
Australasian Journal of Information Systems Special Issue 2003/2004

 40

CONTINUOUS INTEGRATION AND QUALITY ASSURANCE:

A CASE STUDY OF TWO OPEN SOURCE PROJECTS

Jesper Holck

Copenhagen Business School

Department of Informatics

Howitzvej 60
DK-2000 Frederiksberg

Denmark

jeh.inf@cbs.dk

Niels Jørgensen

Roskilde University
Computer Science

Universitetsvej 1

DK-4000 Roskilde
Denmark

nielsj@ruc.dk

ABSTRACT

A decentralized variant of continuous integration can be defined in terms of two fundamental rules: (1)

Developers’ access to add contributions to the development version at any time, and (2) developers’
obligation to integrate their own contributions properly. Decentralized, continuous integration may

adapt well to organizations where developers work relatively independently, as in many open source

projects. The approach raises the issue of how these organizations can exercise central control, as
attaining the benefits of continuous integration requires that contributions are useful and satisfy the

project’s definition of successful integration. We have investigated the use of continuous integration in

FreeBSD and Mozilla. Our account of quality assurance activities in the two open source projects
distinguishes between Mintzberg’s three complementary forms of central control: Standardization and

control of work output, work processes, and worker skills. Our study indicates that two major

challenges face projects using decentralized, continuous integration: (1) To balance the access to add
contributions against the need to stabilize and mature the software prior to a release, and (2) to consider

the developers’ limited time and resources when interpreting their obligation to integrate their changes

properly.

INTRODUCTION

In the term ‘continuous integration’, integration refers to assembly of software parts and continuous

to the absence of time-constraints. Several development methods label certain activities as

continuous integration, including Unified Process (Jacobson, Booch, & Rumbaugh, 1999), and

eXtreme Programming, where it is one of 12 recommended best practices (Beck, 1999). Continuous

integration may supplement a phased approach, where ‘continuous’ refers to the way integration

takes place during a phase of integration and tests; or it may be part of iterative methods with (as in

XP) or without (as in FreeBSD and Mozilla) processes prescribing that modules and their interfaces

are designed and documented prior to implementation.

By ‘integration’ we understand more specifically all activities required to assemble a complete

system of software from its parts (Herbsleb & Grinter, 1999), and by ‘continuous’ we understand

that developers integrate frequently and throughout all phases in the development life cycle. In this

broader sense, continuous integration is used in open source as well as in commercial projects. The

definition comprises both relatively controlled processes, as used in Microsoft (Cusumano & Selby,

1997) with a daily build cycle and central management of the build process (most notably of

correcting a broken build), and less structured processes as used in Mozilla and FreeBSD. The latter,

more decentralized approach has the following two characteristics: First, the developers’ access to

add software contributions to the development branch at any time, and second, the developers’

obligation to integrate their own contributions properly. This approach is decentralized in the sense

that both the decision of when to integrate and the responsibility for a successful integration are

delegated to the individual. There is no sharp distinction between the centralized and decentralized

Australasian Journal of Information Systems Special Issue 2003/2004

 41

approaches, and one of the projects in our study, Mozilla, can be characterized as borderline due to

its semi-structured development process.

According to studies of commercial projects using daily builds and thus some form of continuous

integration, advantages of continuous integration include reduced integration risks (errors are found

early) and motivation (you see a working system) (Cusumano & Selby, 1997; Ebert, Parro, Suttels,

& Kolarczyk, 2001; Olsson & Karlsson, 1999). Continuous integration is also an alternative to ‘big

bang’ integration, where all modules are combined in one go, and which usually results in large

numbers of errors, hard to isolate and correct owing to the vast expanse of the program (Pressman,

1992).

Disadvantages of continuous integration may include degeneration of architecture due to lack of

focus on overall design and time spent on too frequent releases of too poor quality (Olsson &

Karlsson, 1999).

Continuous integration, especially in a decentralized variant, may be of particular interest in open

source projects due to the difficulty associated with imposing structured approaches in such projects

and their participants. Some of the prevalent characteristics of open source projects are:

Few specifications: Many of the documents traditionally regarded as essential for coordination seem

to be missing in most open source projects, including plans and schedules (Mockus, Fielding, &

Herbsleb, 2002).

Geographical distribution: A study of Linux contributors showed that they “come from a truly

worldwide community spanning many organizations” (Dempsey, Weiss, Jones, & Greenberg, 2002),

and a recent on-line survey of 2,784 open source participants (Ghosh, Glott, Krieger, & Robles,

2002) showed that “most of the developers feature networks that consist of rather few people.”

Studies have shown that integration is particularly difficult in geographically distributed projects

(Herbsleb & Grinter, 1999).

Volunteers: Most developers contribute to the projects in their free time – an estimated 60% are not

paid for their work (Hars & Ou, 2001; Jørgensen, 2001) – and consequently they are less likely to

accept to be ordered around and perform tedious tasks.

Self-directed egoists: This characterization of open source developers (Raymond, 2001) may be

crude, but it is not too distant from the results of empirical studies. According to Lakhani et al.

(2002), the two most important motivations for participating in an open source project were

“intellectually stimulating” and “improves skill”. For only 20% of the developers, “work with team”

was a key motivator.

However, to attain the benefits of continuous integration, it is crucial that the project imposes some

form of control on the contributions flowing into the development version of the project’s software.

For example, the benefit of easier defect diagnosis, because build errors must be the result of very

recent contributions (McConnell, 1996a), is unobtainable if the build is broken from the outset.

