
AJIS Vol.11 No. 1 September 2003 

 55 

INVESTIGATING THE PARTIAL RELATIONSHIP BETWEEN TESTABILITY  

AND THE DYNAMIC RANGE-TO-DOMAIN RATIO 

 
Zuhoor A. Al-Khanjari1     Martin R. Woodward 
Department of Computer Science,   Department of Computer Science, 

College of Science,     University of Liverpool, 

Sultan Qaboos University,    Chadwick Building, Peach Street, 
PO BOX 36, Al-Khodh 123,    Liverpool L69 7ZF, U.K. 

Muscat, Sultanate of Oman    Tel: +44-151-794-3676 

Tel/fax: +968-515407     Fax: +44-151-794-3715 
Email: zuhoor@squ.edu.om     Email: mrw@csc.liv.ac.uk 

 

ABSTRACT: 
 

The word ‘testability’ has been used variously in the software community to represent a number of 

different concepts such as how easy it is to test a program or how easy it is to achieve execution 

coverage of certain program components. Voas and colleagues have used the word to capture a slightly 
different notion, namely the ease with which faults, if present in a program, can be revealed by the 

testing process. The significance of this concept is twofold. First, if it is possible to measure or estimate 

testability, it can guide the tester in deciding where to focus the testing effort. Secondly, knowledge 
about what makes some programs more testable than others can guide the developer so that design-for-

test features are built in to the software. The propagation, infection and execution (PIE) analysis 

technique has been proposed as a way of estimating the Voas notion of testability. Unfortunately, 
estimating testability via the PIE technique is a difficult and costly process. However, Voas has 

suggested a link with the metric, domain-to-range ratio (DRR). 

This paper reviews the various testability concepts and summarises the PIE technique. A prototype tool 
developed by the authors to automate part of the PIE analysis is described and a method is proposed for 

dynamically determining the inverse of the domain-to-range ratio. This inverse ratio can be considered 

more natural in some sense and the idea of calculating its value from program execution leads to the 
possibility of automating its determination. Some experiments have been performed to investigate 

empirically whether there is a partial link between testability and this dynamic range-to-domain ratio 

(DRDR). Statistical tests have shown that for some programs and computational functions there is a 
strong relationship, but for others the relationship is weak. 

 

Keywords:  test and evaluation, testability, PIE technique, MSG-Infection tool, domain-to-range 

ratio, empirical study. 

INTRODUCTION 

 

Software testing, which represents the last stage in the software development process, is currently a 

very active research field. The intent of testing is ideally to uncover faults and increase confidence in 

the correctness of the tested code. Software testing is a very important approach in building reliable 

software systems. Clearly therefore, it is desirable that testing should be both as easy and as effective 

as possible. The word ‘testability’ has been used in various ways to reflect this desire. One particular 

interpretation, due to Voas et al. (1991), is to define testability as the ease with which faults, if 

present in a program, can be revealed by testing. Under this definition, programs with high 

testability reveal their faults easily, while those with low testability may contain faults that are very 

difficult to expose. To measure testability, in the sense just described, the propagation, infection and 

execution (PIE) analysis technique, has been proposed (Voas et al., 1991). 

Intriguing though this technique is, it is still a difficult and computationally expensive process. The 

details of which is given in Section 3. To obtain an indication of the testability of a program early in 

the software development process (i.e. from a specification or a design) and without actually 

performing the PIE analyses, Voas and Miller (1991) suggested use of a semantic metric, the 

domain-to-range ratio (DRR): the ratio of the cardinality of the possible inputs to the cardinality of 

the possible outputs. The aim of this paper is to provide further investigation of the partial 

relationship between testability and DRR. Others have previously explored the possible link between 

testability and static program measures. 

