
Australasian Journal of Information Systems Sun & Stirling 
2017, Vol 21, Selected Papers from AusDM Event Group Based Classification Framework 

  1 

An Event Group Based Classification Framework for Multi-
variate Sequential Data 

Chao Sun 
The University of Sydney 
chao.sun@sydney.edu.au 

David Stirling 
University of Wollongong 

Abstract 

Decision tree algorithms were not traditionally considered for sequential data classification, 
mostly because feature generation needs to be integrated with the modelling procedure in 
order to avoid a localisation problem. This paper presents an Event Group Based Classification 
(EGBC) framework that utilises an X-of-N (XoN) decision tree algorithm to avoid the feature 
generation issue during the classification on sequential data. In this method, features are 
generated independently based on the characteristics of the sequential data. Subsequently an 
XoN decision tree is utilised to select and aggregate useful features from various temporal and 
other dimensions (as event groups) for optimised classification. This leads the EGBC 
framework to be adaptive to sequential data of differing dimensions, robust to missing data 
and accommodating to either numeric or nominal data types. The comparatively improved 
outcomes from applying this method are demonstrated on two distinct areas – a text based 
language identification task, as well as a honeybee dance behaviour classification problem. A 
further motivating industrial problem – hot metal temperature prediction, is further 
considered with the EGBC framework in order to address significant real-world demands. 

Keywords: Multi-variate time series; Symbolic data mining; Pattern search; SAX motifs; X-
of-N decision trees 

1 Introduction 

Time series data mining (TSDM) is a challenging task, which has attracted enormous attention 
in the recent years. TSDM is of particular interest in many industry areas where improvements 
and knowledge extensions are expected from utilising data science technology over massive 
existing operational records. The research work described in this paper was initiated and 
motivated by the real industrial needs from the iron-making industry, where operational data 
was continuously collected from a Blast Furnace (BF) for a number of years. Through building 
predictive models on the BF data, the authors have identified a major problem that the data 
attributes, due to the variation of type or the spatial difference at collection, are shifted along 
the time axis with different extent. As the results may occur and be detect prior to the detection 
of the causes, the inter-variable Granger causality relationship (Granger 1969) are broken. 

The situation in which attributes are not aligned in time is in fact a quite common problem in 
TSDM, however this is often overlooked in practice. Temporal misalignment is the name we 
attribute to this scenario where time delays exist between the generation and detection of 
various data attribution, and therefore break the causal-resultant relationship between input 
and output attributes. The time shifts on differing attributes are generally not uniform; these 
in turn make synchronisation very hard if not possible. For example, Figure 1 illustrates a 
typical example of temporal misalignment when lightning and thunder are detected at 
different times with different time spans due to the speed difference between light and sound.  
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Figure 1: Temporal misalignment in the lightning detection. The heights of the cloud signs 
(on Y-Axis) represent the distances between the lightning events and the observer. And the 
X-Axis represents the time when flashes and the thunder are detected. Assuming the flashes 
are detected almost immediately, the delays of the associated thunder (marked with the 
same colour) are determined by the associated distance. Therefore, proximally close flash 
and thunder pairs may in-fact not be associated to each other, due to the occurrence of 
temporal misalignment. 

In this example, when multiple lightning events (marked as dark/light green and red clouds) 
occur at different distances (Y-Axis) from the observer, the corresponding flashes and thunder 
(marked by the same colours as the source clouds) may be received in a mixed ordering that 
are different than the ordering of the source lightning. Without prior knowledge of the distance 
of each lightning event, the time shift as a function of distance cannot be recovered, therefore 
it is impossible to correctly associate the corresponding flash and thunder observations. 

The lightning example illustrates that even in such a simple system with only two attributes, 
without some awareness of additional contextual information, such as the distance, height and 
direction between the actual lightning and the observer, correctly synchronising the light and 
sound signals is very difficult. Due to the complex and stochastic nature of the industrial 
processes in the BF, it is near impossible to analyse this huge industrial plant using the fixed 
attribute-value model data mining techniques. This paper proposes a new approach, the Event 
Group Based Classification (EGBC) framework in order to address this temporal misalignment 
issue.  

In the remainder of this paper, Section 2 provides background and relevant research work. 
Section 3 focuses on the methodology and experimental settings. Section 4 describes a number 
of experimental results by applying the EGBC framework to various time series classification 
tasks and compares the outcomes with other existing techniques. Lastly, in Section 5 we 
discuss the advantages of this approach and the possibility to further develop this as a 
universal, time series data mining framework for solving other real-world problems.  

2 Background and Literature Review  

A BF, as illustrated in Figure 2, is a massive industrial plant that functions as both a chemical 
reactor and a heat exchanger continuously for many years. Iron oxide pellets, or sintered ore, 
along with coke and limestone, are charged at the top into layers, which gradually over some 
eight hours decent in the blast furnace undergoing a series of chemical reductions to produce 
molten iron.  
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Figure 2: A diagram of the blast furnace in the iron-making industry. 

The BF is a typical non-stationary system; almost all attributes in the BF dataset are subject to 
uncertain time shifts. For instance, domain experts explain that newly produced molten iron 
may require one to two hours before it is sufficiently tapped out of the BF. Other production 
related data, such as the contents of the exhaust gases, metallurgy lab test results and the 
quantity of materials fed from the top of the BF, are generally acquired at a variety of sampling 
rates, such as minutes, possibly even hour or up to 8 hours in relation to the actual chemical 
and metallurgical processes. Large variances in time shifts between these different attributes 
lead to the temperature of the actual tapped iron, namely the Hot Metal Temperature (HMT), 
being contextually related to a range of process attributes variously distributed backwards in 
time. 

