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Abstract 

Association rule mining is a fundamental task in many data mining and analysis applications, 
both for knowledge extraction and as part of other processes (for example, building associative 
classifiers). It is well known that the number of associations identified by many association 
rule mining algorithms can be so large as to present a barrier to their interpretability and 
practical use. A typical solution to this problem involves removing redundant rules. This paper 
proposes a novel definition of redundancy, which is used to identify only the most interesting 
associations. Compared to existing redundancy based approaches, our method is both more 
robust to noise, and produces fewer overall rules for a given data (improving clarity). A rule 
can be considered redundant if the knowledge it describes is already contained in other rules. 
Given an association rule, most existing approaches consider rules to be redundant if they add 
additional variables without increasing quality according to some measure of interestingness. 
We claim that complex interactions between variables can confound many interestingness 
measures. This can lead to existing approaches being overly aggressive in removing redundant 
associations. Most existing approaches also fail to take into account situations where more 
general rules (those with fewer attributes) can be considered redundant with respect to their 
specialisations. We examine this problem and provide concrete examples of such errors using 
artificial data. An alternate definition of redundancy that addresses these issues is proposed. 
Our approach is shown to identify interesting associations missed by comparable methods on 
multiple real and synthetic data. When combined with the removal of redundant 
generalisations, our approach is often able to generate smaller overall rule sets, while leaving 
average rule quality unaffected or slightly improved. 

Keywords: Association Rule Mining;Redundancy 

1 Introduction 

Association rule mining is an important task in knowledge extraction and data analysis. 

Formally, let A = {𝑎1, 𝑎2, … , 𝑎𝑀}be a set of M attributes. We then define N data D = 

{𝑑1, 𝑑2, … , 𝑑𝑁} where each data di contains a subset of the attributes in A (i.e. di ⊆ A, ∀ di ∈ D). 
The association rule mining task seeks to find all interesting rules of the form X ⇒ Y, where X 
and Y are disjoint subsets of A. 

It is well known that the number of rules generated can be so large as to obscure their 
interpretation, presenting a barrier to practical use (Zaki 2000). Ideally, we wish to find only 
the most interesting rules. This can be broken into two tasks; identification of truly interesting 
rules, and the removal of those which are simply redundant artefacts of other rules. A rule is 
considered interesting if it produces a value superior to some predetermined threshold 
according to a chosen function of interestingness M(·) (e.g. Support, confidence, Fishers P). 
Standard thresholds exist for some measures of interestingness (e.g. P < 0.05 for measures of 
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statistical significance), while other for other measures the threshold is determined in a more 
ad hoc manor. Our work focuses primarily on statistical measures of interestingness. 

When comparing two rules X ⇒ Z and XQ ⇒ Z to evaluate redundancy, existing approaches 
ignore data containing only part of the antecedent. As a result, non-interesting rules can be 
retained, and potentially interesting rules discarded. This paper proposes an alternate 
definition of redundancy (which we call robust redundancy) that utilises such information to 
improve the quality of the discovered rules. 

Examples are given demonstrating the ability of robust redundancy to correctly identify 
interesting rules which would otherwise have been missed by more classical approaches. An 
algorithm for generating rules with robust redundancy is also proposed and evaluated on both 
real and artificial data. 

Within the literature, there are several sub-problems that have been studied. Examples include 
rules with fixed (Verhein and Chawla 2007), or single attribute (Hämäläinen 2012) 
consequents, numerical data (Song and Ge 2013), or negative associations (Hämäläinen 2012, 
Li and Zaiane 2015) (e.g. rules of the form X ⇒ ⌐Z). In this paper we focus on the problem of 
positive rules from binary data with single attribute consequents. 

In this paper we refer to the concepts of rule generalisations and specialisations. Given two 
rules X ⇒ Z and Y ⇒ Z (where Z is a single attribute and X and Y are sets of attributes), the rule 
Y ⇒ Z is considered to be a generalisation of X ⇒ Z if Y is a proper subset of X. Similarly, rule 
Y ⇒ Z is a specialisation of X ⇒ Z if Y is a proper superset of X. 

2 Background 

A key problem for association rule mining is measuring how interesting a rule is. Traditionally 
this is done using support and confidence (analogous to the sample probability of a rule and 
the conditional probability of Y given X respectively). Many alternate approaches for 
measuring interestingness have been proposed (Piatetsky-Shapiro 1991, Brin, Motwani et al. 
1997), several of which are presented in Table 1. The interested reader is directed to the 
literature for further information (Tan, Kumar et al. 2004). The experimental work in this 
paper focuses on statistical measures interestingness, where rule interestingness is analogous 
to statistical significance. 

The size of the search space is a major concern when mining association rules. Prior work often 
employs heuristics such as maximum rule lengths, fixed consequents, or frequency thresholds 
in order to control this (Hämäläinen 2010). To our knowledge, only Hämäläinen's Kingfisher 
algorithm is able to identify all significant rules using the current definition of non-
redundancy. We extend the Kingfisher approach for rule generation in section 4. 

It is well established that the number of rules identified can often be so large as to hamper their 
interpretation (Aggarwal and Yu 2001). The concept of redundancy can be used to control the 
number of rules. Consider a hypothetical study of supermarket transactions which identifies 
that people who buy a soft drink will also buy chips. Further analysis may also identify that 
people who buy soft drink on Tuesday will buy chips. However the condition that it be Tuesday 
does not improve the quality of the association. The rule likely exists because the association 
between people buying soft drink and chips holds regardless of whether it is Tuesday or not. 
The association between people buying soft drink on Tuesday and buying chips is redundant.  
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Measure Formulae 

Support (Agrawal, Imieli et al. 1993) 
𝑚(𝑋)

𝑁
 

Confidence (Agrawal, Imieli et al. 1993) 
𝑚(𝑋𝑌)

𝑁
 

Interest (Brin, Motwani et al. 1997) 

𝑁 × 𝑚(𝑋𝑌)

𝑚(𝑋) × 𝑚(𝑌)
 

 

Leverage (Piatetsky-Shapiro 1991) 
𝑚(𝑋𝑌)

𝑁
−

𝑚(𝑋)𝑚(𝑌)

𝑁2
 

 

Χ2 
𝑁5 − 𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒(𝑋 ⇒ 𝑌)2

𝑚(𝑋)𝑚(¬𝑋)𝑚(𝑌)𝑚(¬𝑌)
 

Fisher’s P ∑
( 𝑚(𝑋)

𝑚(𝑋𝑌)+𝑖
) ( 𝑚(¬𝑋)

𝑚(¬𝑋¬𝑌)+𝑖
)

( 𝑁
𝑚(𝑌)

)

min (𝑚(𝑋¬𝑌),𝑚(𝑌¬𝑋))

𝑖=0

 

Table 1:  Several common interestingness measures for a rule X ⇒ Y expressed in terms of 
partial frequency counts. N is the size of the data, and m(·) is the frequency function. 

Several authors have proposed formal means for defining redundant rules (Zaki 2000, 
Aggarwal and Yu 2001, Ashrafi, Taniar et al. 2004, Webb 2006, Webb 2007). A definition of 
redundancy suitable for use with a general goodness measure (assuming single attribute 
consequents) was first proposed in 2010 by Hämäläinen (Hämäläinen 2010). Hämäläinen 
defines a rule R to be redundant if some more general rule (i.e. a rule whose antecedent is a 
subset of the antecedent of R) has equal or better utility with respect to some goodness 
measure. We repeat this more formally in Definition 1. 

