗ degG[𝑣𝑗]

2
+ 4 ∗ 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑗]

2

11: 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑣𝑘 𝑜𝑓 𝑣𝑗 𝒅𝒐

12: 𝑠𝑐𝑜𝑟𝑒𝐺
′ [𝑣𝑘] ← 2 ∗ degG[𝑣𝑘]2 + 4 ∗ 𝑐𝑜𝑑𝑒𝑔𝑆𝑢𝑚[𝑣𝑘]2

Lemma 5: Algorithm UPDATE-SCORE(G,vi) takes O(m) time to update score with respect
to parameter vi.

Proof: In algorithm, line 2, 3 and 8 takes constant time steps and both are computed 𝑑𝐺(𝑣_𝑖)
times. However line 5 and 12 are computed ∑ 𝑑𝐺(𝑣𝑗){𝑣𝑗∈ 𝑁𝐺(𝑣𝑖)} times which is upper bounded

by m. Hence for a fixed vertex vi runtime of algorithm is O(m).

We give here the proof of correctness of the Algorithms COMPUTE-SCORE(G) and UPDATE-
SCORE(G,vi).

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 10

Lemma 6: For each vertex 𝑣 ∈ 𝑉(𝐺) Algorithm COMPUTE-SCORE(G) computes the score
𝐺, 𝑣𝑖 as defined in (5).

Proof: It is clear that the Algorithm COMPUTE-SCORE(G) computes the first term correctly,
as each neighbour vi of v contributes 1 to the degree of v. To see why the second term is
computed correctly, consider the following fact:

Fact 6: For ∈ 𝑉(𝐺) , ∑ 𝑑𝐺(𝑢, 𝑣){𝑢≠ 𝑣} = ∑ (𝑑𝐺(𝑤) − 1){𝑤∈ 𝑁𝐺(𝑣)}

Proof: The left hand side is counting all occurrences of all vertices w such that w is a common
neighbour of u and some vertex v. Essentially counting all paths of length 2 from u to v where
w is the center vertex.

We count these structures by counting the number of times each center vertex thus appear.
Since v is fixed, the number of times a vertex w appears in such a structure is exactly the
number of neighbours of w, i.e. 𝑑𝐺(𝑤) times. Now since v is fixed and it is also a neighbour of
w, we subtract one from it. Hence the expression on the right hand side follows.

Lemma 7: For all vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) Algorithm UPDATE-SCORE(𝐺, 𝑣𝑖) computes the
𝑠𝑐𝑜𝑟𝑒𝐺−{𝑢}

′ (𝑣) as defined in (5).

Proof. To see this, consider a vertex v which is neighbour of u. We note that first contribution
of u in score' of v is in the first term i.e. degree of v, so we decrease the degree of v by one.
Clearly from the figure below, u adds 𝑑𝐺(𝑢) − 1 in codegree sum of v, which is the second term
of the 𝑠𝑐𝑜𝑟𝑒𝐺

′ (𝑣), given as ∑ 𝑑𝐺(𝑢, 𝑣){𝑢≠ 𝑣} .

Now consider the vertices vi, which are neighbours of neighbours of u. Score of these vertices
is also effected by removing u since u contribute one to codegree sum of vi.

Here is the algorithm to select k vertices in the given graph G such that approximated
eigendrop is maximized after deleting those vertices.

Algorithm 5 : GREEDY-3 (𝑮, 𝒌)

1: 𝑆 ← ∅
2: COMPUTE-SCORE(G)
3: 𝒘𝒉𝒊𝒍𝒆 |𝑆| < 𝑘 𝒅𝒐

4: 𝑣 ← 𝑎𝑟𝑔𝑚𝑎𝑥
𝑢∈𝑉∖𝑆

 𝑠𝑐𝑜𝑟𝑒𝐺
′ [𝑢]

5: 𝑆 ← 𝑆 ∪ {𝑣}
6: UPDATE-SCORE(G,v)
7: 𝒓𝒆𝒕𝒖𝒓𝒏 𝑆

Theorem 2: The computational complexity of the Algorithm GREEDY-3(G,k) is 𝑂(𝑛 + 𝑘𝑚 +
𝑘 log (𝑛)), while the space complexity is O(m+n+k).