The structure of the remainder of this paper is as follows. Section 2 surveys various uses of the 

testability concept in the literature of the software community.  Section 3 provides a brief idea about 
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mutation technique. It helps in understanding the concept of the PIE technique. Section 4 gives a 

brief summary of the PIE analysis technique (Voas, 1992b). Section 5 considers the automation of 

testability measurement by introducing a prototype tool, MSG-Infection, which has been developed 

by the current authors for obtaining execution and infection estimates of C programs. A commercial 

tool called the PiSCES Software Testability Analysis Toolkit
TM

 (Friedman and Voas, 1995), which 

has been developed by the Reliable Software Technologies Corporation is also mentioned. Section 6 

considers the DRR metric in more detail and suggests that its inverse, the range-to-domain ratio 

(RDR), is more ‘natural’ in this context. In addition, a scheme for calculating RDR dynamically 

from a program execution is proposed, leading therefore to the dynamic range-to-domain ratio 

(DRDR). Section 7 describes a series of experiments, which have been conducted to investigate the 

possible partial relationship between testability and the proposed metric DRDR. Section 8 draws 

some conclusions from the experiments and summarises the contribution of this paper. 

 

THE TESTABILITY CONCEPT 

 

The word ‘testability’ has been used with a variety of meanings. One of the earliest and probably 

most influential studies concerning quality attributes of software was performed by Boehm et al. 

(1976). In that study, testability was defined as the extent to which software “facilitates the 

establishment of verification criteria and supports evaluation of its performance”. Boehm et al. 

linked testability with a number of lower level characteristics, namely: accountability, accessibility, 

communicativeness, self-descriptiveness and structuredness. Among the specific features suggested 

as promoting testability were: “support of intermediate output and echo-checking of inputs”. In a 

later paper Boehm (1984) discussed testability in terms of eliminating vagueness in the statement of 

software requirements or in the specification of software. 

The IEEE definition, as given in the Glossary of Software Engineering Terminology, reflects both 

the aspects of testability discussed by Boehm. The IEEE defines testability as: (1) “the degree to 

which a system or component facilitates the establishment of test criteria and the performance of 

tests to determine whether those criteria have been met”; and (2) “the degree to which a requirement 

is stated in terms that permit establishment of test criteria and performance of tests to determine 

whether those criteria have been met” (IEEE, 1990). 

Interestingly in 1982 Weyuker defined the negative of testability (Weyuker, 1982). She focused on 

the absence of, or difficulties with, an output oracle. Software was deemed to be non-testable if 

either of the following two conditions occurred: (1) no output oracle exists; and (2) it is theoretically 

possible, but too difficult in practice, to determine output correctness. 

In 1985 Howden provided a more formal approach to the definition of testability than any previous 

approaches (Howden, 1985). By further development of a test completeness criterion that he had 

identified in earlier work, Howden defined testability as the property that “a finite set of tests can be 

specified that will determine if the program that implements a function contains one of a specified 

set of faults”. The quotation just given, summarising Howden’s definition, is from an excellent 

survey on testing and verification by White (1987). 

In 1991 Freedman discussed what he termed domain testability of software components (Freedman, 

1991). He introduced two properties of software called observability and controllability. 

Observability is “the ease of determining if specified inputs affect the outputs”; controllability is 

“the ease of producing a specified output from a specified input” (Freedman, 1991). By measuring 

the semantic ‘size’ of extensions, or program modifications, that enable a component to achieve 

domain testability, Freedman was able to quantify both observability and controllability. 

Wang et al. (1996) have also defined software testability metrics for observability and 

controllability, but by utilising the syntactic control structures in modules. Others have also focused 

on the internal control structure of software when discussing testability. For example, Bache and 

Müllerburg (1990) define a number of testability metrics for control-flow based testing strategies. In 

essence the metrics they proposed determine the minimum number of paths, and hence the minimum 

number of test cases, needed in order to satisfy particular coverage criteria. Bainbridge (1994) went 

on to show how the Bache and Müllerburg metrics could be calculated axiomatically. 

Voas and colleagues have taken a radically different view of testability from most previous 

researchers (Voas et al., 1991). They defined testability as the ease with which faults will manifest 
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themselves as failures when the software undergoes the testing process. Software with high 

testability, according to this definition, exposes its faults easily, whereas software with low 

testability may contain faults which ‘hide’, i.e. are difficult to expose. Voas et al. went further by 

introducing an approach for measuring testability in terms of estimates from propagation, infection 

and execution (PIE) analyses of software. This PIE technique will be summarised in the next 

section. In the remainder of this paper, the word ‘testability’ is used entirely in the sense of Voas and 

colleagues. 