Various researchers have previously attempted to utilise Artificial Neural Networks (ANNs), 
because of their computational efficiency and little to no requirement of prior domain 
knowledge (Rumelhart et al. 1988), for modelling the complex inter-variable relationships, 
such as predicting the silicon content of molten iron (Banks 1999, Sarma 2000). Bhattacharjee 
et al. (1999) proposed traditional feed-forward neural networks to predict a number of quality 
parameters of the molten iron, including a categorised HMT. This work indicated that the 
various multi-layer perception networks were able to predict daily HMT trends utilizing only 
15 inputs from the blast furnace. The extreme learning machine (ELM) algorithm was also used 
for generating dynamic modelling for a predictive model that targeted the silicon content level 
in the molten iron (Zhou et al. 2015). 

In addition to ANN algorithms, other techniques have also been evaluated in the iron-making 
industry for various purposes. Kommenda et al. (2011) used an unguided symbolic regression 
approach for variable selection and knowledge extraction from BF dataset. In this work, 
Genetic Programming (GP) (Koza 1992) was executed multiple times for reducing the 
stochastic effects and for identifying important variables through a variable interaction 
network. In a recent work proposed by Harvey and Gheribi (2014), a direct search algorithm 
called MADS was combined with the classical thermodynamics modelling of for optimising the 
process parameters of a BF. Promising outcomes were produced in the BF simulation, and the 
model indicated improved precision in subsequent quantitative analytic task, such as the 
degradation of the BF refractory materials and liquid metal quality control. A Kalman filter 
and minimum description length (MDL) algorithm was also employed by Waller et al. in a 
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series of works (2000, 2002), in order to improve the linear ARMA and FIR models for 
predicting the silicon content in the hot metal produced by a BF.  

In considering general TSDM work, much of the assessed research focuses on producing 
appropriate time series (TS) representations in order to retain the order of the data. However, 
these representations, considered as TS features, are further analysed by a limited number of 
simpler methods. Some TSDM approaches rely on the indexability of their features (Shieh and 
Keogh 2008, Agrawal et al. 1993), whereas others focused on similarity based features (Möller-
Levet et al. 2003, Morrill 1998).  

Beyond the level of representations, orders among nominal features can be represented by 
Allen’s Interval Algebra (Allen 1983), in which 13 basic relations between two intervals are 
defined, or various extensions of Allen’s definition (Freksa 1992, Roddick & Mooney 2005). 
However, with numerous potential ordering types between intervals, the problem becomes 
significantly more complex in a real time series dataset with tens or hundreds of representative 
features. 

Inference of the cause-effect relationships is commonly based on the Granger Causality 
(Granger 1969, 1980), which evokes two fundamental principles: (1) the effect does not precede 
its cause in time; (2) the casual series contains unique information about the series being 
caused that is not available otherwise. Although Granger Causality was initially proposed for 
solving economics problems, it has been widely utilized for mining time series data. Qiu et al. 
(2012) used Granger graphical models to compute the correlation anomaly of each variable in 
various industrial time series. Mohammad and Nishida (2012) utilised the Granger causality 
for discovering the casual structure of interesting recurring events in multi-dimensional time 
series data. The same method was also used for determining the size of sliding windows and 
feature selection in multivariate time series with lagged values (Sun et al. 2015). 

Episode mining (Mannila et al. 1995) is a specialised approach for analysing temporal event 
data with numerous event combinations that occur within a given window. This technique can 
be extended to general time series data if nominal TS features are defined as events. The 
concept of an episode emphasises together with the importance of combinations of various 
events, that this conforms to the manner in which humans often perceive temporal events 
(Batyrshin & Sheremetov 2008). Despite this extensive research on episode mining considers 
the discovery of frequent serial episodes as the fundamental problem (Mannila et al. 1997, 
Laxman et al. 2007), as these frequent episodes are believed to have a higher importance than 
infrequent episodes. However, in the real world, this is not always true. For example, a 
combination that repeatedly occurs may not be interesting to the observer.  

A similar situation arises with decision tree modelling. Typically, every node in a tree 
represents a conditional test out of many others which divides the data into segments with a 
purer mixture of classes at each descending level. Therefore, the meaningfulness of a condition 
node is measured by the information gain obtained in dividing the dataset. If all event 
combinations in an event sequence are labelled, then the meaningfulness of these can be 
measured in a similar way. In this paper, a new sequential data classification approach is 
presented where the meaningful event combinations are the key factors. The meaningfulness 
of a combination is established by an XoN (X-of-N) decision tree (Zheng 2000) rather than by 
the statistical measure, therefore this approach is based on information theory. Multiple event 
groups are constructed and selected in order to form compact XoN features that are used in 
the tree model.  

An XoN representation contains special features that cover multiple possible combinations of 
given conditions. This is formed by two parts, X and N, and each is a non-empty unsorted set. 
The N component consists of several traditional conditions (TS events in this case), and the X 
component is a list of non-negative integers, denoting the exact numbers of conditions in N to 
be satisfied.  
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Figure 3: A full expansion of an XoN feature. 

A typical XoN feature can be decomposed into a number of combinations of various unordered 
events, as seen in Figure 3. The simple XoN representation covers seven different situations, 
where the A, B, C and D denote conditions that may occur concurrently in the dataset. Although 
the XoN algorithm was not developed for time series analysis, we understand there are 
similarities between the decomposed event combinations and episodes. As an integrated 
feature, an XoN node practically gathers a series of episodes and combines their classifying 
capacities in order to obtain a better performance.  

3 Methodology  

The method is designed to process sequential data with either numeric or nominal values, and 
is based on an idea that any real-world event can be observed and identified as a combination 
of other observable “events” over various temporal attributes. The word “event” here is defined 
as any distinguishable feature derived locally from a sequential data, such that, it may refer to 
temporal shapes, different value zones, transformations of the real data, symbol segments or 
any other features that reflect the characteristics of any temporal segments.  

Whilst not all contextual features are tied to targeted real-world events, some feature 
combinations across various attributes however, may be exclusively associated with such an 
event. This is similar to the manner in which a doctor may diagnose patients: one symptom 
alone may not be sufficient evidence of a certain disease, however a set of relevant symptoms 
could align the diagnosis to a specific disease with considerable confidence. In this paper, an 
EGBC framework, the “events” hold an equivalent meaning to the “symptoms” in a medical 
diagnosing system.  