We use Mintzberg’s work on organizational archetypes and different mechanisms of control

(Mintzberg, 1979) to categorize the activities in FreeBSD and Mozilla, which we have found are

related to quality assurance and continuous integration. As indicated above, in some ways open

source projects lack structure and therefore might resemble Mintzberg’s adhocracy archetype: a flat

organization of specialists, forming small project groups from task to task, and supposedly the most

appropriate organization for modern organizations that depend on their employees’ creative work.

However, we find it rather intriguing and illuminating to examine the structured aspects of the two

open source projects. In support of this, we may add that there are strong elements of stability in the

projects: throughout their lives they have used the same technological infrastructure, and the projects

are primarily developing new versions of the same product (an operating system and a web browser

suite, respectively). Therefore, we have organized our account of quality assurance and continuous

integration in the two projects to follow Mintzberg’s distinction between establishing central control

via standardization of worker skills, work processes, and work output. Each of these forms of

control is predominant in one of Mintzberg’s archetypes: the professional bureaucracy, the machine

bureaucracy, and the divisionalized organization.

The rest of the paper is organized as follows: First we describe the two projects in our case study and

how we have made the survey. Subsequently, we examine the projects’ quality assurance activities

Australasian Journal of Information Systems Special Issue 2003/2004

 42

focusing on control of worker skills, work processes, and work output, respectively. Finally, in the

last section we conclude and discuss our findings.

FreeBSD, Mozilla, and our survey

FreeBSD and Mozilla organize their source code repository (from now on: the repository) around a

main branch (the trunk) into which most changes are inserted and one (Mozilla) or more (FreeBSD)

additional branches hosting the projects’ production releases. See table 1 for basic facts about the

two projects.

Table 1. Basic facts on FreeBSD and Mozilla

Name FreeBSD Mozilla

Product Operating system Web browser suite

Major product qualities Robustness, security Independence, open interfaces,

user interface

Major platforms Intel x86, Alpha, SPARC, PC-98 Windows, Linux, MacOS

Approximate size of trunk 29,000 files,

11 million lines

40,000 files,

6 million lines

Activity on trunk in October

2002

118 persons

committed 2,063 changes

107 persons

committed 2,856 changes

50% of these commits made

by

12 developers 7 developers

Project management 9 person

Core Team

11 person

Mozilla.org Staff

The repositories are stored at central locations and can be reached via the Internet (www.freebsd.org

and www.mozilla.org). Developers contribute to the projects by continually and in parallel updating

(changing, adding, and deleting) repository files; a process controlled by means of CVS augmented

with extra tools. Each file change (commit) creates a new version; all old file versions remain

accessible, and thus it is always possible to go back to an older version of a file if problems or errors

occur.

The software product that results from building with the newest versions of all files is called the

development version; because files are updated continuously, the development version will also be

constantly evolving. The aggregation of all files related to the development version is called the

trunk.

Because both projects maintain production releases and therefore have to isolate new development

from maintenance of previous releases, there is a need to create branches in the repository. At a

certain time, a branch is created as a (logical) copy of the most recent file versions from the trunk;

subsequently, changes to the trunk will not directly influence the branch and vice versa, and

developers must specify which branch they want to use when downloading or committing source

files.

In addition to the various development and production versions, both projects’ software is also

adapted to a wide range of different platforms (the table only shows the most important). As a

consequence, developers not only need to differentiate between releases (residing on different

branches), they must also be able to commit changes intended for specific platforms, which is

accomplished by using conditional compilation rather than branching.

Both projects employ several staff and management functions, including top-level management

boards (Mozilla.org staff and FreeBSD Core Team). But most of the development work in both

projects takes place in one-man projects, where developers contribute new or revised source code,

largely working by themselves (Jørgensen, 2001).

Australasian Journal of Information Systems Special Issue 2003/2004

 43

We have pulled statistical data from FreeBSD’s and Mozilla’s repositories in October 2002, studied

the projects’ public mailing lists, and drawn on a survey of FreeBSD committers performed in

November 2000 and also the basis for (Jørgensen, 2001). The survey obtained 72 replies,

corresponding to just over 35% of the project’s committers at that time. The developers were asked

29 multiple-choice questions and also asked for further comments. Finally we have conducted e-

mail-based interviews with selected developers from FreeBSD and Mozilla.

CONTROLLING QUALITY THROUGH SKILLS: PROMOTION BASED ON MERITS

Mozilla and FreeBSD carefully control which developers are allowed to commit changes to their

software. To get commit privileges, in both projects you must first demonstrate your competence,

typically by making high-quality contributions over a period of time.

The accreditation procedures for new committers are related to what Mintzberg designates

‘standardization of skills’, the key coordination mechanism in professional bureaucracies, often

illustrated by examples like hospitals and universities (Mintzberg, 1979). In comparison with these,

the standardizations of skills in FreeBSD and Mozilla are rather simple. Essentially, they only

consist of filtering the admitted developers into the single category of ‘professionals’: the

committers.

Promotion of external contributors to committers

Mozilla has a formal bureaucratic procedure for accrediting committers involving a formal

application, acceptance from a voucher (person who already has commit privileges), and a written

acceptance from three of the so-called ‘super reviewers’ (Getting CVS Write Access to Mozilla,

2003). In FreeBSD, you acquire the right to commit to the source code repository by the Core Team

based on a request from one or more committers, but the procedure does not seem to be as formal as

in Mozilla. By only granting commit-privileges to developers that have demonstrated programming

as well as interpersonal skills and interest in the project, FreeBSD and Mozilla reduce the risks of

low-quality contributions. The trial period, which contributors must go through before they become

committers, can be seen as an apprenticeship where the persons gradually learn and adapt to the

projects’ procedures, rituals, and culture. The contributors will only be given commit privileges if

the adaptation appears successful:

This process serves multiple purposes; after all, the FreeBSD community is made

up of people who do the work. For committers, the work consists of creating

useful and correct patches. If you don’t consistently and regularly create good

patches, there’s no point in giving you commit access, now is there? … By the

time you’ve submitted several dozen PRs [problem reports], you’ll either work

well with the FreeBSD team or everyone will understand that you and the team

just can’t get along (Lucas, 2002).