Bertolino and Strigini (1996a) have rigorously investigated Voas’s notion of testability and its use in 

dependability assessment. They modified Voas’s definition and have given a more precise 

formulation of it. They then investigated the mathematics of using testability to estimate the 

probability of program correctness and the probability of failures. They have argued that high 

testability is not always a desirable program property and anyway, that program testability “can be 

more simply described in terms of assumptions on the probability distribution of the failure intensity 

of the program” (Bertolino and Strigini, 1996b). Despite this rather critical sentence, testability in all 

its guises, remains a notion that continues to intrigue many researchers and the intention of the 

current authors is to add to the debate. 

 

MUTATION TECHNIQUE 

 

Mutation testing is a powerful program testing technique used to generate good test data to uncover 

specific errors or classes of errors. The idea of mutation can be represented by simple changes made 

to a program, one at a time, e.g. changing the ‘-’ operator to the ‘+’ operator. In other words, the 

mutations represent different versions of the program, each of which differs from the original by a 

simple change. Test data should then be constructed in a way that distinguishes each mutant from 

the original program. This means that if the output of the mutant differs from the output of the 

original program then the mutant is termed dead. However if the outputs are the same, then the 

mutant is called live and needs further investigation. If it is the case that no test data could ever ‘kill’ 

a live mutant, then that mutant is called equivalent to the original program [DeMillo, Lipton and 

Sayward, 1978; Untch, Offutt and Harrold, 1993; Woodward, 1993]. 

Mutation testing, in the sense just described, which involves running the entire program till 

completion to get the result, is termed strong mutation testing. This is considered to be expensive 

and time consuming. As a result of this, weak mutation testing has been introduced. “Weak mutation 

requires that a mutant program component yields a different ‘component outcome’ on at least one 

execution”  [Howden, 1982; Woodward, 1991]. 

 

THE PIE MODEL 

 

This section summarises the propagation, infection and execution (PIE) model for measuring the 

sensitivity (or testability) of program locations. PIE is a white-box analysis technique based on the 

syntax and semantics of the code (Voas, 1992a; Hamlet and Voas, 1993). It makes predictions 

concerning future program behaviour by estimating the effect that input distribution, syntactic 

mutants and changed data values in data states have on current program behaviour (Voas and Miller, 

(1992a,1992b)). 

The PIE assessment model implements the definition of testability promoted by Voas and colleagues 

(Voas and Miller, 1995; Voas, 1997; Voas and McGraw, 1998) by performing three independent 

dynamic analyses: execution, infection and propagation, which produce a set of estimates for each 

location of the given program. Execution analysis is the process for predicting the probability that a 

location is executed when inputs are selected according to a particular input distribution, D say. 

Infection analysis is the process for determining the probability that the succeeding data state of 

location L is different from the succeeding data state that a specific mutant creates, given that the 

original location and the mutant execute on a data state that would normally precede L. A data state 

is a collection of all variables and their associated values at some point during program execution. 

Once infection estimates are calculated for all mutants of the specified location, the minimum 

probability among all will be considered as the infection estimate of that location. Infection analysis 

is similar to weak mutation. Propagation analysis is the process concerned with determination of the 

probability that a forced change in an internal computational state causes a change in the program’s 
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output. Once again propagation estimates are calculated for all forced changes, the minimum 

probability among all will be considered as the propagation estimate of that location. Propagation 

analysis is similar to strong mutation. The three probability estimates can then be integrated to 

derive the sensitivity of each location and the overall testability of the program. The current authors 

have previously investigated the stability of the results from the PIE technique itself when some of 

the parameters involved in the measurement process are altered (Al-Khanjari and Woodward, 1998; 

Al-Khanjari et al., 2002). 

CURRENT TESTABILITY TOOLS 

 

Automating the measurement of testability involves automating the three individual processes of 

sensitivity analysis: execution, infection and propagation analyses. This section introduces MSG-

Infection, a prototype tool that has been developed by the current authors for automating infection 

and execution analyses of C programs. First, however, a commercial tool called PiSCES is briefly 

described. 