Definition 1: Classical Redundancy 

Consider two rules X ⇒ Z and XQ ⇒ Z where X and Q are disjoint sets of items, and Z 
is a single item of value α. Let M(·) be an increasing measure of rule interestingness. 
Rule XQ ⇒ Z is redundant with respect to rule X ⇒ Z if M(XQ ⇒ Z) ≤ M(X ⇒ Z). 

We note that when comparing rules based on some arbitrary goodness measure, complications 
can arise due to complex interactions between constituent attributes. That such interactions 
can give rise to spurious associations has been studied (McGrane and Poon 2010, Webb 2010), 
however less attention has been paid to how it might obscure useful relationships. 

Models of redundancy that remove spurious generalisations is a problem that has seen limited 
interest within the community. Removing spurious generalisations was first looked at in 2001 
by Liu et al. in their work on non-actionable rules (Liu et al. 2001). For a rule r0 and the set of 

its decedents R = {𝑟1, 𝑟2, … , 𝑟𝑁}, they define a rule r0 to be non-actionable if it is not interesting 
over the domain where instances matching at least one antecedent in R are removed. 
Essentially, they claim a rule must cover some unique set of instances (with respect to the set 
of its specialisations) in which the relationship described still holds. A rule has no utility with 
respect to the set of its specialisations if it does not cover such a set of instances. 
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A similar concept to non-actionable rules was proposed by Webb in his work on self-sufficient 
itemsets (Webb 2010). This work builds upon the concept of an exclusive domain for a given 
itemset. Formally, given an itemset s and its specialisations S, the exclusive domain of s is 
defined to the domain of s minus the union of the domains of all itemsets in S. After 
generalising the concepts of redundancy and productivity (Webb 2006, Webb 2007) for use 
with itemsets, an itemset is defined to be self-sufficient if it is productive and non-redundant 
both with respect to the entire data and its exclusive domain. 

In many respects, self-sufficient itemsets can be considered an extension of non-actionable 
rules for use in an itemset context. However, it is noteworthy that itemsets must also be 
productive and non-redundant. This pruning of both specialised and general itemsets is similar 
to our work with robust redundancy described in this paper, although it is performed in an 
itemset context. We also examine how to avoid pruning specialisations where redundancy is 
likely to be an artefact of interactions between constituent attributes. 

3 Robust Redundancy 

A rule is considered redundant when it adds no information over another rule. We claim that 
classical redundancy makes such a comparison using incomplete information. 

Depending on the interestingness measure M(·) in use, M(X ⇒ Z) is computed using the 
frequencies XZ, ⌐XZ, X⌐Z, and ⌐X⌐Z. Note that directly comparing rules M(X ⇒ Z) and M(XQ 
⇒ Z) does not consider transactions including only part of the rule antecedent (i.e. frequencies 
of X⌐QZ, ⌐XQZ, X⌐Q⌐Z, and ⌐XQ⌐Z). 

Association rule mining can be confounded by noise and complex relationships between 
variables. Potential lack of control over the data collection process can further complicate 
matters. Such noise could artificially raise or lower the measured interestingness value of a 
rule, which could lead to interesting rules being incorrectly excluded. 

We propose using additional information in an attempt to avoid excluding interesting rules. 
We also seek to identify seemingly interesting rules that are simply artefacts of groups of their 
specialisations. We refer to these approaches as specialisation and generalisation redundancy 
respectively. 

3.1 Specialisation Redundancy 

We propose an alternate approach to redundancy in Definition 2. We augment the classical 
approach given in Definition 1 by not eliminating a rule XQ ⇒ Z if the partial frequencies can 
be used to demonstrate the attributes in Q add value. This is accomplished by computing the 
strength of the association between X and Z conditioned on Q, and comparing it against the 
strength of the marginal association. If the conditional association between X and Z improves 
over the strength of the previous association, we obtain evidence that the addition of Q adds 
value to the existing rule. 

Definition 2: Specialisation Redundancy 

Consider two rules X ⇒ Z and XQ ⇒ Z where X and Q are disjoint sets of attributes, 
and Z is a single attribute. Let M(·) be an increasing measure of rule interestingness. 
Rule XQ ⇒ Z is specialisation redundant with respect to rule X ⇒ Z if M(XQ ⇒ Z) ≤ 
M(X ⇒ Z), and M(X ⇒ Z | Q) ≤ M(X ⇒ Z). 

Computing the conditional association requires frequencies for ⌐XQZ and ⌐XQ⌐Z (in addition 
to the frequencies XQZ and XQ⌐Z). We do not consider the association between X and Z 
conditioned on ⌐Q, as the rule we are seeking to obtain evidence for is XQ ⇒ Z, which contains 
Q. 

3.1.1 Example 

Consider hypothetical data sampling 3 binary variables X, Y, and Z. Assume 1000 data points 
with the probabilities expressed in Table 2a. From these probabilities, observe that a strong 
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dependency exists between Z and the itemset XY. We now examine the rules X ⇒ Z, Y ⇒ Z, and 
XY ⇒ Z as we vary the joint probability of variables X and Y. 

 

Figure 1:  ln(P-values) for rules X ⇒ Z, Y ⇒ Z, and XY ⇒ Z versus conditional probability of 
X and Y. 

Figure 1 plots rule quality against the conditional probability of X given Y. For larger 
conditional probabilities we can observe that the quality of the rule XY ⇒ Z is superior to that 
of rule X ⇒ Z. As the overlap between data containing X and data containing Y decreases, the 
quality of the more general rule X ⇒ Z surpasses its specialisation. Consequently the rule XY 
⇒ Z is removed as redundant, obscuring the true underlying structure of the data. 

 (a) (b) 
P(X) 0.3  (X) 0.5 

P(Y) 0.3  P(Y) 0.5 

P(Z|X,Y) 0.8  P(Z|X,Y) 0.5 

P(Z|X,⌐Y) 0.4  P(Z|X,⌐Y) 0.1 

P(Z|⌐X,Y) 0.4  P(Z|⌐X,Y) 0.1 

P(Z|⌐X,⌐Y) 0.6  P(Z|⌐X,⌐Y) 0.1 

Table 2: Marginal and conditional probabilities for several combinations of variables used 
in the motivating examples for robust redundancy. 

Holding the marginal probabilities constant, the frequencies of both X and Y decrease along 
with the conditional probability of X given Y. In order to support the rule XY ⇒ Z, we require 
data containing both (or neither) XY and Z. Hence, as the number of data with XY and Z 
decreases, so too does the evidence available to evaluate it. That the general rule X ⇒ Z 
surpasses the true rule XY ⇒ Z in quality as the conditional probability decreases is a reflection 
of this. 

By comparing rules X ⇒ Z and XY ⇒ Z using robust redundancy (i.e. including the conditional 
dependencies) we make more effective use of available data to evaluate the rules. In the 
example given in Figure 1, rule XY ⇒ Z is retained as non-redundant for conditional 
probabilities greater than ~0.045. This is in contrast to classical redundancy, where the 
threshold for retaining XY ⇒ Z is ~0.062. Although in both cases the conditional probability 
of X given Y eventually reaches a point where insufficient evidence for the specialised rule 
exists, the range of values for which robust redundancy can still retain XY ⇒ Z is increased. 
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3.2 Generalisation Redundancy 

It is possible for general rules to exist that only appear interesting due to the presence of one 
or more interesting specialisations. Definition 3 outlines a concept we call Robust 
Generalisation Redundancy. A rule X ⇒ Z is generalisation redundant if for all non-redundant 
specialisations XQ ⇒ Z, the rule X ⇒ Z | ⌐Q is uninteresting (its goodness is less than the 
required threshold). 