Because developers without commit privileges have to find committers that will approve their

contributions and perform the actual changes to the repository, the committers have a strong

motivation for delegating commit privileges to qualified developers:

To a committer, taking patches from PRs is a trivial annoyance. Contributions are

certainly appreciated, but they must be read, evaluated, and tested. … If you

submit enough useful and correct PRs, eventually some committer will get sick of

taking care of your work and will ask you if you want to be able to commit them

yourself (Lucas, 2002).

This pattern of developers, gradually becoming more involved in FreeBSD or Mozilla, bears

resemblance to professional communities evolving by gradually letting peripheral participants

become fully qualified members, as described by Lave and Wenger (1991) in their study of what

they term legitimate peripheral participation; an analogy also noted by Nakakoji et al. (2002).

According to a FreeBSD developer, the accreditation procedures seem to work very well:

Australasian Journal of Information Systems Special Issue 2003/2004

 44

By and large, most of the committers are better programmers than the people I

interview and hire in Silicon Valley (FreeBSD developer).

Controlling the committers

A critical concern in the projects is to ensure that developers with commit privileges also commit

good source code contributions. Both projects reserve the right to delete a change from the trunk and

to revoke a developer’s commit privileges completely. Removal of a change is technically a simple

task provided that the change is independent of all subsequently committed changes, which is

usually the case. In FreeBSD, there is a well-defined process for deleting a change already

committed:

Any disputed change must be backed out […] if requested by a maintainer. […]

This may be hard to swallow in times of conflict […] If the change turns out to be

the best after all, it can easily be brought back (The FreeBSD Committers’ Big

List of Rules).

Moreover, a consensus between committers working in a certain area can be overridden for security

reasons:

Security related changes may override a maintainer’s wishes at the Security

Officer’s discretion (The FreeBSD Committers’ Big List of Rules).

The ultimate sanction is to revoke the commit privileges, and FreeBSD’s internal rules specify a

procedure for doing this temporarily or permanently (The FreeBSD Committers’ Big List of Rules).

Under normal circumstances, this requires three core team members to act in unison, and

subsequently the core team is required to participate in a public hearing about the matter if requested

by the developer in question. It is our estimate that the ultimate sanction, analogous to firing a hired

developer, is used less than once a year and that it serves as a means to resolve collaborative issues

rather than to maintain a high level of coding skills.

CONTROLLING QUALITY THROUGH PROCESS: LAISSEZ FAIRE

Prior to the point where their new source code contribution is integrated into the development

version, committers in both FreeBSD and Mozilla are free to choose their own approach to develop

the change. On one hand, this freedom is well suited to the voluntary nature of most of the

development work. On the other, the lack of systematic approaches, e.g. thorough analysis and

design activities, may increase previously identified important risks associated with the daily build

and continuous integration (Olsson & Karlsson, 1999): excessively proactive development

(developers failing to think before they act), architectural degeneration, and ‘quick and dirty’

changes.

In general, there is a relatively small amount of control via standardization of work processes in

FreeBSD and Mozilla. The Mintzberg archetype for organizations relying on standardization of

work as a key coordinating mechanism is the machine bureaucracy, and example organizations

include McDonald’s and automobile manufacturers (Mintzberg, 1979). This section describes the

process rules and guidelines that apply to the developer’s pre-integration activities, including the

requirements for public announcement, discussion, and review. The section also discusses the pre-

integration activities for which there are no such rules or guidelines, in particular design.

Work assignment

The life cycle of a change begins when a developer decides to start working on a task. FreeBSD and

Mozilla's rules for work assignment are extremely liberal: in general, committers are free to pick any

task they wish. The projects encourage developers to pick tasks that appeal to them:

Look through the open PRs, and see if anything there takes your interest

(Hubbard, 2003).

Australasian Journal of Information Systems Special Issue 2003/2004

 45

This is in line with Raymond’s thesis about open source projects relying on developers inclination to

“scratch their personal itch” (Raymond, 2001).

The use of continuous integration is an important condition that makes it relatively easy for

developers to define and choose on which task they want to work. As the decision when to integrate

is delegated to the individual committer, there can be no specific order in which the various

contributions are supposed to be integrated in the development version. Thus, developers are largely

free to choose, implement and commit any contribution to the repository with only a limited effort to

coordinate with other developers.

This independence is an obvious advantage in an open source project: From the point of view of the

project as a whole, it reduces the need for a plan in which tasks are defined, allocated, and

scheduled; a plan that would require a considerable effort to produce and maintain. From the

developer’s point of view, the freedom to choose a task and integrate a change quickly may be

highly motivating:

... there is a tremendous sense of satisfaction to the ‘see bug, fix bug, see bug fix

get incorporated so that the fix helps others’ cycle (FreeBSD developer).

This may also apply to developers who are paid by a company:

I use FreeBSD at work. It is annoying to take a FreeBSD release and then apply

local changes every time. When […] my changes […] are in the main release […]

I can install a standard FreeBSD release […] at work and use it right away

(FreeBSD developer).