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 11

Proof. By Lemma 4, line 2 takes O(m) time. The scores for all vertices can be stored in a MAX-
HEAP, which can be built in O(n) time while each UPDATE-KEY and EXTRACT-MAX takes
𝑂(log (𝑛)) time (Cormen 2009). We extract max from the heap k times, hence its total runtime
is 𝑂(log (𝑛)). As argued by Lemma 5, time consumed in each call to UPDATE-SCORE takes
O(m) time, we get that total time taken by the algorithm is 𝑂(𝑛 + 𝑘𝑚 + 𝑘 𝑙𝑜𝑔 𝑛). For the space
complexity, in addition to storing the graph that takes O(n+m) space, we need O(n) space to
store the three additional arrays.

5 Experimental Section

We present results of our approximation algorithm in this section. We evaluate the goodness
of our algorithm on real world graphs to quantify the scalability and effectiveness on large
graphs. Throughout this paper we have used Susceptible−Infected−Susceptible (SIS) model
for virus propagation in graphs. For benchmark comparison we also implemented MAX-
DEGREE and UPDATED-MAX-DEGREE. MAX-DEGREE picks the top k maximum degree
vertices for immunization while UPDATED-MAX-DEGREE selects the vertex with the
maximum degree and deletes that vertex and repeats k times. We use the NET-SHIELD
implementation which is available online1. We implemented our proposed algorithm in Matlab
and our implementation along with source code and documentation is available online on the
given link2.

Name Node Count Edge Count

Karate 34 78

Oregon 10,670 22,002

AA 418,236 2,753,798

Table 1 Summary of Datasets

The data sets used in experimentation are described in Table 1. All the real graphs used for
experimentation obey power law distribution of degrees. The first data set is of a local karate
club and is named as Karate graph3. Nodes of the graph represent members of the club and an
edge between nodes show that corresponding members are friends with each other. Graph
consists of 34 nodes and 78 edges. The graph is undirected and unweighted.

The second data set is from Oregon AS (Autonomous System)4 router graphs, which are AS
level connectivity networks inferred from Oregon route views. There are a number of Oregon
AS graphs available and each node represents a router and an edge between two routers
represents a direct peering relationship between two routers. We have selected one set from
Oregon router graphs having 10,670 nodes and 22,002 edges. The graph is undirected and
unweighted. Nodes selected by greedy algorithm are those routers whose immunization will
maximally reduce the spread of virus.

The third data set (AA) is from DBLP5 dataset. In graph a node represents an author and
presence of an edge between two nodes shows that two authors have a co-authorship. In DBLP
there is total node count of 418,236 and the number of edges among nodes is 2,753,798. We
extracted smaller graphs by selecting co-authorship graph of only one journal (e.g Displays,
International Journal of Computational Intelligence and Applications, International Journal
of Internet and Enterprise Management, etc.). We ran our experiments on 20 different smaller
co-authorship networks based on co-authorship graphs of 20 different journals. For the
smaller sub graphs that we have extracted from DBLP dataset, node count goes up to few

1 https: //www.dropbox.com/s/aaq5ly4mcxhijmg/Netshieldplus.tar
2 www.dropbox.com
3 http://konect.uni-koblenz.de/networks/ucidata-zachary
4 http://snap.stanford.edu/data/oregon1.html
5 http://dblp.uni-trier.de/xml/

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 12

thousands and edge count goes up to few ten thousands. Co-authorship graph of ActaInf
contains 1,791 nodes and 1,659 edges, graph of AI Communication journal has node count of
1,203 and edge count of 2,204 , sub graph of Asia-Pacific Journal of Operational Research
(APJOR) has 1,132 nodes and 1,145 edges, Computer in Industry journal contains 2,844 nodes
and 4,466 edges among nodes, journal of IEEE Wireless has total of 7,882 authors and 16,557
co-authorship links among authors. Detail of sub graphs of DBLP data set is also given in Table
2. These sub graphs are also undirected and unweighted.

Name Node Count Edge Count

ActaInf 1,791 1,659
AI Communication 1,203 2,204
APJOR 1,132 1,145
Computer In Industry 2,844 4,466
Computing And Informatics 1,598 2,324
Ecological Informatics 1,990 4,913
IEEE Wireless 7,882 16,577
IJCIA 848 975
IJIEM 373 357

Table 2 Summary of DBLP subgraphs

We did extensive experimentation with varying count of nodes to be immunized. In the results
shown, x-axis shows the value of k which is count of immunized nodes and y-axis shows the
percentage of eigendrop which is the achieved benefit after deleting k nodes from graph.
Results are evaluated on the basis of percentage of eigendrop. Eigendrop is difference of largest
eigenvalues of original graph and perturbed version of graph after immunization of k nodes.