If a rule X⌐Q ⇒ Z is interesting, we obtain evidence that the generalised rule is interesting even 
in the absence of the terms in Q. If after identifying all other interesting rules we cannot find 
evidence that X ⇒ Z is interesting in the absence of the additional terms in its specialisations, 
we consider it redundant. Computing the conditional association on ⌐Q uses the frequencies 
X⌐QZ and X⌐Q⌐Z. Hence, by applying both specialisation and generalisation redundancy we 
consider all frequencies in the sample data. 

Definition 3: Generalisation Redundancy 

Consider a rule X ⇒ Z and the complete set of its non-redundant specialisations R. Let 
M(·) be an increasing measure of rule interestingness, and α be the corresponding 
goodness threshold. Rule X ⇒ Z is generalisation redundant with respect to R if M(X 
⇒ Z | ⌐Q) ≤ α for all rules XQ ⇒ Z in R. 

3.2.1 Example 

Consider hypothetical data containing drug prescriptions and a corresponding binary patient 
outcome. Assume there are two drugs (X and Y) which work in combination to produce a 
positive outcome. Neither drug will produce a positive outcome on its own (a baseline 
probability for positive outcome of 0.1 is used). The exact probabilities used can be found in 
Table 2b. 

When the conditional probability of X given Y is 1, the measured quality of the rules X ⇒ Z, Y 
⇒ Z, and XY ⇒ Z will be identical and maximal. The quality of these rules decreases with this 
conditional probability, with the quality of the general rules decreasing at the greatest rate. 
However despite the underlying structure of the data indicating that neither X or Y alone 
support a positive outcome, the strength of these associations will likely remain quite high. 

When comparing rules X ⇒ Z and XY ⇒ Z, examining the rule X ⇒ Z | ⌐Y (i.e. conditioned on 
the absence of the additional terms Y) indicates that there is no evidence to support the rule X 
⇒ Z without also including the features Y. As XY ⇒ Z is the only identified specialisation of X 
⇒ Z, and we have no evidence to indicate X ⇒ Z is valid without the additional features, we 
consider it redundant. 

Finally, we acknowledge that such an approach could potentially over-fit and remove valid 
general rules. We address this concern in the following section on redundancy chaining. 

3.3 Redundancy Chaining 

Classical redundancy as defined in Definition 1 is transitive. If a rule XQY ⇒ Z is redundant 
with respect to a generalisation XQ ⇒ Z, and XQ ⇒ Z is redundant with respect to X ⇒ Z, then 
XQY ⇒ Z will be redundant with respect to X ⇒ Z. This result is straightforward to prove. 
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                             (a)          (b) 
Attr Freq.  Rule ln(P) 

ABCD 10  A ⇒ D -19.33 

ABD 10  AB ⇒ D -8.10 

ACD 10  ABC ⇒ D -3.78 

AD 10  A ⇒ D|B -18.75 

BC 30  A ⇒ D|BC -20.56 

BD 10  AB ⇒ D|C -7.83 

CD 10    

D 10    

Table 3: Sample data and rules for lemma 1. 

Unfortunately, the same relation does not hold for the proposed robust redundancy. A proof 
that specialisation redundancy is nontransitive is given in Lemma 1. The fact that specialisation 
redundancy is non-transitive can lead to some interesting behaviour. Assume a rule r exists 

that is specialisation redundant with respect to one or more generalisations 𝑟0, … , 𝑟𝑖. Let 

𝑟0, … , 𝑟𝑖 be redundant with respect to rules 𝑟𝑖+1, … , 𝑟𝑛. Despite being a redundant specialisation 
of other rules, r is non-redundant with respect to all non-redundant generalisations. We take 
the view that in such a situation, the rule r should be considered non-redundant.  

Lemma 2: Using redundant rules when evaluating generalisation redundancy allows 
for additional rules to be included. 

Consider three rules A ⇒ D, AB ⇒ D, and ABC ⇒ D generated from the data in Table 
4 using the confidence measure with a threshold of 0.6. 

According to Definition 3 and the confidence scores for the above rules,              AB ⇒ 
D | ⌐C is uninteresting so AB ⇒ D is redundant w.r.t. ABC ⇒ D. When evaluating 
generalisation redundancy without redundant rules, the uninteresting rule A ⇒ D | 
⌐(BC) implied A ⇒ D is redundant. When evaluating generalisation redundancy with 
redundant rules, as A ⇒ D | ⌐B is interesting A ⇒ D is non-redundant. ■ 

We also prove that whether or not redundant attributes are counted effects generalisation 
redundancy in Lemma 2. As above, we elect not to allow redundant rules to influence the 
redundancy of another rule. In contrast to specialisation redundancy, this will lead to the 
exclusion of additional rules (comparing against additional rules raises the chance of inclusion 
as generalisation redundancy requires a rule be uninteresting with respect to ALL its 
specialisations).  

Lemma 1: Specialisation redundancy is nontransitive. 

Let A ⇒ D, AB ⇒ D, and ABC ⇒ D be three rules generated from data in Table 3 using 
the log of Fishers P. 

As the interestingness of the rules AB ⇒ D and A ⇒ D | B is worse than that of the rule 
A ⇒ D, AB ⇒ D is redundant w.r.t. A ⇒ D. 

As the interestingness of the rules ABC ⇒ D and AB ⇒ D | C is worse than that of the 
rule AB ⇒ D, ABC ⇒ D is redundant w.r.t. AB ⇒ D. 

As the interestingness of the rule A ⇒ D | BC is better than that of the rule A ⇒ D, the 
rule ABC ⇒ D is non-redundant w.r.t. A ⇒ D. ■ 

Not using redundant rules to support retaining otherwise redundant generalisations can 
produce the following interesting situation. Assume a rule r1:Y ⇒ A where conf(Y ⇒ A) = 1 and 
supp(Y)= supp(A). Then for all rules of the form r1 X ⇒ A where Y=XQ (i.e. generalisations of 
Y ⇒ A), the frequency of X⌐QA will be 0, and the rule X⌐Q ⇒ A will be uninteresting. By 
Definition 3, r1 is the only possible non-redundant rule with consequent A. 
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While it may in fact be desirable to keep such a rule, care must be taken to avoid confounding 
caused by the addition of independent attributes. We demonstrate how such confounding 
might occur by providing an extension of the above example. Consider the rule YZ ⇒ A for 
some variable Z where supp(ZA) = 1. It is simple to see that conf(YZ ⇒ A) = 1, 
supp(YZ)=supp(A), and freq(Y⌐ZA) = 0. The rule Y ⇒ A will be considered redundant. 

                                (a)       (b) 

Attr Freq.  Rule Conf 

ABCD 60  A ⇒ D 0.90 

AB 20  AB ⇒ D 0.75 

ACD 10  ABC ⇒ D 1.00 

AD 10  A ⇒ D|⌐B 1.00 
   A ⇒ D|⌐B⌐C 0.50 
   AB ⇒ D|⌐C 0.00 

Table 4: Sample data and rules for lemma 2. 