The developers’ free choice of task assignments are, however, balanced by various

recommendations and rules. To see who is working on what, Mozilla recommends that if the task,

on which a developer chooses to work, has not already been reported as a bug, the developer should

do this first:

Enter the task you’re planning to work on as enhancement requests and Bugzilla

will help you track them and allow others to see what you plan to work on (bugs,

2003).

FreeBSD has no similar formal requirement that developers should announce their current task.

There are at least two exceptions to developers’ free choice of task assignments. The first exception

is soft in the sense that it is a recommendation rather than a rule: the encouragement to work on

important bugs. The general call in Mozilla is to “stay focused on the most important problems [i.e.

bugs]” (The Seamonkey Engineering Bible, 2003), especially stressing the issue before production

releases. If in doubt, the developer is recommended to choose to work on one of the bugs reported in

the bug-tracking system, and inform possible stakeholders of his or her plan:

Start with the PRs that have not been assigned to anyone else. If a PR is assigned

to someone else, but it looks like something you can handle, email the person it is

assigned to and ask if you can work on it – they might already have a patch ready

to be tested, or further ideas that you can discuss with them (Hubbard, 2003).

The second exception is an obligation to consult the person responsible for a given code area. Both

projects have a notion of code ownership in the sense that most files have a maintainer (FreeBSD)

or module owner (Mozilla), often responsible for entire directories or applications:

The maintainer owns and is responsible for that code. This means that he is

responsible for fixing bugs and answering problems reports […] (Kamp, 1996).

Code ownership is a mechanism for coordination via a consensus process:

[A commit should happen] only once something resembling consensus has been

reached (The FreeBSD Committers’ Big List of Rules).

The requirements to announce and discuss one’s (intended) choice of work tasks publicly help to

mitigate obvious risks:

• The risk of doing duplicate (and hence wasted) work because different developers

unknowingly might be working in parallel on the same problem. Even though developer

resources are gratis in open source projects, they are not unlimited and should be utilized

efficiently.

Australasian Journal of Information Systems Special Issue 2003/2004

 46

• The risk of spending time on changes that will not be considered improvements by the

community. This is a waste of the developer’s resources and may result in extra work for

others if the changes need to be backed out of the repository.

• The risk of integration problems because two or more developers want to make

incompatible changes to the same module.

Work breakdown

Work is broken down into small tasks that are not too difficult to integrate. Neither project has any

rule pertaining to the granularity of work breakdown; rather working with small changes is a

consequence of the obligation to integrate one’s own contributions. An interesting consequence of

this approach is the difficulties associated with developing large, new features that are not easily

broken down into independent pieces.

An example of a very large task is the recent work in FreeBSD on Symmetric Multi-Processing

(SMP) enabling the operating system to utilize multiple processors. The SMP effort was organized

as a subproject with its own project manager. The subproject considered encapsulating its work on a

separate branch, but rejected this in fear of ‘big bang’ integration problems as experienced in

another open source operating system project, BSD/OS:

… they [BSD/OS] went the route of doing the SMP development on a branch, and

the divergence between the trunk and the branch quickly became unmanageable.

[…] We are completely standing the kernel on its head, and the amount of code

changes is the largest of any FreeBSD kernel project taken on thus far. To have

done this much development on a branch would have been infeasible. (FreeBSD

SMP project manager, 2000).

So the SMP subproject chose to add their radical kernel changes incrementally, but the problem of

preserving the development version in a working state was a huge challenge and seen as a heavy

burden – the task can be compared to transforming a van into a sports car while driving. Changes

were added incrementally over several years, but other developers’ work was seriously affected,

especially in the autumn of 2000 when the SMP work severely ‘destabilized’ the trunk causing build

failures and other errors due to dependencies with other, concurrent work on the trunk.

The obligation to preserve the development in a working state could be seen as implying an implicit

rule saying: avoid the introduction of large and complex new features. However, it should be noted

that concurrent development on an operating system kernel is inherently difficult, so this implicit

rule may apply to other approaches to integration as well.

Design

Neither FreeBSD nor Mozilla requires design to precede coding in the sense of writing, discussing,

or approving design documents prior to coding. Indeed, in practice there is typically no design

document for the individual change: 31 of the 72 committers surveyed in FreeBSD responded that

they had never distributed a design document (defined as a separate document, distinct from a

source file). Some documentation of the design of the systems’ basic architecture is accessible,

though.

However, the lack of an established practice to use design documents as a coordination mechanism

should be viewed in the context of the projects as largely maintenance-oriented. FreeBSD has

inherited a largely unaltered, basic architectural design from its predecessors, the first versions of

which were developed in the late 1970s (About FreeBSD's Technological Advances). Mozilla, being

a much younger project with roots that only go back to the mid-90s, is more in need of providing its

own design documentation. For example, the project has developed its own component model

(XPCOM) and uses a software layer originally developed by Netscape, which provides a platform-

independent interface to multithreading (NSPR). These and other complex, project-specific parts of

Mozilla are described at an introductory level (Hacking Mozilla) and in more detail (Core

Architecture) in a series of publicly available documents.

Australasian Journal of Information Systems Special Issue 2003/2004

 47

Review

There seems to be no requirement or tradition for design reviews, but both projects require review of

source code changes prior to commit. If the developer is a committer, the review may be the only

occasion where others are involved in approving the developer’s work prior to commit.

FreeBSD’s Committer’s Guide rule no. 2 states “discuss any significant change before committing”

(The FreeBSD Committers’ Big List of Rules), and 86% of the committers surveyed said that they

actually received feedback on their latest change when submitting it to review. Mozilla has detailed

rules requiring all changes to be reviewed by another committer, and in most cases to be ‘super-

reviewed’ as well. The ‘super-review’ is done by one or more of a designated group of strong

hackers and examines the quality of the code itself, its potential effects on other areas of the tree, its

use of interfaces, and its adherence to Mozilla coding guidelines (Eich & Baker, 2003). To enforce

reviews, Mozilla requires that a committer always should state the names of the contribution’s

reviewers when adding source code to the repository.