The basic assumption can be described as follows: If a (detectable) process occurs at some time 
point T, its causal factors or resultant responses can be represented as time series features and 
in turn transformed into nominal events that occur around the time point T. The novelty of 
this work is that all casual and consequent events within a given time frame are 
indiscriminately analysed as unsorted combinations, and the type of the target process can be 
classified based on these combinations, so that the potential localised temporal misalignments 
are eliminated within the given time frame. Therefore, in situations where specific classes are 
clearly labelled on each stage of such sequences, the goal is to build a model that classifies these 
segments based on certain important event combinations they contain. Most time series data 
are not originally presented in the form of nominal events, thus an appropriate transformation 
is required to represent the time series in a nominal event form. Event groups are extracted 
with a sliding window over the sequence, and meaningful combinations of these are 
automatically constructed and selected by an adapted XoN algorithm.  

The flow chart in Figure 4 briefly explains the overall procedure with a simplified example. 
Assuming there are three different working stages in a process1, and the task is then set to 

                                                        

1 For instance, the HMT may be at higher, lower or normal states from the expected temperature level 
during different periods, and these periods can be labelled as three classes (High, Low, Normal) which 
are associated to different BF working stages respectively. 
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identify these stages (classes) from two associated time series TS-A and TS-B. The numeric 
time series are then transformed into two event sequences respectively in which 
synchronisation is not compulsory, named Seq-A and Seq-B, and events are labelled as An and 
Bn accordingly (n being an event numbers). Event groups are then formed across both 
sequences by selecting all events that fall within a sliding window, and labelled by the classes 
as the training dataset. The XoN decision tree model is then trained in order to find the 
optimised event combinations for classifying the various process stages. During this procedure, 
an understanding of the expected event combinations and their correct labelling are essential 
for verifying whether this approach is effectively finding useful combinations and classifying 
the data accurately.  

 

Figure 4: The Procedure of Event Group Based TS Classification Approach. 

In order to evaluate the feasibility of our approach, we employed our event-group based 
approach for two different sequential data classification tasks in the following experiment 
section, described as follows:  

1. Language identification. The goal of this task is to recognise the languages from 
three articles written in different languages. Our approach is used to identify what 
language a word is written in without any dictionary. This task demonstrates how our 
approach performs on real event based sequences (non-time series) rather than 
artificially generated data. The outcomes are compared with the text mining algorithm 
– “TextCat” (Hornik et al. 2013).  

2. Honeybee Dance Behaviour Recognition. In order to identify the dancing 
behaviours of a honey bee, genuine honeybee motion data are studied by employing 
our event group based approach. The sequential real-valued bee motion data are 
transformed and clustered into events before being analysed by the XoN decision trees. 
This task extends the online classification work to a real-world scenario, involving 
multi-dimensional time series data.  

3. Hot Metal Temperature Prediction. The aim of this task is to model the blast 
furnace process based on the abundant historical operational data in order to predict if 
the future HMT falls outside a normal range. Multiple TS attributes are included in the 
dataset with various connotations and sampling rates, among which the temporal 
misalignment issue exist. The events in the BF data are based on the basic shapes, and 
ensemble of XoN models are generated and updated regularly. 
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4 Experiment And Results 

In this section, the method proposed in Section 3 will initially be applied on two sequential 
classification tasks, and subsequently for modelling a more significantly complex industrial 
problem. A language identification (LID task) is conducted in order to model and distinguish 
three different languages (English, Italian and Dutch) without the benefit of any prior linguistic 
or dictionary based knowledge. With naturally occurring events and groups within the text, i.e. 
letters and words, the aim of this task is to verify the feasibility of our event group based 
methodology. In the second, the honey bee dancing task, we evaluate the method on real-
valued time series. In both tasks, online classification along continuous sequences is 
accomplished, i.e. different classes in different states, and in a progressive manner in terms of 
the complexity. Finally, the evaluated full EGBC framework is utilised for modelling the iron-
making dataset in order to predict abnormal states of the blast furnace. 

4.1 Text Mining – Language Identification 

The automatic identification of a language from text is an important and well-studied problem, 
which was considered as a solved problem (McNamee 2005). LID is a typical multi-class 
classification task, however, in the past, decision tree techniques were not considered in this 
domain. The general LID methods are based on either statistical language modelling or the 
frequency of common word usage. Both the statistical and frequency of common words usage 
methods work better on sentences that consist of more than 15 words (McNamee 2005). The 
accuracy of various traditional LID methods approaches some 98% if the decision is based on 
sentences or short paragraphs (Takcı & Soğukpınar 2004). 

For the general LID task, identifying the language of single words is not practically necessary, 
because it is not common to mix different languages within individual sentences and 
paragraphs. However, in this work, in order to evaluate the proposed event group based 
classification approach, all articles are analysed and classified word by word. 

4.1.1 Dataset 

Six public domain e-books in the three specific languages are obtained from the Project 
Gutenberg website (Project Gutenberg. n.d.), two in each language2. In order to ensure that 
only letter combinations are used as a valid basis for the classification process, all symbols and 
non-English characters are removed. Words with three or fewer letters are ignored and the 
texts are pre-processed with the Porter Stemming algorithm (Porter 1980) to reduce the word 
form variances for better information retrieval. The sizes of the training and testing datasets 
are 118,192 words (Eng: 31,387; Ita: 50,282; Dut: 36,523) and 76,143 words (Eng: 25,644; Ita: 
34,068; Dut: 16,431) respectively.  

Because words are the basic meaningful elements in languages, the event groups are naturally 
defined as single words. As the spelling is sensitive to the order of characters, in order to 
partially retain ordering information, every pair of adjacent characters in a word are defined 
as events rather than individual letters. Preliminary experiments indicate that the XoN models 
using 2-letter events have a noticeable improvement (5%) on classification accuracy compared 
to models using 1-letter events, if the same modelling parameters are used.  