 

The PiSCES tool 

 

A commercial tool called the PiSCES Software Testability Analysis Toolkit
TM

, that implements the 

PIE algorithms, has been developed by the Reliable Software Technologies Corporation of Sterling, 

Virginia (Friedman and Voas, 1995). It would appear that PiSCES is the only commercial software 

for testability determination; it evolved from various proof-of-concept prototypes (Voas et al., 

1993a). PiSCES is written in C++ for analysing C programs. It generates testability estimates by 

developing an instrumented copy of the original program which should then be compiled and 

executed. PiSCES performs its infection analysis by creating appropriate C programming language 

mutants. 

The PiSCES Toolkit
TM

 is a combination of several individual tools or packages. One of the tools is 

the SafteyNet tool which incorporates propagation analysis to get an estimate for the fault tolerance 

of a program or indeed, for individual modules, functions, or even lines. 

 

The MSG-Infection tool 

 

A prototype tool called the MSG-Infection system, for determining both execution and infection 

analysis estimates, has been developed by the current authors. It uses a novel approach which is a 

modification of the mutant schemata generation (MSG) technique for mutation testing of programs. 

The mutant schemata generation approach is used to improve the performance of mutation analysis 

systems by generating one metaprogram, which contains all encoded mutants for a given program 

(Untch et al., 1993; Untch, 1995). This approach based on program schema, which is a template.  A 

partially interpreted program schema is defined by Baruch and Katz [Baruch and Katz, 1988]. The 

MSG-Infection system retains the spirit of the MSG approach by encoding a number of mutants of 

each location in one single modified version of the original program. It uses an existing MSG system 

for C programs (Flanagan, 1997) which has been adapted in order to develop the MSG-Infection 

system. 

 

 

 

 

 

 

 

 

 

 

Figure 1. The MSG-Infection system and its components 
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The MSG-Infection system splits into two major subsystems: an Execution & Infection system and a 

Testability Management system (see Figure 1). The Execution & Infection system is, as has already 

been mentioned, a modification of an existing MSG system which develops a parse tree 

corresponding to the given C program and modifies it to encode a variety of mutants at each 

location. The parse tree, which is modified to construct the metamutant version of the given C 

program, has been further altered in the MSG-Infection system so that each location L of the original 

program now becomes, in essence, the following: 

 

   store pre-L; 

   execute L; 

   store post-L; 

   for each mutant Lm of L 

   loop 

    restore pre-L; 

    execute Lm; 

    compare post-Lm with post-L; 

   end loop; 

   restore post-L; 

 

In the above, ‘pre-L’ (‘post-L’) corresponds to the data state immediately before (after) location L. 

The result of each comparison of the post-Lm state with the post-L state is saved and used to 

determine the infection estimate of location L. The storing of the data state prior to a location is 

achieved by instrumenting with assignments to a special array which remains undisturbed by 

execution of the location or any of its mutants. The restore operation after the location can then use 

the array to recover the values that the variables had before the location. Note that, at present, only 

assignment statements are considered as locations by the MSG-Infection system. 

The Testability Management system manages the process of running the test cases against the 

original locations of the program and the corresponding mutants. It generates a file which contains 

all the required infection and execution estimates for each location of the given program. 

The MSG-Infection system currently incorporates four mutant classes: arithmetic operator 

replacement, variable replacement, constant replacement and statement deletion. Several important 

macros have been included in the MSG-Infection system to facilitate the compilation process and 

further macros can easily be added to the system. The system has been built in a highly modular 

fashion with loose coupling between the modules to make future development as easy as possible. 

The system is user-friendly, interacting with the user as necessary to build the modified version of 

the original program and complete the compilation and execution processes of this metamutant 

program with the given test cases. 

 

THE DOMAIN-TO-RANGE RATIO AND ITS INVERSE 

 

This section considers the domain-to-range ratio in more detail, suggests that its inverse the range-

to-domain ratio is more natural and proposes a method for its dynamic determination of the latter. 

 

Domain-to-range ratio (DRR) 

 

The domain-to-range ratio (DRR) has been proposed by Voas and Miller (1991) as an approximate 

measure of implicit information loss. Implicit information loss occurs when two or more different 

values of a parameter are used as input to a built-in function or a user-defined function and generate 

the same output. Consider, for example, the function  f(a) = a mod 2. This function generates one of 

only two possible outputs for every input value of a, namely 0 when a is even and 1 when a is odd. 