CONTROLLING QUALITY THROUGH WORK OUTPUT: DON’T BREAK THE BUILD

The major event in the life cycle of a change in FreeBSD and Mozilla is the commit of the change to

the central repository. Prior to the commit, preliminary versions of the change have resided in the

developer’s private repository, most likely on his or her own computer. The commit is the delivery

of the developer’s work output to the project as a whole, and defines the point in time where it must

meet the project’s standards.

Mintzberg’s archetype for organizations relying on control of work output as a key coordinating

mechanism is the divisionalized organization exemplified e.g. by large multinational companies with

relatively autonomous divisions, responsible for their own products (Mintzberg, 1979). Control of

work output in FreeBSD and Mozilla of software changes produced by their ‘divisions’, the

individual developers, is merely qualitative rather than quantitative as in companies that also attempt

to control the productivity of divisions.

First, we discuss the standard defined by the projects and how compliance may be verified, and then

we discuss how the projects modify the two basic rules of continuous integration: the developer’s

build-obligation and the developer’s commit access.

The standard that contributions must satisfy

Both in FreeBSD and Mozilla it is emphasized that changes committed must keep the build working

and comply with the projects’ coding guidelines. Mozilla requires that developers run a number of

simple tests before committing (Duddi, 1999), and is very clear about the requirement not to break

the build:

Breaking (run time, compile time, or link time) the tree is not ok. It costs lots of

money (more than you can justify wasting) to have hundreds of engineers sitting

idle waiting for a good tree to pull (Working with the Seamonkey Tree, 2002).

In FreeBSD, the requirements are given as part of the explanation to rule no. 10, “Test your changes

before committing them”:

If your changes are to the kernel, make sure you can still compile [the kernel]. If

your changes are anywhere else, make sure you can still [compile everything but

the kernel] (The FreeBSD Committers’ Big List of Rules).

Extensive coding guidelines exist in both projects. Examples from Mozilla include a code style

guide (Mozilla Coding Style Guide, 2003) and a portability guide (Williams, Collins, & Blizzard,

2003). FreeBSD provides a “Kernel source file style guide”, code guidelines to facilitate software

internationalization and a security guide with preventive rules such as:

Never trust any source of input [...] never use gets() or sprintf(), period (FreeBSD

Security Guide, 1997).

Australasian Journal of Information Systems Special Issue 2003/2004

 48

As far as we understand, the projects do not have other requirements that pertain to code

contributions. For example, there is no requirement such as Extreme Programming’s demand for

pair programmers to write test programs before the actual coding is performed (Beck, 1999). (As an

aside, we will mention that both projects include subprojects, for example FreeBSD’s

documentation project, producing other kinds of deliverables. However, the activities of these

subprojects are outside the scope of this paper).

Verification

The build process is fully automated, and therefore the verification that contributions meet the build-

requirement is straightforward. In FreeBSD, there is an automated routine for building the trunk

twice a day on the major processor architectures, the so-called Tinderbox-builds, the result of which

are shown on a webpage (http://www.rtp.freebsd.org/~des).

In Mozilla, there is a well-defined process for a daily verification procedure using a cluster of build

machines (representing all targeted platforms). At 8 AM (PST) each working day, the build

machines download the newest source code, build it, and execute a small number of regression tests.

However, in both projects most build errors will be detected by currently active developers,

reporting the problem to one or more mailing lists, even before the Tinderbox builds (in FreeBSD)

or the daily build verification (in Mozilla). Broken builds have immediate consequences for the

active developers, because neither project operates with a so-called ‘holding area’. In order to

preserve the development version in a sound state allowing developers to rely on it for testing their

own code, McConnell (1996b) recommends that projects using daily builds create a copy of the

development version through which all changes must pass on their way to the (proper) development

version to filter away changes not properly tested. Neither project has any such filtering of the

stream of changes flowing into the trunk.

Verification that code contributions comply with coding guidelines is facilitated by the visibility of

contributions:

• The repositories are browsable, providing easy public access to all sources files.

• In both projects, an automatic mail message is sent to other developers immediately upon

commit of a change.

This visibility encourages developers to strive to produce code that will be perceived to have high

quality. In responding to the statement “Knowing that my contributions may be read by highly

competent developers has encouraged me to improve my coding skill”, 57% of the 72 FreeBSD

committers surveyed said “yes, significantly”, and 29 % “yes, somewhat”. One committer added:

“Embarrassment is a powerful thing.”

The visibility of the code is in part due to the project being open source, but also to the approach of

continuous integration: A large number of developers are working with the most recent version of

the trunk, and monitor the changes made because their work depends on them.

Given, on the one hand, the projects’ reliance on the quality of the committed changes, and on the

other hand, the frequent occurrences of broken builds, it is remarkable that a committed change

rarely is removed from the repository. When it happens, it is normally not due to a broken build, but

to disagreement about whether the change, correctly implemented or not, is in fact an improvement

of the software.

Balancing the don’t break the build rule

It appears to us that the projects’ reason essentially is as follows when faced with one of the frequent

build-breaking changes: As long as the change, when corrected, will improve the trunk, we prefer to

keep it in the trunk and correct is as fast as possible rather than exercise the right to delete the

change and throw it back to the developer, possibly to an uncertain faith.

I can remember one instance where I broke the build every 2-3 days for a period of

time; that was necessary [due to the nature of the work]. That was tolerated – I

didn’t get a single complaint (FreeBSD committer, 2000).