4.1.2 Experiment Setting and Results 

Following the pseudocode in Zheng’s paper, the XoN algorithm was implemented using Python 
2.7. In order to check the stability of the method, a number of XoN models were generated 
based on a random 60% of the training text, and all performed similarly in terms of the amount 
                                                        

2 Training Texts:  English: http://www.gutenberg.org/files/1999/1999.txt 
Italian: http://www.gutenberg.org/cache/epub/1012/pg1012.txt  
Dutch: http://www.gutenberg.org/files/18066/18066-8.txt  

   Testing Texts:  English: http://www.gutenberg.org/ebooks/43230 
Italian: http://www.gutenberg.org/ebooks/43226 
Dutch: http://www.gutenberg.org/ebooks/11500 
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of pruning used and their accuracy. In the following experiments, the model with the highest 
classification accuracy and moderate pruning was chosen for further analysis.  

In this experiment, the XoN tree model is not forced to make a decision on every event group 
(word), as some words may exist in different languages, and these cross-class groups are not 
classifiable. For the aim of either, classifying languages or obtaining linguistic knowledge, the 
classification of every word is not necessary. In fact, ignoring some common words is seen to 
help the model to focus on the more important linguistic characteristics.  

In order to avoid vague decisions, in this experiment, a minimum confidence parameter is used 
to control the output behaviour of the XoN model. When the confidence from a decision is 
lower than a given threshold “minConf”, the classifier output is altered to “unknown” rather 
than the most likely class. Introducing this “unknown” class and a minimum confidence 
reduces the number of overall mis-classifications and increases the overall classification 
accuracy. Another tree pruning parameter is the general concept of “minCase”, minimum 
number of instances in a node before stopping further splitting. Figure 5 illustrates how the 
accuracies and unknown ratios (the number of unknown cases divided by the size of the test 
dataset) are affected when the model is being pruned with various minCase and minConf.  

 

Figure 5: Classification Performance on Models with Different minCase and minConf. a) 
Accuracy; b) Unknown Ratio. 

In Figure 5, as the minimum confidence varies from 0% to 90%, the classification accuracy on 
the testing text increases. However, a high confidence requirement also renders the model as 
ineffective when the tree is heavily pruned, and the unknown ratio becomes too high. It is 
reasonable to assume that an optimal model could be expected to maintain a relatively high 
accuracy whilst keeping the unknown ratio below an acceptable level.  

The yellow line (minConf = 50%) in Figure 5(a) reaches its peak (accuracy = 89.6%) when the 
value of minCase is 40, and the unknown ratio for the same model is 9.8% when classifying the 
testing dataset. Considering the highest possible accuracy model has 93.79% accuracy and a 
34.09% unknown ratio, the yellow line model is considered to be an optimised tree model for 
the task. Note that the training and testing texts are sourced from different e-books with 
different authors, styles and expressions. It is also expected that this approach would also 
improve if the training and testing data were sourced from the same article or author context.  

4.1.3 Performance Comparison  

Text-Cat (van Noord n.d.), a LID implementation of the N-gram-based text categorization 
(Cavnar et al. 1994), is applied on the testing dataset as a comparison. The Text-Cat is limited 
to the selected three languages in this experiment although it supports up to 69 different 
languages. Text-Cat may make multiple decisions on a word, and these are post-processed to 
either “unknown” or a false decision. For example, if an English word is identified as “English 
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or Italian”, then the result is converted to an “unknown”; and if an English word is identified 
as “Italian or Dutch”, because both are incorrect, the first incorrect decision will be kept.  

Table 1: Identification on Testing Texts with XoN and Text-Cat Models. Based on different 
pruning options, the same fully grown XoN tree model has various sizes (node number), 
accuracies and unknown ratios, listed as Model 1, 2 and 3 respectively. 

 

Table 1: Identification on Testing Texts with XoN and Text-Cat Models. Based on different 
pruning options, the same fully grown XoN tree model has various sizes (node number), 
accuracies and unknown ratios, listed as Model 1, 2 and 3 respectively. 

The Text-Cat models used in this work are publicly available (van Noord n.d.), and each 
language model file contains 400 high frequency terms. A comparison between Text-Cat and 
the XoN tree models (with three different pruning options) can be viewed in Table 1. The first 
XoN decision tree model is lightly pruned, containing some 1222 nodes and achieves 89.6% 
word-by-word classification accuracy on the testing texts (9.8% unknown words of the testing 
texts). As a comparison, the Text-Cat has 81.7% in accuracy on the same testing text (32.4% 
unknown words of the testing texts). Confusion matrices expressed in percentages, are also 
included in Table 1 for easy comparison between all models. 

One advantage of the XoN decision tree model is that it can be easily pruned to suit different 
requirements. For instance, if the accuracy is of higher priority than the unknown ratio, the 
model can be pruned as Model 2 in Table 1, which provides a similar unknown ratio to what 
Text-Cat provides, but with a significantly higher accuracy at 91.9%. However, if a smaller, less 
complex form is preferred, the XoN model can also be further pruned for less nodes. With a 
minCase=460 and minConf=50%, such as Model 3 which contains only 292 nodes yet also 
produces a similar unknown ratio (32.6%) compared to Text-Cat. This model still provides a 
marginally higher identification accuracy at 83% on the test dataset.  

 

Figure 6: Word-by-Word Language Identification by XoN and Text-Cat Models. Font 
colours indicate True Class, Background colours indicate Identified Class. Meaning of 
Colours: Blue-English, Red-Italian, Green-Dutch, Black-Unknown. (a,b,c) Results from XoN 
Model; (d,e,f) Results from Text- Cat Model. 

Table 1: Ident ificat ion on Test ing Texts with XoN and Text -Cat Models
XoN Model 1 XoN Model 2 XoN Model 3 Cat Model

Model minCase= 40 minConf= 50% minCase= 40 minConf= 98% minCase= 460 minConf= 50% Or iginal

Size 1222 Nodes 1342 Nodes 292 Nodes 1200 Terms
Accuracy 89.6% 91.9% 83% 81.7%
Unknown 9.9% 25% 32.6% 32.4%
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clustering methods (Zhou et al. 2013). In this sec-
t ion, the same classificat ion task is performed to show
how our event based decision tree method performs
on this same dataset .