By Occam's Razor we prefer a more general rule over its specialisations unless evidence can be 
obtained to suggest otherwise. Using only generalisation redundancy can violate this principle 
as no evidence is ever considered to support YZ ⇒ A over Y ⇒ A. In the worst case, for a given 
consequent only one highly specific rule will be selected with all others being made redundant. 
Therefore specialisation (or classical) redundancy should usually be employed before 
generalisation redundancy. We note however that in some cases (such as those where we prefer 
to generate more specific rules), generalisation redundancy may be applied first. 

4 Rule Mining Algorithm 

Pseudocode for our algorithm (an extension of the Kingfisher algorithm (Hämäläinen 2010, 
Hämäläinen 2012) is given in Algorithm 1. We find non-redundant rules using the natural log 
of Fisher's P value (a decreasing measure) in a three stage process: 

1. All potentially non-redundant rules with some minimum log P-value are identified. 

2. Rules identified in stage 1 are examined and specialisation redundant rules are pruned. 

3. Remaining rules are examined and generalisation redundant rules are pruned. 

Stage 1 is a BFS over itemsets, which is described in Algorithm 1. It is equivalent to the 
Kingfisher algorithm, however uses less strict pruning to avoid removing potentially relevant 
rules prior to stages 2 and 3 (see section 4.1). 
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4.1 Identification of Potentially Non-Redundant Rules 

The search begins at step 1 by sorting attributes in decreasing order of frequency. Any attribute 
whose frequency is too low to produce an interestingness value greater than α is removed at 
this stage. Level 1 search nodes are then created for each remaining attribute (a node is called 
level k if it represents a set of k attributes). Steps 2 – 4 describe the breadth first search over 
nodes. At each level i we create nodes by taking the union of two i-1 nodes. 

At steps 5-7, for each level k node X corresponding to attributes 𝑥1, 𝑥2, … , 𝑥𝑘, the P-values of 

the k rules 𝑋\𝑥𝑖 ⇒ 𝑥𝑖  are computed and compared against the minimum threshold α. The 
frequency of set X is calculated and stored, with P-values for rules being computed using 
frequencies of parent nodes. The number of iterations over the dataset is therefore limited to 
the number of nodes considered. 

Each node maintains a length |A| bit vector of possible consequents (attributes A where the 
rule XQ ⇒ A is possible). These vectors are initialised using bitwise and of vectors for parent 
nodes. As a node is processed, lower bounds on the log Fisher's P value are computed for all 
rules of the form XQ\A⇒A for all A in A. If bounds for all attributes exceed the relevance 
threshold (the vector of possible consequents is 0), the node is pruned from the search. The 
bounds used were first reported by Hämäläinen (Hämäläinen 2010), and are reproduced in 
Table 5. This is described in steps 9-12, 17, and 18. 

Each node X contains a vector with the best previous P-value for rules with consequent xi in X. 
This is computed in step 8. Similar to the possible bit vector, these vectors are merged from 
parents when the node X is created. Using classical redundancy, if the bound on P-values for 
rules with a given consequent exceeds the corresponding value in this vector that consequent 

Algorithm 1: Search for potentially non-redundant rules 

Input:  Set of attributes A, Dataset D, Decreasing goodness measure M(), Threshold α 
Output:  Set of potentially non-redundant rules R 

1. sort A decreasing by frequency in D 

2. k = 1 

3. while k ≤ |A| 

4.     for each candidate attribute k-set C 

5.         for each rule r: C\{a} ⇒ a ∀ a ∈ C 

6.             if M(r) ≤ α 

7.                 add r to result set R 

8.                 C.pbest[a] = min(C.pbest[a], M(r)) 

9.         for each rule r: C\{a} ⇒ a ∀ a ∈ A 

10.             bnd = lower bound on M for all specialisations of r 

11.             if bnd ≥ α 

12.                 C.possible[a] = false 

13.             if a ∈ C 

14.                 bndonq = lower bound on M for all specialisations of r conditioned on the   

                                        additional attributes 

15.                 if bnd > C.pbest[a] and bndonq > C.pbest[a] 

16.                     C.possible[a] =false 

17.         if C.possible[a] == false for all a ∈ A  

18.             Remove all attribute sets containing C from candidate attribute sets 

19.     k = k + 1 

20. return R 
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can also be considered impossible. Using robust redundancy (see Definition 2), we also test 
that the bound on rule XQ ⇒ A|Q is worse than the previous best value. 

The Fishers P-value for rule XQ ⇒ A|Q takes its smallest value when the number of instances 
containing sets QA⌐X and QX⌐A are 0 and QXA and Q⌐X⌐A are as large as possible. This 
occurs when freq(QXA) = freq(XA) and freq(Q⌐X⌐A) = freq(⌐X⌐A). We therefore compute the 
bound for XQ ⇒ A|Q using bnd3 from Table 5 with parameters f(XA)=freq(XA), 
f(X)=freq(XA), f(A)=freq(XA), and N=freq(XA)+freq(⌐X⌐A). This computation is performed 
in steps 13-14. 

 

 

Algorithm 2: Prune redundant specialisations 

Input:  Set of rules R, Dataset D, Decreasing goodness measure M() 
Output:  Set of non (specialisation) redundant rules R 

1. for each consequent C 

2.     RC = all rules with consequent C 

3.     sort RC increasing on the length of the antecedent 

4.     for each rule ri in RC 

5.         for each rule rk in RC[i+1, |RC|] 

6.             X = antecedent(ri) 

7.             Y = antecedent(rj) 

8.             if X ⊂ Y 

9.                 Q = Y\X 

10.                 if M(X ⇒ C) ≤ M(Y ⇒ C) and M(X ⇒ C) ≤ M(X ⇒ C | Q) 

11.                     delete rk 

12. return R 

Algorithm 3: Prune redundant generalisations 

Input:  Set of rules R, Dataset D, Decreasing goodness measure M() 
Output:  Set of non-redundant rules R 

1. for all r in R 

2.     keep(r) = false 

3.     hasspec(r) = false 

4. for each consequent C 

5.     RC = all rules with consequent C 

6.     sort RC increasing on the length of the antecedent 

7.     for each rule ri in RC (reverse order) 

8.         if keep(ri) or not hasspec(ri) 

9.             for each rule rk in RC[i+1, |RC|] 

10.                 Y = antecedent(ri) 

11.                 X = antecedent(rj) 

12.                 if X ⊂ Y 

13.                     hasspec(ri) = true 

14.                     Q = Y\X 

15.                     if M(X ⇒ C | ⌐Q) ≤ α 

16.                         keep(rk) = true 

17. for all r in R 

18.     if not keep(r) and hasspec(r) 

19.         delete r 

20. return R 
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4.2 Pruning the Search Space 

The Kingfisher algorithm (Hämäläinen 2010) employs two additional pruning steps to control 
the size of the search space. The first, referred to as the lapis philosophorum principle, deals 
with the case where all rules of the form XQ ⇒ A become impossible at a given node X{A}. In 
such a case, A is also an impossible consequence for children of the parent node X, and its 
possible consequents vector can be updated. This principle is also applied in our approach. 

The latter pruning step is pruning based on minimality. A rule X ⇒ A is considered minimal 
iff P(A|X)=1. For a given minimal rule X ⇒ A, any rule of the form XQ ⇒ A or XQA ⇒ B will be 
either classically redundant or not significant (Hämäläinen 2012). 