DRR is a specification or functional description metric that can be defined as the ratio  d / r,  where 

d is the cardinality of the domain of the specification and r is the cardinality of the range (Voas and 

Miller, 1991). It is a fundamental characteristic of both mathematical and computational functions 

and, despite the fact that it may not always be apparent from a software specification, it can often be 

derived from semantic information found in such a specification (Voas et al., 1992; Voas et al., 
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1993b). Although the DRR of a specification is fixed and can not be modified without changing the 

specification itself, the specification can be further decomposed into functions or modules, which 

can then be dealt with individually (Voas and Miller, 1991). It is possible to determine the DRR for 

unary operators, binary operators and more complex expressions. In this way it may be possible to 

determine the DRR at higher levels of granularity such as sub-specifications (i.e. specifications of 

modules), or even entire specifications (Voas, 1991). The ratio is static and is determined 

independently of the actual distribution of input values. Voas and Miller (1993b) note that DRR is 

related to Freedman’s notion of controllability (Freedman, 1991). Indeed a controllable function can 

be considered as just the special case of a function f say, having DRR = 1, i.e. if the output values of 

f are different, then so are the corresponding inputs that generate those outputs. Because the domain-

to-range ratio is available early in the software life cycle it could help in exploring for hidden faults 

using empirical methods when code is eventually produced (Voas and Miller, 1993a). Examples of 

DRRs for various functions, as originally given by Voas (though with corrections to the ranges of 

the circular functions 12, 13 and 14), are listed in Table 1 (Voas, 1991; Voas and Miller, 1993b). 

Continuing Voas’s practice, ∞I is used to represent the cardinality of the integers and ∞R the 

cardinality of the reals. 

 

Table 1. DRRs and testabilities of various functions as given by Voas 

 

Function Testability DRR Comment 

1.    f a
a

a
( ) =

<



0 0if

otherwise
 

Low ∞I : ∞I / 2 a is integer 

2.     f(a) = a + 1 High ∞I : ∞I a is integer 

3.     f(a) = a mod b Low ∞I : b testability decreases 

as b decreases 

4.     f(a) = a div b Low ∞I : ∞I / b testability decreases 

as b increases, b Q 0 

5.     f(a) = trunc(a) Low ∞R : ∞I a is real 

6.     f(a) = round(a) Low ∞R : ∞I a is real 

7.     f(a) = sqr(a) High ∞R : ∞R a is real, a ≥ 0 

8.     f(a) = sqrt(a) High ∞R : ∞R a is real, a ≥ 0 

9.     f(a) = a / b High ∞R : ∞R a is real, b Q 0 

10.   f(a) = a – 1 High ∞I : ∞I a is integer 

11.   f(a) = even(a) Low ∞I : 2 a is integer 

12.   f(a) = sin(a) Low ∞I : ∞R a is integer (degrees), 

13.   f(a) = tan(a) Low ∞I : ∞R a is integer (degrees), 

14.   f(a) = cos(a) Low ∞I : ∞R a is integer (degrees), 

15.   f(a) = odd(a) Low ∞I : 2 a is integer 

16.   f(a) = not(a) High 1 : 1 a is integer (0 or 1) 

 

Although the DRR for a specification has its own intrinsic value, its significance is greatly enhanced 

by the prospect of a connection with the ease of exposing potential faults in a corresponding 

implementation. Voas et al. (1992) indicated that: “empirical observations suggest that a 

specification’s DRR is related to its implementation’s ability to hide faults”. That is, high DRR 

implies that faults are more likely to remain hidden in an implementation. However, low DRR 

suggests that almost all faults in an implementation might be exposed during testing (Voas et al., 

1992). This means when DRDR is low the program becomes more testable and the errors become 

more easy to find and correct. 

It has been argued by Voas et al. (1992) that this potential link between DRR and ease of fault 

exposure arises from data state error cancellation or simply from internal data state collapse. Data 

state error cancellation occurs if an infected variable has its erroneous value corrected or perhaps 

never used in subsequent computations. Internal data state collapse occurs when two different data 

states are input to some sub-component in a program and yet that sub-component produces the same 
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output state. As Voas and Miller (1993b) remark: “When internal state collapse occurs, the lost 

information may have included evidence that internal states were incorrect. Since such evidence is 

not visible in the output, the probability of observing a failure during testing is reduced.” 