 Δ𝜆 = 𝜆 − 𝜆(𝑆) (7)

where S is the set containing nodes to be immunized having cardinality k. It is clear from the
results that our greedy algorithm outperforms NetSheild approach and other approaches like
top k degree and updated maximum degree approach. Our greedy algorithm is scalable for
larger values of k as well as for larger graphs as our algorithm has less running time complexity
than NetSheild, top k degree and updated maximum degree.

Figure 1 Eigendrop of Actainf Graph

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 13

Figure 2 Eigendrop of AICommunication Graph

Figure 3 Eigendrop of APJOR Graph

Figure 4 Eigendrop of Computer In Industry Graph

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 14

Figure 5 Eigendrop of Computing And Informatics Graph

Figure 6 Eigendrop of Ecological Informatics Graph

Figure 7 Eigendrop of IEEE Wireless Graph

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 15

Figure 8 Eigendrop of IJCIA Graph

Figure 9 Eigendrop of IJIEM Graph

Figure 10 Eigendrop of Oregon Graph

6 Conclusion

In this work, we explored some links between established graph vulnerability measure and
other spectral properties of even powers of adjacency matrix of the graph. We define shield
value in terms of trace of the adjacency matrix of the graph. Based on these insights we present
a greedy algorithm that iteratively selects k nodes such that the impact of each node is
maximum in the graph, in the respective iteration, and thus we maximally reduce the spread
of a potential infection in the graph by removing those vertices. Our algorithm is scalable to
large graphs since it has linear running time in the size of the graph. We have conducted

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 16

experiments on different real world communication graphs to confirm the accuracy and
efficiency of our algorithm. Our algorithm outperforms the state of the art algorithm in
performance as well as in quality.

The main limitation of this work is that we used only p=4, but it is theoretically clear that using
large values of p would yield better immunization performance. For the future work, we will
consider the large values of the parameter p, used in the definition of our shield value.

References

Abbas, S., Tariq, J., Zaman, A., & Khan, I. (2017). Sampling Based Efficient Algorithm to
Estimate the Spectral Radius of Large Graphs. In 37th IEEE International Conference
on Distributed Computing Systems Workshops, ICDCS Workshops (pp. 175-180). IEEE.
doi: 10.1109/ICDCSW.2017.71

Ahmad, M., Tariq, J., Farhan, M., Shabbir, M., & Khan, I. (2016). Who Should Receive the
Vaccine? In 14th Australasian Data Mining Conference, Australian Computer Society.

Bienstock, D., & Seymour, P. (1991). Monotonicity in graph searching. Journal of
Algorithms, 12(2), 239-245. doi : 10.1016/01966774(91)90003-H

Bondy, J. A., & Murty, U. S. R. (1976). Graph theory with applications (Vol. 290). London:
Macmillan.

Briesemeister, L., Lincoln, P., & Porras, P. (2003). Epidemic profiles and defense of scale-free
networks. In Proceedings of the 2003 ACM workshop on Rapid Malcode, WORM, (pp.
67-75). ACM. doi: 10.1145/948187.948200

Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., & Faloutsos, C. (2008). Epidemic thresholds
in real networks. ACM Transactions on Information and System Security
(TISSEC), 10(4),. doi: 10.1145/1284680.1284681

Chen, C., Tong, H., Prakash, B. A., Tsourakakis, C. E., Eliassi-Rad, T., Faloutsos, C., & Chau,
D. H. (2016). Node immunization on large graphs: Theory and algorithms. IEEE
Transactions on Knowledge and Data Engineering, 28(1), 113-126. doi:
10.1109/TKDE.2015.2465378

Chung, F. R. (1997). Spectral graph theory (No. 92). American Mathematical Soc.

Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. (2001). Introduction to algorithms
(2nd ed.). McGraw-Hill Higher Education.

Daadaa, Y., Jamshed, A., & Shabbir, M. (2016). Network decontamination with a single
agent. Graphs and Combinatorics, 32(2), 559-581. doi: 10.1007/s00373015-1579-5

Erdös, D., Ishakian, V., Lapets, A., Terzi, E., & Bestavros, A. (2012). The filter-placement
problem and its application to minimizing information multiplicity. Proceedings of the
VLDB Endowment, 5(5), 418-429.