 

𝒃𝒏𝒅𝟏(|𝑨|, 𝑵) =
𝒇(𝑨)! 𝒇(⌐𝑨)!

𝑵!
 

𝑏𝑛𝑑2(|𝑋|, |𝐴|, 𝑁) =
𝑓(⌐𝑋)! 𝑓(𝐴)!

𝑁! (𝑓(𝐴) − 𝑓(𝑋))!
 

𝑏𝑛𝑑3(|𝑋𝐴|, |𝑋|, |𝐴|, 𝑁) =
𝑓(𝐴)! 𝑓(⌐𝐴)! (𝑁 − 𝑓(𝑋𝐴))!

𝑁! 𝑓(⌐𝐴)! 𝑓(𝐴⌐𝑋)!
 

Table 5: Lower bounds for Fishers P. The function f(·) returns the frequency of its argument 
in D. 

Pruning based on minimality cannot be employed when searching for rules with robust 
redundancy. We now prove that with robust redundancy it is possible for a specialisation of a 
minimal rule to be both significant and non-redundant. 

Lemma 3: Given data D, an increasing statistical goodness measure M(·), and rule X 
⇒ A such that P(A|X)=1, XQ ⇒ A may exist such that M(X ⇒ A) < M(X ⇒ A|Q). 

X ⇒ A is minimal implies the frequency of set X⌐A is 0. The frequencies of sets XA, 
⌐XA, and ⌐X⌐A are unknown. 

Let Q be a set of attributes whose corresponding rows in D exactly match the sets XA 
and ⌐X⌐A. M(X ⇒ A) increases with each occurrence of XA and ⌐X⌐A, and decreases 
with each occurrence of ⌐XA. It is easy to observe tat freq(XA)=freq(XQA), 
freq(⌐X⌐A)=freq(⌐XQ⌐A), and freq(⌐XA) ≥ freq(⌐XQA). Assuming D contains at 
least one occurrence of ⌐XA, M(X ⇒ A|Q) will therefore be greater than M(X ⇒ A). ■ 

 

Lemma 4: Given data D, an increasing statistical goodness measure M(·), and a rule 
X ⇒ A such that P(A|X)=1, there may exist a rule XQA ⇒ B such that M(XA ⇒ B) < 
M(XA ⇒ B|Q). 

X ⇒ A is minimal implies that the frequency of the set X⌐A is 0. Hence freq(XA) ≥ 
freq(XQA). The frequencies of the sets XA, ⌐XA, and ⌐X⌐A are unknown. 

Let Q be a set of attributes whose rows in D exactly match the sets CB and ⌐C⌐B where 
C=XA. Observe that freq(C)=freq(CQ), freq(⌐C⌐B)=freq(⌐CQ⌐B), and freq(⌐C) ≥ 
freq(⌐CQ). Assuming D contains at least one occurrence of ⌐CB, M(C ⇒ B|Q) will 
therefore be greater than M(C ⇒ B) (or M(XA ⇒ B|Q) > M(XA ⇒ B)). ■ 

4.3 Identification of Redundant Rules 

The process for pruning specialisation redundant rules is given in Algorithm 2. After grouping 
rules based on their consequent, rules are sorted in increasing order based on the length of 
their antecedent (steps 1-3). All pairs of rules within each group are then considered (steps 4-
7), and for those pairs which contain a specialisation / generalisation pair we compute the 
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appropriate M() values to determine specialisation redundancy. Rules which are found to be 
specialisation redundant are then deleted (steps 8 - 11). 

The process for removing redundant generalisations is described in algorithm 3. We begin by 
grouping rules based on consequent, then sort rules based on antecedent length (lines 4-7). We 
then traverse the rule list in reverse order, and for each rule consider each of its specialisations 
in turn (lines 9-12). As a rule only needs to be non-redundant w.r.t. one of its specialisations 
to be kept, we begin by tagging each rule as an exclude (line 2), then changing this value to true 
should an appropriate specialisation be found (lines 14-16). We also tag rules according to 
whether they have a specialisation to avoid erroneous removal (lines 3 and 13). Rules are then 
removed according to these tags at the end of the algorithm (lines 17-19). 

Finally, as discussed in section 3.3, we need to take care that rules which are already redundant 
w.r.t. one of their specialisations are not used when determining redundancy for their 
generalisations. To this end we skip any rule (line 8) which has a specialisation present in the 
database and is tagged for exclusion (recall that due to the order rules are traversed, such a 
rule would already have been compared against all its specialisations present in the ruleset). 

The running time for stages 2 and 3 are quadratic in the number of rules tested (in general this 
is dwarfed by the initial search in stage 1). When comparing two rules X ⇒ A and XQ ⇒ A, 
specialisation redundancy requires the computation of M(X ⇒ A|Q), and generalisation 
redundancy requires M(X ⇒ A|⌐Q). For Fisher's P, this requires us to obtain the frequencies 
for Q, ⌐Q, AQ, and A⌐Q. 

5 Evaluation 

Performance is evaluated with respect to three characteristics: total number of rules, overall 
rule quality, and efficiency. All experiments were run on a PC running Ubuntu Linux, with an 
Intel I7-4500 processor and 8gb RAM. Performance is also reported for rules generated with 
the classical definition of redundancy (Definition 1), as well as a baseline with no redundancy 
based pruning. 

5.1 Data 

Our evaluation uses the following data covering several domains. Descriptive statistics are also 
given in Table 6. 

 Mushroom Mushroom descriptions from the 1981 Audobon Society Field Guide to 
North American Mushrooms. This data is available in the UCI Machine Learning 
Repository1. 

 T10I4D100K An artificial dataset representing market basket data, obtained from the 
Frequent Itemset Mining Dataset Repository2. 

 T40I10D100K An artificial dataset representing market basket data, obtained from 
the Frequent Itemset Mining Dataset Repository3. 

 Diabetes Collection of real world data reporting traditional Chinese medical herbal 
prescriptions for diabetes. Includes both the herbs prescribed and a binary 
classification of the patient outcome as 'good' or 'bad'. 

 Fertility Collection of real world data reporting traditional Chinese medical herbal 
prescriptions for fertility. Includes both the herbs prescribed and a binary classification 
of the patient outcome as 'good' or 'bad'. 

                                                        

1 https://archive.ics.uci.edu/ml/datasets/Mushroom 
2 http://fimi.ua.ac.be/data/ 
3 http://fimi.ua.ac.be/data/ 
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 Insomnia Collection reporting traditional Chinese medical herbal prescriptions for 
insomnia. Includes both the herbs prescribed and a binary classification of the patient 
outcome as 'good' or 'bad'. 

 Aspergillosis Text documents (titles and abstracts) for articles considered for 
inclusion in a systematic review on Aspergillosis (Leeflang, Deeks et al. 2008). Each 
document is converted to a binary vector indicating the presence or absence of each of 
100 words, as well as a binary variable indicating whether the title and abstract was 
potentially relevant to the review. The words selected were those with the greatest 
discriminative power when identifying articles relevant to the review. 

All values were obtained as the average of 10 independent experiments using a random 50/50 
test/training split. Where possible, results are reported with their 95% confidence interval. 
Statistical significance tests are performed using a P-value of .05. In line with similar work, we 
measure interestingness using Fishers exact test (we report the natural log of P-values) 
(Hämäläinen 2012, Li and Zaiane 2015). Thresholds for interesting rules were chosen to strike 
a balance between permissiveness and execution time, and differ between data and 
experiments. 