This connection between DRR and state collapse or likelihood of fault exposure is of course 

implying, in essence, a link between DRR and testability, as defined in the sense of Voas and 

colleagues. Indeed Voas et al. (1992) conjectured that “the testability of a program is correlated with 

the domain/range ratio”. More explicitly they stated that: “as the DRR of the intended function 

increases, the testability of an implementation of that function decreases”. In other words, high DRR 

is thought to lead to low testability and vice versa. For each of the functions listed in Table 1, the 

testability as suggested by Voas is given in the second column of the table (Voas, 1991; Voas and 

Miller, 1993b). 

 

Dynamic range-to-domain ratio (DRDR) 

 

In order to assist with the investigation of the relationship between testability and domain-to-range 

ratio, which is the main focus of this paper, the current authors have adapted the ratio in two minor 

ways. 

The first (trivial) adaptation is simply to invert the ratio so that it becomes the range-to-domain ratio 

(RDR), i.e. the range-to-domain ratio is  r / d  where r is the cardinality of the range and d is the 

cardinality of the domain. This has the advantage that if there is a link between the ratio and 

testability, it is likely to be of the form: high values in one lead to high values in the other and 

similarly low values in one lead to low values in the other. This is clearly more natural than dealing 

with a mathematical relationship based on reciprocals. 

The second adaptation is to propose calculation of the range-to-domain ratio dynamically for 

individual program locations. In other words, the dynamic range-to-domain ratio (DRDR) is defined 

as the ratio of the cardinality of the range to the cardinality of the domain for a given program 

location when that program is executed with test data from a given input distribution. The principle 

advantage of calculating the ratio dynamically (i.e. from program execution) is that it opens up the 

possibility of its automatic determination during white-box testing of the code. 

The remainder of this section illustrates the calculation of DRDR with an assignment statement as an 

example. Two possible methods are investigated: calculation using states and calculation using 

input/output tuples. 

 

Calculation using states 

 

Recall that it has been argued that there is a link between the domain-to-range ratio and 

‘internal state collapse’ (Voas and Miller, 1993b). Hence it seems worth investigating 

whether counting unique data states both before and after some program location on all 

executions of that location during a run of the program might provide a measure of ‘state 

collapse’. 

Consider for example the assignment statement: 

 

z  =  x * x + y * y  (1) 

 

with an input distribution such that: x, y = -1, 0, +1. Also assume that z is initialised to zero prior to 

this location. Then pre-states, the set of states involving the data values for variables x, y, z (given in 

angle brackets in that order) is as follows: 

 

pre-states  =  { < -1, -1, 0 >, < -1, 0, 0 >, < -1, 1, 0 >, 

<  0, -1, 0 >, <  0, 0, 0 >, <  0, 1, 0 >, 

<  1, -1, 0 >, <  1, 0, 0 >, <  1, 1, 0 >  } 

 

The set of corresponding states after execution of the location, post-states, is: 

 

post-states  =  {  < -1, -1, 2 >, < -1, 0, 1 >, < -1, 1, 2 >, 
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<  0, -1, 1 >, <  0, 0, 0 >, <  0, 1, 1 >, 

<  1, -1, 2 >, <  1, 0, 1 >, <  1, 1, 2 >  } 

Thus: 

DRDR  =  
statespre

tatesspost

−

−
  =  

9

9
 

Since the number of unique pre-states is the same as the number of unique post states, this would 

seem to imply that there is no reduction in the number of unique states for this location under these 

circumstances. Clearly this contravenes expectations and indicates that, in general, if the inputs to a 

location are not altered, then there is no state collapse. 

 

Calculation using input/output tuples 

Since counting unique states before and after a program location does not lead to an appropriate way 

of determining DRDR, an alternative approach is required. The approach adopted in this paper is 

based on counting unique tuples of input operands for the domain of a location and unique tuples of 

output operands for the range. 