Australasian Journal of Information Systems Special Issue 2003/2004

 49

In Mozilla, the daily build verification (see the previous section) is highly organized. Almost as

crucial as preventing broken builds is the requirement to be available after a commit that (sic) does

break the build. Developers that have committed changes since the previous day’s verification are

said to be ‘on the hook’:

If you are on the hook, your top priority is to be available to the build team to fix

bustages. […] You are findable. You are either at your desk, or pageable, checking

e-mail constantly, or on IRC so that you can be found immediately and can

respond to any problems in your code (Hacking Mozilla with Bonsai).

There are several good reasons for balancing the ‘don’t break the build’ rule with other

considerations. Correcting a broken build can be highly challenging, since the failure may be due to

dependencies on files or modules outside the area of the developer’s primary expertise. Moreover,

some changes may be difficult to test in the first place.

Interpretation of the ‘don’t break the build’ rule is particularly important with respect to the effort

that a developer should invest to prevent broken builds on any platform. As mentioned, both

FreeBSD and Mozilla are developed for many platforms, of which 4 and 3 are particularly

prioritized. Due to platform differences, a build may succeed on one and fail on another, which we

refer to as a partially broken build. However, most developers only have access to a single platform,

and therefore it may be impracticable to perform trial builds on each prioritized platform before

check-in. In practice, the Mozilla project in general accepts a large part of the responsibility of

correcting partially broken builds. One of the reasons is the unattractive alternative of accepting a

source code change on some platforms, but not on others (those that build with the change vs. those

that don’t).

As a general rule, the repository in Mozilla is closed during the daily verification build until it has

been terminated successfully. This means that no commits (except as part of the corrective effort)

are allowed until all three prioritized platforms pass the test. This may last from two to several

hours. The reason for ‘closing the tree’ for all platforms is described as follows:

During the development of Netscape Navigator and Netscape Communicator it

was argued many times that […] we should care less about a particular set of

platforms and fix regressions on these “second-class” platforms later. We tried this

once. The reason why we don’t have Netscape Communicator on Win16 was the

result of putting off the recovery of that platform until later. After a couple of

weeks recovery became impossible. […] The problems will stack up […] as the

codebase moves forward and it never catches up (Yeh, 1999).

In part, the problem of broken builds on other platforms is solved by making a set of central build

machines available, to which sources can be uploaded and subjected to a trial build prior to commit.

However, this is tedious and is not enforced as a general rule in either project. As a middle road,

Mozilla provides the previously mentioned portability guides with rules and recommendations for

producing cross-platform software (e.g., Williams et al., 2003).

In principle, FreeBSD and Mozilla delegate to the developers the responsibility to integrate their

own contributions, but in practice it is a major challenge to strike a reasonable balance and to some

degree accept that developers from time to time break the build and thus disrupt other developers’

work. Indeed, making an absolute requirement that committed changes should be error-free would

be absurd and defy the purpose of using the trunk for community testing, as discussed below.

Balancing the access to contribute.

In both projects, a stabilization period is explicitly declared for several weeks prior to major

production releases. This is an important exception from developers’ access to commit changes and

may create tension in the projects. We will discuss the process leading to major production releases

(e.g., FreeBSD’s 5.0 of January 2003, and Mozilla’s 1.0 of June 2002). In addition, the projects also

create minor production releases (FreeBSD 4.6, 4.7, etc.; Mozilla 1.1, 1.2, etc.).

The purpose of a stabilization period is to limit the changes allowed to be committed. During

stabilization, only changes seen as necessary or useful for the purpose of stabilization are allowed,

Australasian Journal of Information Systems Special Issue 2003/2004

 50

most notably bug-fixes. In FreeBSD, the stabilization period for 5.0 lasted for two months. The first

month was less strict allowing new features on a case-by-case basis at the release engineering team’s

discretion. The second month was more strict and only allowed commits if they were bug-fixes.

When the software is considered to be sufficiently stable, it is declared a production release. This is

possible because prior to stabilization the software is already in a working state, which makes the

use of special integration and testing teams unnecessary. It is a major advantage of continuous

integration if a brief period of stabilization is indeed sufficient for changing ‘work in progress’ to

‘production release’. However, the required stabilization effort may be huge and seen as diverging

resources from more important or interesting new development.

In Mozilla, the stabilization period prior to the 1.0 release can be seen as lasting more than 8 months,

beginning with the 0.9.6 release (in November 2001) upon which the “the trunk is closed to all but a

relative few bug fixes, and everyone is focused on testing” (Eich, 2002). There is indication of

pressure from Mozilla developers to relax commit restrictions:

[…] we’re not looking for new features; we want stability, performance […],

tolerably few bugs […]. Features cost us time […] those implementing the

features […] could instead help fix 1.0 bugs […]. If you think you must have a

feature by 1.0, please be prepared to say why to drivers, and be prepared to hear

“we can’t support work on that feature until after 1.0 has branched” in reply (Eich,

2002).

To allow for the resumption of new development on the trunk, the final two months of stabilization

for Mozilla’s 1.0 release took place on a separate branch (created April 2002). The isolation of bug-

fixing from new development is in some sense a departure from the strict adherence to continuous

integration, and indicates the following dilemma associated with stabilization:

• Creating a separate stabilization branch allows for resumption of new development, which

will otherwise be halted when destabilizing changes are prohibited on the trunk.

• However, a separate stabilization branch requires that bug-fixes to the trunk are also made

to the branch (and vice versa); it doubles the tasks related to managing a branch (assigned

to branch drivers in Mozilla), and divides the pool of user/developers between the branches:

This branch [Mozilla 1.0] obviously entails overhead in driving, merging,

reviewing, and testing (Eich, 2002).