 

Name 
# 

Instances 
# 

Attributes 
Avg. Instance 

Length 
Agg. Attribute Freq. 

Aspergillosis 4377 101 15.93 ± 0.26 680.51 ± 66.05 
Mushroom 8124 119 23.00 ± 0.00 1624.80 ± 358.73 
Diabetes 1915 204 10.26 ± 0.11 105.21 ± 30.09 
Fertility 766 215 15.73 ± 0.32 59.62 ± 14.21 
Insomnia 460 112 13.48 ± 0.25 55.38 ± 11.10 
T10I4D100K 100000 870 10.10 ± 0.02 1161.18 ± 74.73 
T40I10D100K 100000 942 39.61 ± 0.05 4204.36 ± 249.57 

Table 6: Summary of datasets used in the evaluation. 

5.2 Size of the Rule Set 

Figure 2 shows the number of rules generated for each dataset, pruning approach, and 
threshold (raw values are given in a table in the appendix). Not shown is the number of rules 
generated without redundancy based pruning; in all cases these values were substantially 
(often orders of magnitude) greater than with any type of pruning and were omitted to improve 
the readability of the graphs. The number of rules generated with robust redundancy is also 
significantly (P=.05) lower than for classical redundancy with most tested data. For the three 
exceptions (Insomnia data with thresholds -30 and -35, and Mushroom with threshold -2000), 
no significant difference in means is observed. 
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Figure 2: Total ruleset size vs. goodness threshold (ln(P)) with classical, specialisation, and 
robust (specialisation and generalisation redundancy). Each figure contains one spoke per 
tested threshold. Values closer to the outside of the plots indicate more rules were produced. 
Scales differ between subplots. 

The cases where no significant difference in the number of non-redundant rules is observed 
occur using the strictest thresholds. In addition, the difference between the mean number of 
rules generated appears to increase as the interestingness threshold is relaxed. The number of 
rules appears to converge as the bound on interesting rules is tightened, and diverge as it is 
relaxed. This supports the conclusion that our proposed approach is able to produce a practical 
number of rules from a larger number of potentially interesting associations. This quality is 
desirable as it allows the use of relaxed interestingness thresholds, lowering the risk of missing 
potentially useful associations. 

We now examine performance when exclusively removing redundant specialisations. Given 
rule X ⇒ Z, specialisation redundancy (Definition 2) uses the conditional association X ⇒ Z | 
Q to provide an additional chance to obtain evidence for keeping rule XQ ⇒ Z (with respect to 
the classical approach defined in section 2). All specialisations that are not classically 
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redundant will also not be robust redundant. Robust specialisation redundancy will always 
return at least as many rules as the classical approach. 

5.3 Rule Quality 

Next we examine at the quality of the generated rules. As evidence has been given that we 
should not prune generalisations without first pruning specialisations, no results are reported 
for pruning generalisations exclusively. Figure 3 shows the mean log P-values for each of the 
tested redundancy methods and thresholds (raw values are given in the appendix). Despite the 
smaller generated rule set, it can be seen that in all cases the performance of robust pruning is 
equivalent or slightly better than for rules generated with classical redundancy. 

 

Figure 3: Ruleset performance (average ln(P)  vs. goodness threshold (ln(P)) on hold out 
data with classical, specialisation, and robust (specialisation and generalisation 
redundancy). Each figure contains one spoke per tested threshold. Values closer to the 
outside of the plots indicate higher absolute mean quality (lower P values). Scales differ 
between subplots. 
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5.4 Efficiency 

The expanded search for robust redundancy increases the amount of time and space required. 
The main factor that effects both computational time and memory requirements is the number 
of nodes generated during the search. This can be seen by observing the similarity of the trends 
for the number of nodes generated (Figure 4) against time (Figure 5) and memory (Figure 6) 
(additional figures displaying these trends are included in the appendix).  

Two factors contribute to the increased search space size. As robust specialisation redundancy 
is more permissive than classical redundancy, the pruning employed during the search must 
be less aggressive. Additionally, we do not prune based on minimality with robust redundancy. 
We note however that as our initial search differs from the existing Kingfisher algorithm only 
in the pruning strategies employed, it maintains the same worst-case time and space 
complexity. 

 

Figure 4: Number of nodes generated during rule search algorithm vs. goodness threshold 
(ln(P)) with classical, specialisation, and robust (specialisation and generalisation 
redundancy). Each figure contains one spoke per tested threshold. Values closer to the 
outside of the plots indicate more search nodes. Scales differ between subplots 
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Figure 5: Total search time (seconds) during rule search algorithm vs. goodness threshold 
(ln(P)) with classical, specialisation, and robust (specialisation and generalisation 
redundancy). Each figure contains one spoke per tested threshold. Values closer to the 
outside of the plots indicate higher run times. Scales differ between subplots 
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Figure 6: Peak memory usage (kb) during rule search algorithm vs. goodness threshold 
(ln(P)) with classical, specialisation, and robust (specialisation and generalisation 
redundancy). Each figure contains one spoke per tested threshold. Values closer to the 
outside of the plots indicate memory usage. Scales differ between subplots 

Figure 2 shows the number of nodes generated when searching with each data (values for 
robust and specialisation redundancy appear quite similar). Observe the difference in number 
of nodes generated when searching with robust and classical redundancy varies substantially. 
Some data (e.g. Aspergillosis and T10I4D100K) differ very little, while the greatest difference 
is observed for the Mushroom and T40I10D100K data. 

In addition to comparing the number of nodes when searching with classical and robust 
redundancy, it is interesting to examine the number of nodes when no redundancy based 
pruning is used. A substantial difference exists between the number of nodes generated 
without pruning when compared to robust redundancy. This implies the bounds computed 
during the search (reported in Table 5) have a notable effect on the size of the search space. 

Three exceptions occur with the Aspergillosis, T10I4D100K, and T40I10D100K data. For 
Aspergillosis and T10I4D100K we note there is also little difference between the number of 
nodes generated using robust and classical redundancy. The implication here is that the 
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majority of the pruning is being done by lapis philosophorum. However, for T40I10D100K 
there is a substantial difference in performance with robust and classical redundancy. 

Figure 5 reports the time for all searches (including pruning in Algorithm 1 and 2). In all cases 
the required search time was quite manageable. Even for T40I10D100K, all searches 
completed in less than 30 seconds (all other data completed much quicker). In practice 
memory appears to become an issue long before time required for the search. 

6 Conclusion 

This paper considers the problem of identifying and removing redundant associations in 
association rule mining. A new approach for identifying and removing redundant rules is 
presented, which we call robust redundancy. 

Prior work compared rules based only with their respective contingency tables. Such a 
comparison fails to consider information included in instances containing only part of the 
antecedent. Robust redundancy is able to use this information to discover interesting 
specialisations that would be incorrectly removed with a classical approach. 

We also remove rules which are redundant artefacts of their non-redundant specialisations. 
Unlike previous work (Liu, Hsu et al. 2001, Webb 2010) that evaluate generalisations based on 
their exclusive domain with respect to the set of all specialisations, we base our method on 
comparisons to individual rules. We also present the first work using both specialisation and 
generalisation redundancy in a rule based context (as opposed to the work of Webb (Webb 
2010) with itemsets). 