At present, the only locations considered are assignment statements, as has already been mentioned, 

although in principle other types of location could be handled in a similar way. The range of an 

assignment location is the set of values assigned to the variable in question. The number of values 

that are unique then represents the cardinality of the range. Determining the domain and its 

cardinality is a little harder. The current authors propose ascertaining all the data objects that may be 

considered input operands of the location. Each execution of the location makes use of a tuple of 

values for these input operands. The number of unique input tuples will then be considered as the 

cardinality of the domain. The choice of the word ‘operand’ in the explanation just given is 

deliberate. The intention is to include constant data values that are inputs to a location as well as any 

variable data values. The reason for this is so that the assignment of a constant value to a variable 

may be considered to have input domain of cardinality one. 

The net effect of this entire approach for calculating the cardinality of the domain of an 

assignment location may be summarised as follows: (1) if a location assigns a constant to a 

variable, then the domain of this location has cardinality 1; (2) if the location assigns one 

variable to another, then the cardinality of the domain will be the number of unique values 

of the input variable; (3) if the location assigns to a variable using a combination of 

variables and constants, then the cardinality of the domain will be the number of unique 

combinations of the input variables and constants; (4) if the assignment involves a built-in 

function, then the cardinality of the domain will be the number of unique tuples which are 

used as parameters to the built-in function. 

To demonstrate how the calculations are performed, consider once again the assignment (1) with the 

same input distribution as given previously. The variable z constitutes the range and it achieves three 

unique values. The variables < x, y > constitute the tuple of input operands and there are nine unique 

combinations of values. Therefore: 

 

|R|  =  card{ 0, 1, 2 }  =  3 

 

|D|  =  card{ < -1, -1 >, < -1, 0 >, < -1, 1 >, 

<  0, -1 >, <  0, 0 >, <  0, 1 >, 

<  1, -1 >, <  1, 0 >, <  1, 1 >  }  =  9 

Hence: 

DRDR  =  
R

D
  =  

3

9
  =  0.33 

which is clearly a more sensible interpretation of events than that given in the previous 

section. As another example, consider: 

 

z  =  100  (2) 
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to demonstrate the calculation when assigning a constant to a variable. For all possible executions of 

this location: 

 

|R|  =  card{100}  =  1 

 

|D|  =  card{100}  =  1 

 

Hence: 

DRDR  =  
R

D
  =  

1

1
  =  1 

 

As far as implementation of an automated system to capture the DRDR for program locations is 

considered, all that is required is the insertion of statements before and after each location to record 

the appropriate values of data objects in some file or files. The files can then be processed on 

termination of program execution to determine uniqueness of the domains and ranges of each 

location and report the corresponding values of DRDR. This scheme could be generalised to sections 

of code, modules or even individual program paths once inputs and outputs are known. 

It is worth noting that the required ‘print’ statements are not unlike simple assertions which have 

long been advocated (Stucki and Foshee, 1975) and can be incorporated into an instrumented 

version of the original program with little difficulty. Hence the DRDR metric is inexpensive and 

relatively easy to calculate. If it can generate estimates that relate to testabilities of the chosen 

locations without conducting the full PIE analysis, it will represent a significant saving of effort. 

 

EMPIRICAL STUDIES 

 

This section discusses the investigations, which have been undertaken to explore the link between 

infection and the metric, DRDR. First the goal, the hypothesis and the significance of the experiment 

are given. Then details are provided concerning the programs and test input distributions that have 

been used in the experiment. This is followed by a description of the experimental method. Finally, 

the results of the experiment are reported and analysed. 

 

Goal of the experiment 

 

The goal of this experiment is simply to investigate whether there is any relationship between 

infection and the DRDR metric. If there is a relationship, then, in addition, it would be useful to 

know whether the two quantities follow the same or opposite trend. Such a connection, if confirmed, 

could help in estimating the infection of programs without performing the actual calculations of the 

infection analysis which is part of the PIE technique. 

 

Hypothesis of the experiment 

 

The hypothesis of the experiment is that the DRDR score of program locations is correlated with the 

infection estimates of those locations. In other words it is conjectured that the higher the DRDR 

score, the higher the infection and vice versa. 