The dilemma makes it important and difficult to decide if and when to branch stabilization away

from new development.

DISCUSSION AND CONCLUSION

Viewed from the perspective of quality assurance our case study of FreeBSD and Mozilla indicates

that at a basic level the projects’ approach to software integration actually works: in spite of their

difficult-to-control and geographically distributed developers that pick tasks at their own

convenience and do not write design documents, FreeBSD and Mozilla produce widely used

software. It appears that the process of continuous integration, as used in the projects in a

decentralized variant, to some degree replaces traditional software engineering coordination

mechanisms like plans and design documents.

Incessant access to commit

The first key principle of the projects’ decentralized approach to continuous integration is the

committers’ access to add contributions to the development version at any time. This access appears

to be highly motivating: developers are free – only limited by the need to reach consensus with

module owners – to choose which tasks they want to work on, and they can commit changes without

awaiting approval. This feels unbureaucratic and the developers can see that the result of their work

quickly becomes part of the project’s software.

Using Mintzberg’s terminology, the freedom to commit is absence of work process standardization.

Commit access is granted to developers according to their previous merits, which can be seen as

Australasian Journal of Information Systems Special Issue 2003/2004

 51

standardization of worker skills. Once you are in, you are free to choose your own work process.

However, this overall liberal work process regime is supplemented with various work process

recommendations such as to work on prioritized bugs, and announce and discuss work.

A major challenge for the projects, related to the incessant access to commit, is the conflict between

stabilization and new development: A prolonged period of stabilization on the trunk entails the cost

of holding back new development, but if the stabilization period is too short, the release may be of

poor quality. Alternatively, stabilization can be encapsulated on a separate branch, but this entails

the cost of dividing developer resources for testing and managing between community testing and

stabilization. Prior to their most recent major releases, both projects did in fact decide to branch

away stabilization from new development. These decisions were made reluctantly, because of the

concern that branches may diverge to a point where useful changes cannot easily be merged from

one branch to another, e.g. when a bug-fix on the stabilization branch is difficult or impossible to

perform on the development branch. This concern underlies the decision in FreeBSD to avoid

developing the new SMP feature on a separate branch, and the principle in Mozilla to never ‘leave

behind’ any prioritized platform. The fact that the projects chose to branch prior to production

release, despite these concerns, indicate that restricting commit access for a prolonged phase was

seen as entailing a too high cost in terms of holding back new development.

Obligation to integrate own contributions

The second key principle of the projects’ decentralized process is the developers’ obligation to

integrate their own contributions and most notably to avoid breaking the build of the development

version. From a long-term perspective, maintaining the development version in a healthy condition

is crucial because it allows for the project to produce a software version that is mature enough for

production release, merely through ‘stabilizing’ the development version. This may be a relatively

painless process if the software is already in a working condition, implying that unexpected delays

due to integration problems are avoided. From a short-term perspective, a working development

version is crucial for the ongoing development and debugging effort: new development is halted if

local source code changes cannot be tested against the newest source code in the trunk; and

debugging is halted if developers and users can not run the software. A disadvantage is that with the

source code in the trunk changing constantly, implementing a change is like hitting a moving target,

and requires that developers’ local source code is synchronized frequently. Placing the responsibility

for integration on the developer or team developing a change may have a conservative effect,

because large and complex new features (e.g. changes of the basic architecture) are difficult to

divide into smaller, independent tasks that can be easily integrated.

In Mintzberg’s terminology, the projects’ ‘don’t break the build’ rule is standardization of work

products. Failure to comply with the rule is visible immediately. In both projects the ability to

commit changes which are perceived to be of good quality constitute the merits on the basis of

which commit access is granted, thus linking standardization of work products and worker skills in a

manner akin to apprenticeships.

A major challenge for the projects, relating to ‘don’t break the build’, is to interpret this rule in a

suitable, pragmatic manner. There may be good reasons why developers frequently do not comply

fully with their integration obligation, and rather than simply deleting error-prone changes, the

projects organize a project-level, common effort to correct broken builds. The most structured effort

takes place in Mozilla, where a daily cycle blocks new commits until the trunk has been built

successfully, and where committers of recent changes are compelled to participate in resolving any

broken build situations. Major reasons why developers inadvertently violate the ‘don’t break the

build’ rule include the inherent intricacy of debugging complex systems and not having access to the

range of different platforms on which they should (ideally) test their changes.

Australasian Journal of Information Systems Special Issue 2003/2004

 52

FUTURE RESEARCH

In future research, studies of commercial software projects may be of interest to clarify whether such

projects can attain the advantages of decentralized continuous integration, and provide insight into

different ways of attaining balanced interpretations of the access to contribute and the obligation to

integrate. In commercial software development, both the motivational advantage of seeing changes

integrate quickly and the reduced risk of release delays may be as important as in open source

projects.

While it is important to establish balanced interpretations of the access to contribute and the

obligation to integrate, perhaps the major challenge, in open source as well as commercial projects,

is to establish a project culture with strong encouragement to produce high quality code, but also

with tolerance and mutual support. Indeed, the approach of continuous integration may provide a

basis for developing such a culture, since the quality of the project’s most recent source code

becomes a common point of continuous, project-wide focus.

REFERENCES

About FreeBSD’s Technological Advances. Retrieved Dec. 1, 2002, from:

http://www.freebsd.org/features.html

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Boston, USA: Addison

Wesley.

bugs (2003). Retrieved April 8, 2003, from: http://www.mozilla.org/bugs/

Core Architecture. Retrieved Dec. 1, 2002, from: http://www.mozilla.org/catalog/architecture/

Cusumano, M. A., & Selby, R. W. (1997). How Microsoft Builds Software. CACM, 40(6), 53-61.