We demonstrate several situations in which classical redundancy based approaches can be 
confounded by interactions between variables, and show that the proposed approach is able to 
more accurately identify the correct underlying relationships in these situations. 

Experimental analysis with multiple real and artificial data demonstrates that robust 
redundancy often produces smaller overall rule sets compared to classical redundancy. These 
rule sets hold as well or better in future data than those generated using classical redundancy. 

A limitation of our work is the increased time and space requirements of the rule generation 
compared to classical approaches. We generate rules using a modification of the Kingfisher 
algorithm with less aggressive pruning; although the worst case complexity does not change, 
in practice the time requirements can increase substantially. However, as noted in Section 5 
performance on experimental data was still good enough to run in reasonable time on standard 
hardware. Alternate search algorithms and pruning approaches to improve performance in 
this area are an interesting line of enquiry for future work. 
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Appendices 

Number of Rules 

The following table describes the average number of rules generated across 10 runs (as 
described in section 5.1 of the manuscript). Values are reported with their 95% confidence 
intervals. Alpha value is the goodness threshold used (rules were evaluated using the natural 
log of Fishers P values). 

Dataset α No Prune Classic Robust 
Specialisations 

Robust (Both) 

Aspergillosis -50 29548.60 ± 4461.94 389.40 ± 31.39 391.60 ± 31.48 268.30 ± 21.10 

-75 4207.80 ± 352.07 119.20 ± 6.36 120.10 ± 6.41 88.90 ± 2.82 

-100 1073.60 ± 124.63 55.90 ± 5.90 56.20 ± 5.87 41.70 ± 3.45 

-125 383.10 ± 33.97 26.90 ± 2.55 27.00 ± 2.57 22.20 ± 1.77 

-150 163.90 ± 16.29 19.50 ± 1.55 19.50 ± 1.55 16.50 ± 1.28 

-175 89.90 ± 6.74 14.60 ± 1.08 14.70 ± 1.04 12.90 ± 1.02 

-200 49.40 ± 5.33 10.00 ± 1.04 10.20 ± 1.10 9.20 ± 0.77 

Diabetes -15 34543.20 ± 12832.45 1327.80 ± 99.71 1676.30 ± 235.23 823.60 ± 83.15 

-20 11816.40 ± 2574.97 613.00 ± 52.78 699.90 ± 73.42 394.40 ± 38.01 

-25 4152.80 ± 227.20 343.40 ± 18.07 365.00 ± 21.57 224.90 ± 10.38 

-30 2731.10 ± 229.94 244.50 ± 10.73 248.60 ± 11.75 162.40 ± 9.20 

-35 1656.20 ± 102.51 180.80 ± 7.58 183.40 ± 7.73 126.30 ± 5.47 

-40 1198.80 ± 86.62 143.60 ± 7.21 145.10 ± 7.38 102.50 ± 4.95 

-45 782.30 ± 78.51 107.10 ± 11.24 107.20 ± 11.29 78.80 ± 7.13 

Fertility -15 362405.60 ± 86789.45 595.30 ± 45.95 618.30 ± 48.06 352.80 ± 25.40 

-20 141740.50 ± 41787.17 278.00 ± 15.74 283.80 ± 15.80 176.80 ± 12.03 

-25 42389.60 ± 11074.22 176.10 ± 5.92 178.20 ± 6.07 111.20 ± 5.71 

-30 20686.90 ± 4609.10 132.50 ± 14.70 133.20 ± 15.04 85.00 ± 9.83 

-35 12736.90 ± 2347.48 113.60 ± 6.68 114.00 ± 7.06 72.80 ± 4.27 

-40 7713.60 ± 1830.05 90.50 ± 7.11 90.80 ± 7.11 62.40 ± 6.12 

-45 4718.80 ± 687.50 74.50 ± 10.29 74.60 ± 10.33 48.70 ± 7.68 

Insomnia -15 12812.70 ± 2399.55 624.00 ± 48.35 747.80 ± 64.69 402.10 ± 33.42 

-20 3180.50 ± 998.68 243.60 ± 37.06 269.00 ± 40.89 161.20 ± 24.88 

-25 876.70 ± 362.33 104.50 ± 15.75 112.50 ± 14.98 72.30 ± 12.27 

-30 271.10 ± 36.97 43.60 ± 6.41 46.80 ± 6.78 32.00 ± 4.42 

-35 136.40 ± 23.64 24.30 ± 5.93 25.40 ± 5.86 17.40 ± 3.59 

-40 59.40 ± 8.13 10.60 ± 1.25 12.40 ± 2.19 8.20 ± 1.20 

-45 31.60 ± 7.02 5.20 ± 1.70 6.10 ± 1.93 4.60 ± 1.4 

Mushroom -1250 61767.80 ± 158.39 409.70 ± 5.32 568.70 ± 7.42 227.40 ± 2.95 

-1375 37501.10 ± 4080.51 308.10 ± 7.70 342.40 ± 10.14 166.00 ± 6.38 

-1500 22634.50 ± 92.39 229.70 ± 5.67 239.40 ± 5.97 125.50 ± 1.67 

-1625 22049.80 ± 39.14 191.30 ± 2.54 196.30 ± 2.85 114.80 ± 1.77 

-1750 19980.00 ± 2498.40 140.70 ± 5.51 141.70 ± 5.51 93.30 ± 6.17 

-1875 7507.80 ± 78.31 88.60 ± 3.75 89.60 ± 3.75 56.70 ± 1.08 

-2000 6430.80 ± 522.10 38.90 ± 5.39 39.90 ± 5.39 34.70 ± 4.15 

T10I4D100K -500 17287.60 ± 191.08 6114.80 ± 53.65 6114.80 ± 53.65 4302.40 ± 43.14 

-750 3484.70 ± 73.63 1568.00 ± 28.03 1568.00 ± 28.03 1217.30 ± 21.15 

-1000 750.40 ± 31.17 411.90 ± 12.19 411.90 ± 12.19 353.50 ± 9.51 

-1250 169.70 ± 3.67 99.80 ± 2.51 99.80 ± 2.51 85.30 ± 2.30 

-1500 76.70 ± 4.39 41.70 ± 2.73 41.70 ± 2.73 36.50 ± 2.47 

-1750 28.50 ± 3.82 16.90 ± 1.55 16.90 ± 1.55 15.60 ± 1.31 

-2000 2.90 ± 1.53 2.90 ± 1.53 2.90 ± 1.53 2.90 ± 1.53 

T40I10D100K -2000 297056.60 ± 16747.78 5477.00 ± 211.44 5477.00 ± 211.44 3675.70 ± 133.93 

-2125 227409.30 ± 30167.75 4165.60 ± 181.86 4165.60 ± 181.86 2874.70 ± 116.69 

-2250 80480.40 ± 31503.32 3001.90 ± 159.61 3001.90 ± 159.61 2195.80 ± 93.08 

-2375 32533.60 ± 24486.95 1746.40 ± 372.79 1746.40 ± 372.79 1323.10 ± 264.55 

-2500 5693.70 ± 611.02 660.20 ± 78.37 660.20 ± 78.37 528.70 ± 69.71 

-2625 1933.20 ± 631.18 341.90 ± 58.24 341.90 ± 58.24 282.20 ± 47.46 

-2750 615.10 ± 272.55 193.50 ± 57.87 193.50 ± 57.87 172.50 ± 51.47 
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Average P Values 

The following table describes the average P value on hold out data for rules on 7 data sets. 
Results were generated across 10 runs using a 50/50 training/test split (as described in section 
5.1 of the manuscript). Values are reported with their 95% confidence intervals. Alpha value is 
the goodness threshold used (rules were evaluated using the natural log of Fishers P values). 