3.2.1 D at a Pr e-pr ocessing

In order to t ransform thereal-valued mot ion data into
nominal events, we define pat terns of movements and
consequent ial movements at any given t ime point T
as the event for describing the dancing behaviours.
For example, it is safe to assume when the behaviour
is left -turn, the bee’s posit ion moves towards the left
relat ive to the previous t rajectory. For the waggle be-
haviour, the bee may move both left and right in an
alternat ing manner. Therefore, the basic movement
pat terns for this task are closely associated with the
direct ions of movements. The sequences of raw po-
sit ions and head angles are t ransformed into the fol-
lowing six features:

• X-O↵ : The X o↵set of current posit ion relat ive
to the previous frame.

• Y-O↵ : The Y o↵set of current posit ion relat ive
to the previous frame.

• CosAng: Cosine of the head angle.

• SinAng: Sine of the head angle.

• AngDi↵ : The di↵erence between head angle and
previous t rajectory.

• Dist : The distance the bee travels since last
frame.

In the above list , the CosAng and SinAng fea-
tures can be considered as an est imat ion of the X-O↵
and Y-O↵ for the following moment , if the bee main-
tains its current heading direct ion and speed. The
AngDi↵ indicates the di↵erence between the current
heading and that of the previous movement . From
every frame, a vector of all six features is viewed as
an unique mot ion status of the dancing bee, and ev-
ery status contains informat ion derived from both the
current and previous frame.

If every such mot ion status is t reated as a nomi-
nal event , there will be a massive number of events.
The curse of dimensionality will a↵ect our decision
t ree algorithm that would seek to find the opt imised
combinat ions. The feature vectors are therefore pre-
clustered using a Minimum Message Length (MML)
algorithm(Wallace & Boulton 1968). Subsequent ly,
each cluster is t reated asan event represent ing a series
of similar mot ion states. The MML clustering also re-
duces thesix dimensional featuresequences into a sin-
gle dimensional event sequence with a limited number
of events.

3.2.2 Par amet er det ai ls

Unlike the textual LID event sequences, the honeybee
dancing events have uniform t ime intervals, therefore
a fixed number of events are selected with a fixed-
width sliding window. The behavioural label of an
event group is determined by the majority of the
ground t ruth within that window. In order to ob-
tain an opt imised model reflect ing the inherent t ruth
within the honey bee dancing mot ion data, a se-
ries of t raining processes were executed with various
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The actual XoN tree models in Table 1 are too large to be included in this paper. Figure 6 
illustrates a number of the classification results where three sections of texts and their 
classification results are visually presented. In Figure 6, the English, Italian and Dutch are 
printed in blue, red and green fonts. If a word is mis-classified, the background colour of that 
word changes to the colour of the wrong decision accordingly. Further, when an unknown 
identification is made, the word is presented in black.  

4.2 Honeybee Dancing Behaviour Classification  

In this task, classification on genuine, real-valued time series data is involved. The honey bee 
dancing dataset (Oh et al. 2008) includes six videos of honeybee dancing, where the trajectory 
of a signalling bee is automatically tracked and converted into quantitative sequential motion 
data, including sequences of position (X and Y) and the head angle of the bee. This dataset 
contains ground truth labels of all data records according to which behaviour of three possible 
behavioural patterns it contains: waggle, right-turn or left-turn. A number of researchers have 
previously attempted to classify the type of dancing behaviour based on these motion features, 
using extended HMM, segmentation (Fox et al. 2008) and clustering methods (Zhou et al. 
2013). In this section, the same classification task is performed to show how our event based 
decision tree method performs on this same dataset.  

4.2.1 Data Pre-processing  

In order to transform the real-valued motion data into nominal events, we define patterns of 
movements and consequential movements at any given time point T as the event for describing 
the dancing behaviours. For example, it is safe to assume when the behaviour is left-turn, the 
bee’s position moves towards the left relative to the previous trajectory. For the waggle 
behaviour, the bee may move both left and right in an alternating manner. Therefore, the basic 
movement patterns for this task are closely associated with the directions of movements. The 
sequences of raw positions and head angles are transformed into the following six features:  

 X-Off: The X offset of current position relative to the previous frame.  

 Y-Off: The Y offset of current position relative to the previous frame.  

 CosAng: Cosine of the head angle.  

 SinAng: Sine of the head angle.  

 AngDiff: The difference between head angle and previous trajectory.  

 Dist: The distance the bee travels since last frame.  

In the above list, the CosAng and SinAng features can be considered as an estimation of the X-
Off and Y-Off for the following moment, if the bee maintains its current heading direction and 
speed. The AngDiff indicates the difference between the current heading and that of the 
previous movement. From every frame, a vector of all six features is viewed as a unique motion 
status of the dancing bee, and every status contains information derived from both the current 
and previous frame.  

If every such motion status is treated as a nominal event, there will be a massive number of 
events. The curse of dimensionality will affect our decision tree algorithm that would seek to 
find the optimised combinations. The feature vectors are therefore pre-clustered using a 
Minimum Message Length (MML) algorithm (Wallace & Boulton 1968). Subsequently, each 
cluster is treated as an event representing a series of similar motion states. The MML clustering 
also reduces the six-dimensional feature sequences into a single dimensional event sequence 
with a limited number of events.  

4.2.2 Parameter details  

Unlike the textual LID event sequences, the honeybee dancing events have uniform time 
intervals, therefore a fixed number of events are selected with a fixed-width sliding window. 