Flocchini, P., Huang, M. J., & Luccio, F. L. (2007). Decontaminating chordal rings and tori
using mobile agents. International Journal of Foundations of Computer
Science, 18(03), 547-563. doi: 10.1142/S0129054107004838

Flocchini, P., Huang, M. J., & Luccio, F. L. (2008). Decontamination of hypercubes by mobile
agents. Networks, 52(3), 167-178. doi: 10.1002/net.20240

Fraigniaud, P., & Nisse, N. (2008). Monotony properties of connected visible graph
searching. Information and Computation, 206(12), 1383-1393. doi:
10.1016/j.ic.2008.09.002

Ganesh, A., Massoulié, L., & Towsley, D. (2005). The effect of network topology on the spread
of epidemics. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings IEEE (Vol. 2, pp. 1455-1466). IEEE. doi:
10.1109/INFCOM.2005.1498374

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 17

Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a
social network. In Proceedings of the ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 137-146). ACM. doi:
10.1145/956750.956769

Kreyszig, E. (1989). Introductory functional analysis with applications (Vol. 1). New York:
wiley.

Kuhlman, C. J., Tuli, G., Swarup, S., Marathe, M. V., & Ravi, S. S. (2013). Blocking simple and
complex contagion by edge removal. In IEEE 13th International Conference Data
Mining (ICDM), (pp. 399-408). IEEE. doi: 10.1109/ICDM.2013.47

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for
maximizing submodular set functions—I. Mathematical Programming, 14(1), 265-294.
doi: 10.1007/BF01588971

Prakash, B. A., Vreeken, J., & Faloutsos, C. (2012). Spotting culprits in epidemics: How many
and which ones?. In IEEE 12th International Conference on Data Mining (ICDM), (pp.
11-20). IEEE. doi: 10.1109/ICDM.2012.136

Seeman, L., & Singer, Y. (2013). Adaptive seeding in social networks. In IEEE 54th Annual
Symposium on Foundations of Computer Science (FOCS), (pp. 459-468). IEEE. doi:
10.1109/FOCS.2013.56

Serre, D. (2002). Matrices, volume 216 of Graduate Texts in Mathematics.

Song, C., Hsu, W., & Lee, M. L. (2015). Node immunization over infectious period.
In Proceedings of the 24th ACM International Conference on Information and
Knowledge Management (pp. 831-840). ACM. doi: 10.1145/2806416.2806522

Strang, G. (2006). Linear algebra and its applications. Belmont, CA: Thomson, Brooks/Cole.

Tariq, J., Ahmad, M., Khan, I., & Shabbir, M. (2017). Scalable Approximation Algorithm for
Network Immunization. In 21st Pasific Asia Conference on Information Systems, PACIS.

Tong, H., Prakash, B. A., Eliassi-Rad, T., Faloutsos, M., & Faloutsos, C. (2012). Gelling, and
melting, large graphs by edge manipulation. In Proceedings of the 21st ACM
International Conference on Information and Knowledge Management (pp. 245-254).
ACM. doi: 10.1145/2396761.2396795

West, D. B. (2001). Introduction to graph theory (Vol. 2). Upper Saddle River: Prentice hall.

Zhang, Y., & Prakash, B. A. (2014a). DAVA: distributing vaccines over networks under prior
information. In Proceedings of the 2014 SIAM International Conference on Data
Mining (pp. 46-54). SIAM. doi: 10.1137/1.9781611973440.6

Zhang, Y., & Prakash, B. A. (2014b). Scalable vaccine distribution in large graphs given
uncertain data. In Proceedings of the 23rd ACM International Conference on
Information and Knowledge Management (pp. 1719-1728). ACM. doi:
10.1145/2661829.2662088

Copyright: © 2017 Ahmad, Traiq, Shabbir & Khan. This is an open-access article distributed
under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia License,
which permits non-commercial use, distribution, and reproduction in any medium, provided
the original author and AJIS are credited.

http://creativecommons.org/licenses/by-nc/3.0/au/

Australasian Journal of Information Systems Ahmad, Traiq, Shabbir & Khan
2017, Vol 21, Selected papers from AusDM Spectral Methods for Immunization of Large Networks

 18