Dataset α No Prune Classic Robust 
Specialisations 

Robust (Both) 

Aspergillosis -50 -57.44 ± 3.85 -73.19 ± 2.67 -73.25 ± 2.64 -77.29 ± 2.86 

-75 -91.80 ± 3.04 -115.51 ± 2.75 -115.36 ± 2.73 -121.00 ± 2.09 

-100 -125.78 ± 5.52 -155.54 ± 9.36 -155.37 ± 9.22 -165.06 ± 7.93 

-125 -157.39 ± 5.65 -206.80 ± 10.15 -206.60 ± 10.25 -215.07 ± 9.12 

-150 -197.29 ± 8.45 -240.32 ± 7.31 -240.32 ± 7.31 -249.13 ± 7.18 

-175 -224.52 ± 6.51 -265.57 ± 7.95 -265.10 ± 7.75 -273.72 ± 8.71 

-200 -259.87 ± 11.65 -297.70 ± 13.49 -296.33 ± 14.14 -304.60 ± 11.22 

Diabetes -15 -12.17 ± 1.72 -16.78 ± 0.90 -15.30 ± 1.28 -17.67 ± 1.39 

-20 -18.97 ± 2.38 -26.30 ± 1.74 -24.48 ± 1.91 -27.65 ± 2.27 

-25 -30.79 ± 1.34 -36.92 ± 1.58 -35.67 ± 1.53 -39.42 ± 1.54 

-30 -35.59 ± 2.38 -43.34 ± 2.05 -43.11 ± 2.05 -47.00 ± 2.27 

-35 -44.02 ± 1.78 -50.70 ± 1.22 -50.44 ± 1.18 -54.14 ± 1.27 

-40 -48.68 ± 2.62 -55.41 ± 2.06 -55.15 ± 2.07 -58.88 ± 1.94 

-45 -56.41 ± 3.62 -62.17 ± 4.00 -62.14 ± 4.01 -66.32 ± 4.32 

Fertility -15 -14.63 ± 1.86 -20.65 ± 1.35 -20.18 ± 1.29 -21.54 ± 1.23 

-20 -19.21 ± 3.37 -33.41 ± 3.24 -33.00 ± 3.06 -34.13 ± 3.22 

-25 -29.80 ± 3.75 -43.14 ± 3.31 -42.84 ± 3.30 -42.72 ± 3.14 

-30 -34.94 ± 3.51 -54.64 ± 3.28 -54.49 ± 3.30 -55.67 ± 2.92 

-35 -38.45 ± 4.19 -56.66 ± 4.09 -56.55 ± 4.10 -57.15 ± 4.08 

-40 -44.74 ± 5.33 -62.70 ± 6.00 -62.55 ± 5.92 -63.21 ± 5.56 

-45 -50.15 ± 3.88 -66.96 ± 5.25 -66.92 ± 5.28 -66.96 ± 5.36 

Insomnia -15 -10.67 ± 1.41 -13.27 ± 0.74 -12.83 ± 0.80 -13.05 ± 0.72 

-20 -16.50 ± 2.50 -18.77 ± 1.76 -18.68 ± 1.75 -18.61 ± 1.78 

-25 -24.19 ± 3.16 -24.32 ± 1.88 -24.58 ± 1.97 -24.39 ± 2.06 

-30 -31.51 ± 1.70 -30.45 ± 1.52 -30.45 ± 1.64 -30.64 ± 1.62 

-35 -35.02 ± 3.08 -33.93 ± 2.99 -34.37 ± 3.04 -35.13 ± 3.09 

-40 -44.25 ± 4.01 -41.28 ± 2.06 -40.81 ± 2.88 -42.70 ± 2.77 

-45 -57.66 ± 5.25 -55.98 ± 6.25 -55.34 ± 6.45 -58.16 ± 7.72 

Mushroom -1250 -1542.40 ± 8.59 -1604.50 ± 9.79 -1535.21 ± 8.13 -1622.80 ± 9.53 

-1375 -1674.28 ± 39.12 -1700.65 ± 14.68 -1676.63 ± 14.71 -1733.22 ± 20.36 

-1500 -1853.86 ± 17.29 -1793.91 ± 19.56 -1787.94 ± 19.16 -1842.73 ± 17.71 

-1625 -1860.36 ± 11.36 -1843.53 ± 10.95 -1840.13 ± 11.21 -1869.33 ± 10.59 

-1750 -1886.27 ± 24.84 -1903.90 ± 8.54 -1904.92 ± 8.53 -1915.04 ± 9.57 

-1875 -2058.56 ± 15.00 -1996.28 ± 15.97 -1997.05 ± 15.92 -2016.88 ± 13.73 

-2000 -2064.61 ± 13.26 -2040.31 ± 15.01 -2040.44 ± 14.65 -2044.43 ± 13.54 

T10I4D100K -500 -654.97 ± 3.75 -677.78 ± 2.91 -677.78 ± 2.91 -691.13 ± 3.47 

-750 -901.33 ± 7.01 -923.40 ± 5.67 -923.40 ± 5.67 -934.32 ± 6.11 

-1000 -1155.35 ± 11.23 -1171.87 ± 9.15 -1171.87 ± 9.15 -1174.81 ± 8.79 

-1250 -1496.84 ± 15.98 -1489.76 ± 14.07 -1489.76 ± 14.07 -1497.53 ± 14.53 

-1500 -1679.61 ± 30.62 -1690.91 ± 30.69 -1690.91 ± 30.69 -1702.46 ± 30.36 

-1750 -1839.38 ± 44.39 -1865.57 ± 41.17 -1865.57 ± 41.17 -1869.08 ± 40.72 

T40I10D100K -2000 -2205.18 ± 32.30 -2282.00 ± 17.71 -2282.00 ± 17.71 -2302.10 ± 18.75 

-2125 -2201.06 ± 42.97 -2339.99 ± 33.51 -2339.99 ± 33.51 -2360.88 ± 33.30 

-2250 -2305.75 ± 57.95 -2408.56 ± 28.13 -2408.56 ± 28.13 -2423.45 ± 26.10 

-2375 -2410.26 ± 100.15 -2470.00 ± 58.98 -2470.00 ± 58.98 -2481.85 ± 56.55 

-2500 -2585.09 ± 42.48 -2621.87 ± 51.48 -2621.87 ± 51.48 -2631.06 ± 52.50 

-2625 -2691.38 ± 36.23 -2748.60 ± 26.65 -2748.60 ± 26.65 -2756.40 ± 25.11 

-2750 -2686.73 ± 40.39 -2706.56 ± 33.16 -2706.56 ± 33.16 -2710.19 ± 33.49 
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Search Time 

Average search time (measured in seconds) vs. goodness threshold (natural log of Fishers P) 
for 7 data sets. 

 
 

Number of Search Nodes 

Number of search nodes generated vs. goodness threshold (natural log of Fishers P) for 7 data 
sets. 
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Peak Memory Usage 

Peak memory usage (measured in kb) vs. goodness threshold (natural log of Fishers P) for 7 
data sets. 
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