The behavioural label of an event group is determined by the majority of the ground truth 
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within that window. In order to obtain an optimised model reflecting the inherent truth within 
the honey bee dancing motion data, a series of training processes were executed with various 
parameters, such as different initialisations, training datasets, numbers of MML clusters, 
sliding window sizes and the minimum case numbers required before splitting a node. The 
parameters used in this experiment are listed below: 

 Number of MML clusters: This parameter was pre-set to be 8, 10 or 12 clusters. 

 Sliding window size (WinSize): 5,7,9,11. These are also the sizes of event groups, i.e. the 
number of continuous video frames used for classifying a behaviour. Only an odd 
number of events are used for simple majority labelling. 

 XoN seed: 100, 200, 300, 400. This seed controls all random functions in the XoN 
training procedure, such as initialisation, dataset division etc. 

 Training ratio: 70% of the sequential data are used for training process and the rest are 
for testing purpose. Because the continuity is important in the time series data, the 
testing data is always sourced from a continuous section of the sequence. 

 Maximum X (Max-X): Varies from the number four (4) up to the number (WinSize-1). 
Because the event group size is WinSize, any X greater than WinSize is meaningless, 
therefore the maximum integer in the X part is limited by the number (WinSize -1). 

 Minimum case number for splitting a node (MinCase): 2,5,8,10,15,20,40,70. These are 
traditional parameter values used in many decision trees, and indicates the minimum 
size of data before a node can be further split, to extend the model. 

4.2.3 Model Selection  

The training process of the XoN algorithm exhaustively uses all parameters listed in previous 
section, and the models are evaluated on all three datasets (training, testing and whole) for 
error rates.  

 

id cNo Seed winSize Max-X MinCas
e 

slideAcc
u 

ErrDiff 

1 12 400 11 5 15 85.3% 0.4% 

2 8 300 11 8 5 93.0% 0.7% 

3 8 100 9 7 20 87.04% 9.5% 

4 14 400 11 5 10 90.62% 7.7% 

5 16 200 11 8 15 88.92% 11.5% 

6 14 200 9 5 15 88.17% 12.1% 

Table 2: Selected models and sliding prediction accuracy. 

The classification error rates are calculated through two techniques: a raw prediction error rate 
and a sliding prediction error rate. The raw error rate is the case by case error rate showing the 
accuracy of event group classification. However, because each frame of data is contained in 
multiple event groups, the classification on a single frame should also be further determined 
using the majority of classifications it receives as the sliding window passes. The sliding error 
rate in general is about 5-10% better than the raw prediction error rate, thus all error rates or 
accuracies in the rest of this section are based on the sliding method. In most cases, a fully 
grown decision tree model would have higher classification accuracy on the training data than 
on the testing data, this is of course a symptom of over training as the model performs worse 
on previously unseen data. Pruning with larger values of MinCase normally reduces this 
performance difference, however it also lowers the overall accuracy. In order to select an 
optimised tree model from all the trained models, the models are ascendingly sorted based on 
a score = AllErr + abs(TrainErr − TestErr). A good model is expected to have a low score 
indicating that both the overall error rate and the performance difference between testing and 
training datasets are low.  
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4.2.4 Experimental Results  

 

Figure 7: Comparison with classification result from other researches; where the motions 
are waggle (green), right-turn (red), left-turn (blue). (a) – (f) show outcomes for 6 
individual honeybee motion sequences. 

The exhaustive training process selects the following model parameters for classifying each 
honeybee dancing data as shown in Table 2. Table 2 illustrates that the best fully grown XoN 

tree models discovered during the exhaustive training process. Due to the limited number of 
models that were generated, these are not reflective of the best performance our approach 
could achieve. Even though, the performances of these models are comparable and even exceed 
several of other techniques which were employed for the same task. Zhou et al. (Zhou et al. 

2013) summarised a table to compare some state of the art techniques for classifying the 
honeybee dancing dataset, and the accuracies are further compared with our method in Figure 
7. 

4.2.5 Discussion  

The accuracy comparison in Table 3 indicates that selected event group based decision tree 
models have comparable classification performance to other existing techniques. Our method 
outperforms all other techniques in three of the six sequences, and it also has the highest 
average accuracy in all of the compared methods.  

 



Australasian Journal of Information Systems Sun & Stirling 
2017, Vol 21, Selected Papers from AusDM Event Group Based Classification Framework 

  13 

 

Table 3: Classification Accuracy Comparison with Other Techniques, all numbers in 
percentage. Bold fonts stand for the best accuracy on predicting the full sequences among 
methods. The last row includes the accuracies of the XoN-MML approach. 

Figure 8(a) illustrates the MML cluster pre-processing utilised in the No.2 honeybee dancing 
dataset model as an example. Figure 8(a) illustrates the common bee motion states as eight 
MML clusters, where the red arrows represent the movements from the previous frame, 
contrastingly, the blue arrows represent the current head direction. Figure 8(b) also includes 
histograms that indicate how the signatures or profiles of these eight MML cluster (Events) 
associate with the three behaviour categories.  

A number of key facets can be understood in Figure 8(b): Firstly, the MML cluster events are 
a biased distribution across the three behaviours, which indicates the possibility to identify the 
honeybee behaviours based on these MML events. Secondly, the distribution histograms of 
“left-turn” and “right-turn” are similar to each other, therefore judging the type of behaviour 
with a single cluster/event is not feasible. For example, when new motion data is identified as 
cluster 0, it has little chance of it being a “Waggle”, however the chance for being either a “Left-
turn” or “Right-turn” are both very high. Considering that the final XoN model provides an 
accuracy of some 93% on classifying Sequence-2, this provides evidence of the effectiveness of 
this extended decision tree algorithm. 
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Figure 8: (a) Presentation of MML clusters and (b) the Histogram of clusters on each 
behaviour. The very similar histograms of left- and right-turn indicate that the individual 
MML clusters are not the distinguishing features for these motion behaviours, therefore, the 
reason behind the successful classification lies in utilising the localised feature combination 
with the EGBC method. 