Dempsey, B., Weiss, D., Jones, P., & Greenberg, J. (2002). Who Is an Open Source Developer? A

Qualitative Profile of a Community of Open Source Linux Developers. CACM, 45(2), 67-

72.

Duddi, S. (1999). Pre-Checkin Tests. Retrieved May 1, 2003, from:

http://www.mozilla.org/quality/precheckin-tests.html

Ebert, C., Parro, C. H., Suttels, R., & Kolarczyk, H. (2001). Improving Validation Activities in a

Global Software Development. Paper presented at the 23
rd
 International Conference on

Software Engineering (ICSE '01), Toronto, Canada.

Eich, B. (2002). Mozilla 1.0 Manifesto. Retrieved Nov. 15, 2002, from:

http://www.mozilla.org/roadmap/mozilla-1.0.html

Eich, B., & Baker, M. (2003). Mozilla ‘Super-Review’. Retrieved April 21, 2003, from:

http://www.mozilla.org/hacking/reviewers.html

The FreeBSD Committers’ Big List of Rules. Retrieved Dec. 1, 2002, from:

http://www.freebsd.org/doc/en/articles/committers-guide/rules.html

FreeBSD Security Guide (1997). Retrieved Oct. 31, 2003, from:

http://www.pl.freebsd.org/security.html

Getting CVS Write Access to Mozilla (2003). Retrieved April 22, 2003, from:

http://www.mozilla.org/hacking/getting-cvs-write-access.html

Ghosh, R. A., Glott, R., Krieger, B., & Robles, G. (2002). Part 4: Survey of Developers, FLOSS

Final Report.

Hacking Mozilla. Retrieved Dec. 1, 2002, from: http://www.mozilla.org/hacking/

Hacking Mozilla with Bonsai. Retrieved Dec. 1, 2002, from:

http://www.mozilla.org/hacking/bonsai.html

Hars, A., & Ou, S. (2001). Working for Free? Motivations of Participating in Open Source Projects.

Paper presented at the 34
th
 Hawaii International Conference on System Sciences,

Australasian Journal of Information Systems Special Issue 2003/2004

 53

Hawaii, USA.

Herbsleb, J. D., & Grinter, R. E. (1999). Splitting the Organization and Integrating the Code:

Conway’s Law Revisited. Paper presented at the International Conference on Software

Engineering (ICSE ‘99).
Hubbard, J. (2003). Contributing to FreeBSD. Retrieved Oct. 31, 2003, from:

http://www.freebsd.org/doc/en/articles/contributing/

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software Development Process.

Indianapolis, USA: Addison-Wesley.

Jørgensen, N. (2001). Putting It All in the Trunk: Incremental Software Development in the

FreeBSD Open Source Project. Information Systems Journal, 11(4), 321-336.

Kamp, P.-H. (1996). Source Tree Guidelines and Policies. Retrieved Dec. 1, 2002, from:

http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/policies.html

Lakhani, K. R., Wolf, B., Bates, J., & DiBona, C. (2002). The Boston Consulting Group Hacker

Survey. Retrieved May 8, 2003, from: http://www.osdn.com/bcg/bcg-0.73/

Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation

(Learning in Doing). Cambridge: Cambridge University Press.

Lucas, M. (2002). How to Become a FreeBSD Committer. Retrieved April 22, 2003, from:

http://www.onlamp.com/lpt/a/1492

McConnell, S. (1996a). Daily Build and Smoke Test. IEEE Software, 13(4).

McConnell, S. (1996b). Rapid Development: Taming Wild Software Schedules. Microsoft Press

International.

Mintzberg, H. (1979). The Structuring of Organizations. Englewood Cliffs, New Jersey: Prentice

Hall.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two Case Studies of Open Source Software

Development: Apache and Mozilla. ACM Transactions on Software Engineering and

Methodology, 11(3), 309-346.

Mozilla Coding Style Guide (2003). Retrieved Oct. 31, 2003, from:

http://www.mozilla.org/hacking/mozilla-style-guide.html

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., & Ye, Y. (2002). Evolution Patterns of

Open-Source Software Systems and Communities. Paper presented at the International

Workshop on Principles of Software Evolution (IWPSE), Orlando, Florida.

Olsson, K., & Karlsson, E.-A. (1999). Daily Build - the Best of Both Worlds: Rapid Development

and Control. Lund, Sweden: Swedish Engineering Industries.

Pressman, R. S. (1992). Software Engineering - A Practitioner's Approach (3
rd
, international ed.).

New York: McGraw-Hill.

Raymond, E. S. (2001). The Cathedral and the Bazaar: Musings on Linux and Open Source by

an Accidental Revolutionary (Revised ed.). Sebastopol, California, USA: O’Reilly &

Associates, Inc.

The Seamonkey Engineering Bible (2003). Retrieved April 21, 2003, from:

http://www.mozilla.org/projects/seamonkey/rules/bible.html

Williams, D., Collins, S., & Blizzard, C. (2003). C++ Portability Guide, version 0.8. Retrieved Oct.

31, 2003, from: http://www.mozilla.org/hacking/portable-cpp.html

Working with the Seamonkey Tree (2002). Retrieved Oct. 31, 2003, from:

http://www.mozilla.org/hacking/working-with-seamonkey.html

Yeh, C. (1999). Mozilla Tree Verification Process. Retrieved April 11, 2003, from:

http://www.mozilla.org/build/verification.html