4.3 Hot Metal Temperature Prediction  

As stated in Section 1, this research was motivated by a demanding industrial problem, i.e. to 
utilise data mining techniques to model and predict the iron-making process. In this section, 
the EGBC framework is employed for making predictions of the HMT, in order to evaluate how 
this method performs in a stochastic industrial environment.  

4.3.1 Problem Definition  

The HMT temperature of molten iron, is one of the most important indicators of product 
quality in the iron making process. However, due to the complexity of the associated non-linear 
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processes and systems, predicting and stabilising this temperature is extremely difficult using 
standard statistical techniques or even mass-transfer equations (Biswas 1981). 

The HMT is recognised as one of the most important indicators because it is directly associated 
with the product quality (Banks 1999), which is expected to be stabilised at an ideal value of 
1,500°C with a tolerable ±20°C variance. Therefore, three classes, “High”, “Norm” and “Low”, 
are used to label every ‘cast’ (the process of tapping the molten iron) in the BF operational data.  

The BF is continuously monitored by various sensors that are installed all over its structure. 
These sensors report a variety of operational data, such as the wall temperatures (via a 
complete array of water cooled blocks or staves), internal pressures near the wall, the contents 
of exhaust gases at the top, the blast temperature, plus the volume and humidity etc. Other 
information such as the rate of fuel, the volume or mass of raw feed materials being charged, 
laboratory test results and real-time simulation based indices are also collected as part of the 
monitoring log.  

The data was collected regularly from each source, and the complete BF operational data was 
finally logged as a multi-dimensional time series. As the EGBC framework is employed here 
for predicting the possible changes of future HMT based on current and historical 
observations, the associated parameter settings (similar from the previous sections) will not 
be repeated in details in the remainder of this section. 

4.3.2 Data Cleansing and Event Generation  

The attributes in the original BF dataset were collected at differing sampling rates, some 
manually measured attributes are also entered at irregular time intervals. Within many data 
mining methods, this is often considered as a missing data scenario for the low frequency 
attributes. However, within the EGBC framework, events are constructed based on individual 
attributes, according to the temporal characteristic of each attribute, customised methods can 
be designed for feature generation from attributes with specific constrains, therefore the 
interpolation is not necessary on the original dataset because of this flexibility. 

Although the temporal misalignment among attributes is inevitable, the EGBC framework is 
designed to accommodate such attributes with known time shifts, these are approximately 
aligned with other attributes in order to reduce the number of irrelevant events being included. 
By doing so, the grouping window for this task was consequently set at three hours, instead of 
more than eight hours as in the raw data.  

Due to a lack of specific knowledge on all of the individual attributes, events in this case were 
selected to be the intuitively shape-based. An extended Symbolic Aggregate ApproXimation 
(SAX) algorithm, Variance-wise SAX (Sun et al. 2013), is utilised for dynamically converting 
all attributes in to SAX motifs. Within every training period, the mean and standard deviation 
values are recalculated based on the up-to-date history so that the equiprobable zones reflect 
the true historical information. Variance-wise SAX produces varying numbers of motifs within 
a selected period. Active attributes are automatically transformed into more SAX motifs with 
finer details of the sequence, and on the contrary, less active attributes incur fewer motifs that 
abstract larger time spans with fewer details.  

The SAX motifs are further converted into events using a k-medoids clustering algorithm. In 
each training period, all SAX motifs from each individual attribute are gathered and clustered 
into a fixed number of clusters, and these clusters are in-turn used as the shape-based events. 
Because the number of event combinations generated during the XoN training process is 
exponential to the number of attributes and the number of individual features per attribute, 
and the capacity and performance of the test platform and the number of attributes in the BF 
dataset (over 30), the number of clusters for each attribute is limited to seven or nine clusters 
per attribute, such that the overall number of events are under control in the following XoN 
modelling stage.  
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4.3.3 Ensemble Learning with XoN Models  

The XoN decision tree classifier becomes the central modelling function. However, because of 
the stochastic nature of the BF, it is unlikely that any individual model would fully describe the 
problem and produce reliable predictions. In order to improve the overall performance, 
multiple best performing base-XoN models are employed for building an ensemble model to 
vote for a final prediction of HMT in the test dataset. Additionally, as the process modality of 
the BF changes over time, models are retrained periodically by sliding through the whole ten 
months of data (in the step of 7 days) and segmenting these into 36 overlapped sets, each 
includes 40 days of training data and subsequently utilising the following 7 days as test data.  

From each of these data segments, 48 XoN trees are generated by adjusting such parameters 
as: groupWin, clusterNo etc. Every tree is further expanded into 15 variations by altering the 
pruning parameters. Seven of the best performing historical models, from a prior (TS) segment 
plus two newly trained models form a pool of models in each new data segment – subsequent 
predictions are then made over the test data (remaining 7 days of a data segment) for 
evaluation. All XoN trees were fully grown and pruned back differently, as the following 
(subsequent) testing data is not available before the training finished, the newly added models 
are then selected based on evaluations over the training dataset, thus over-fitting is expected. 
However, over-fitted models can also be useful for ensemble models (Sollich and Krogh 1996). 
Further, all other models were evaluated and selected (and deselected) based on the historical 
testing data, therefore the possible occurrence of over-fitting during the training process is 
controlled and contained. 

4.3.4 Outcomes and Comparison  

Because the BF data is an imbalanced 3-class dataset, in order to objectively evaluate the 
performance, the Adjusted Geometric Mean (AGM) (Batuwita & Palade 2012) is selected as the 
main metric for evaluating the prediction performance. The AGM is an extension of the GM 
(geometric mean) metric, which in turn is calculated from the four basic statistical measures 
(True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN)) with the 
following formulas:  

𝐴𝐺𝑀 =  {

𝐺𝑀 + 𝑇𝑁𝑟𝑎𝑡𝑒 × (𝐹𝑃 + 𝑇𝑁)

1 + 𝐹𝑃 + 𝑇𝑁
, 𝑖𝑓 𝑇𝑃𝑟𝑎𝑡𝑒 > 0 

0, 𝑖𝑓 𝑇𝑃𝑟𝑎𝑡𝑒 = 0
 

𝑊ℎ𝑒𝑟𝑒,

𝑇𝑁𝑟𝑎𝑡𝑒  =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁

𝑇𝑃𝑟𝑎𝑡𝑒  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐺𝑀 = √𝑇𝑃𝑟𝑎𝑡𝑒 × 𝑇𝑁𝑟𝑎𝑡𝑒

 

The average AGM of the two abnormal HMT classes are listed in Table 4, together with a 
number of other performance indicators such as the true positive rates (Sensitivity) for both 
‘Low’ and ‘High’ classes, and the overall prediction accuracy in all BF test periods. In general, 
for the Low-class there are less hits compared to the other classes, and the sensitivities of Low-
class are often zero or other small values. However, because the Low-class cases are often rare 
in the various test datasets, this lack of hits on several occasions amongst some two hundred 
cases is somewhat understandable. 

In the total 36 periods, the average test data size is approximately 170 cases per period. 
However, within these, there are some 26 periods that contain five or less instances of the Low-
class, and the sensitivities of Low-class in these periods are all zero except Period-22. On the 
other hand, in the seven periods with more than ten Low-class cases, the Low-class sensitivities 
are 63.4, 91.7, 90.9, 21.4, 60, 38.7 and 0 (%) respectively. As for the other abnormal HMT class 
(High), the XoN tree models successfully predicted more than 60% of these High-class cases 
in half of the test periods, and only seven periods have sensitivities of less than 50%. 
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Table 4: Summarised HMT prediction performances of the EGBC framework over all test 
periods. The Avg AGM column shows the average AGM (adjusted geometric mean of the 
true cases) on both abnormal classes (Low and High), which is selected as the indicator of 
the prediction performance. Columns SE-* list the sensitivities of the predicting outcomes on 
all three classes, followed by the number of cases belonging to the given class and the 
number of total cases in the corresponding testing period. The last column shows the overall 
predicting accuracy on the test datasets, which is less significant than the sensitivities on 
abnormal classes. 

In addition to the prediction summary table, the prediction outcomes are visualised and three 
examples are given as in Figure 9. By examination of these visualisations, it is obvious that the 
EGBC models raise a number of false alarms. However, when and before a real abnormal HMT 
class happens, the ensemble model generally corrects this within a small-time proximity, thus 
such visual results may still be useful for BF control in reality.   



Australasian Journal of Information Systems Sun & Stirling 
2017, Vol 21, Selected Papers from AusDM Event Group Based Classification Framework 

  18 

 

Figure 9: A few visual examples of HMT predictions at Period 4, 10 and 26. The bars at the 
bottom of pictures indicate real and predicted classes. Upper bars stand for real HMT 
classes, and lower bars are the outcome of predictions. Pink colour means the class is High 
and cyan colour means Low class. The line plot in the middle represent the measured HMT 
records, where each valid HMT sample is marked with ‘x’. Different colours indicate 
different casts from the BF in a test period. X-axis represents days; Y-axis represents 
temperatures (°C).  

By comparing the prediction of EGBC framework to a previous study (Sun et al. 2011) on the 
same BF dataset employing C5.0 and Cubist decision tree models, the EGBC framework shows 
significant improvements. Although the overall prediction accuracies of the C5.0 approach are 
occasionally comparable or even better in certain cases than the EGBC approach, it is achieved 
by sacrificing the success or ‘hit’ rate for both abnormal HMT classes. In most of the data 
segments, the C5.0 predictions have almost zero sensitivity on the “Low” class, and the hit rate 
on the “High” class is also much poorer. 
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5 Conclusion and Future Work  

This paper presents a novel method to utilise an XoN decision tree technique for classifying 
generic streams of data sequences. Provided that numeric time series data can always be 
transformed into a sequence of nominal events with an appropriate abstraction method, the 
XoN approach can be readily expanded to other time series data mining areas. The language 
identification test indicates that the XoN based approach has similar or better performance 
than the traditional LID algorithm, especially when classification is made on isolated words. 
The success on the honeybee behaviour classification demonstrates that our approach has the 
capacity to model and classify genuine real-valued time series data, with appropriate 
transformation of temporal events, and its stable performance, which is significant when 
compared with other techniques. However, the temporal misalignment does not exist in the 
two tasks above. In order to evaluate the merit of event group classification, plus to validate 
that it actually works as expected when dealing with the misalignment issue, real-world 
industrial data encompassing severe time shifting problems was studied. Here, the outcomes 
indicate a significant improvement in correctly predicting abnormal process states or 
modalities. 

There are a number of advantages for the methodology presented in this paper. Firstly, the 
method looks for causally related signs for the classification, which naturally allows time 
variances between various attributes of the input data. Secondly, the method is based on an 
abstracted layer (beyond numeric values), the differences in attributes’ physical meanings are 
ignored on this layer. Thirdly, temporal information and local ordering of a single attribute can 
be embedded into individual events, depending on the event transformation, and the sliding 
window ensures decision are made over a controllable period. However most importantly, 
unordered event combination allows temporal variance within the period, which simplifies the 
feature space and provides tolerance to temporal misalignment among attributes.  

It has been illustrated in this work that the event group based decision tree approach 
demonstrates significant capability for classifying the sequential data. This event group based 
method now has the potential to be used as a generic methodology for modelling more complex 
time series data with missing or misaligned variates. However, users need to obtain 
considerable knowledge of the target problem in order to appropriately select the techniques 
for event generation, and the parameters for the EGBC modelling procedure, e.g. the size of 
sliding window, duration of events and size of the XoN nodes.  

We also find the event groups generated by XoN have certain similarities to the concept of topic 
modelling (Steyvers & Griffiths 2007), however these are derived from supervised learning 
based on the information gain rather than probabilities. Future research will include utilising 
topic modelling for minimising or scaling down the feature space, in order to extend this 
method to more challenging real world time series data mining with multi-dimensional forms 
and potentially complicated intra-sequential relationships. 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