 

Significance of the experiment 

 

If the DRDR metric can give some indication concerning the infection of a program location, which 

is part of the sensitivity, this would have significant potential for savings on the effort, time and cost 

involved in conducting the analyses of the full PIE technique. Assuming that the DRDR metric is a 

reflection of infection in some fashion, then the DRDR metric could perhaps be used as a much 

simpler substitute for it and yet be useful in the same way that infection with conjunction with 
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execution and propagation analyses are useful, namely for indicating those program locations where 

faults may ‘hide’ and further testing is desirable. 

 

The programs used in the experiment 

 

Eleven programs written in C were selected for the experiment. The programs may be thought of as 

composed of three pairs: (1) three non-artificial programs; (2) three programs that implement the 

functions of Table 1 in an unconnected fashion and the fourth program in this set represents the 

example program, which is concerned with checking reachability constraints, provided by Friedman 

and Voas [Friedman and Voas, 1995]; and (3) four programs that implement connected 

combinations of the same functions. For each of the eleven programs, Table 2 lists the name, 

purpose, number of locations and, in the final column, the number of test cases used and their input 

domains. 

The first program (Average.c) determines the average of a set of numbers supplied as input data. The 

second program (Quadratic.c) determines whether a quadratic equation, whose coefficients are 

supplied as input data, has an integer solution. A deliberately erroneous version of this program has 

been used extensively in previous studies that showed it has very low overall testability (Voas et al., 

1991; Al-Khanjari and Woodward, 1998). The third program (Cubic.c) determines whether a cubic 

equation, whose coefficients are supplied as input data, has an integer solution. 

The fourth program (Functions1.c) implements all the simple mathematical functions considered by 

Voas (1991) and also Voas and Miller (1993b) and repeated in Table 1 of this paper. In essence, 

each function is an assignment location and there is no connection between the assignments. The 

program requires a and b as test input – note b is not constant. The fifth program (Functions2.c) 

implements just the functions numbered 3, 4 and 9, i.e. a mod b  and  a div b  where a, b are integer, 

and  a / b  where a is real. These three functions depend on two input parameters, but in this 

particular program b is kept fixed. Separate evaluations were performed with a range of values for b. 

The sixth program (Functions3.c) implements similar set of the simple mathematical functions used 

in (Functions1.c) program. The seventh program (Functions4.c) implements the example program 

provided by Friedman and Voas to check the reachability constraints. 

The final four programs (Artificial1.c, Artificial2.c, Artificial3.c and Artificial4.c) are artificial in 

the sense that they were constructed specially for the experiment. They contain uses of several of the 

simple functions in connected combinations in the knowledge that these functions give a good 

spread for the scores of both infection and DRDR 

 

 

Table 2. The programs selected for the experiment 

 

Name Purpose Locations Test cases 

Average.c Calculates the average of a set S of 

values; next identifies each value in 

turn. 

4 100 cases 

card S ∈ [2,16] 

next ∈ [0,6000] 

Quadratic.c Determines whether a quadratic 

equation has an integer root. 

4  10000 cases 

a, c ∈ [0,10], b ∈ [1,1000] 

Cubic.c Determines whether a cubic 

equation has an integer root. 

9  1000 cases 

a, b ∈ [-1000,1000] 

Functions1.c Implementation of all 16 of the 

simple mathematical functions 

given in Table 1. 

16 10000 cases 

a, b ∈ [-10000,10000] 

Functions2.c  Implementation of functions: 

a mod b,  a div b  and  a / b 

(b constant) from Table 1. 

3 10000 cases 

a ∈ [-10000,10000] 

Functions3.c Implementation of some of the 

simple mathematical functions 

given in Table 1. 

8 10000 cases 

a ∈ [-1000,1000] 
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Functions4.c Implementation of the example 

program provided by Friedman and 

Voas to check the reachability 

constraints. 

6 10000 cases 

a, b ∈ [-100,100] 

 Artificial1.c Artificial program constructed from 

connected combinations of the 

functions in Table 1. 

7 1000 cases 

a, b ∈ [-10000,10000] 

Artificial2.c Artificial program constructed from 

connected combinations of the 

functions in Table 1. 

9 1000 cases 

a, b ∈ [-10000,10000] 

Artificial3.c Artificial program constructed from 

connected combinations of the 

functions in Table 1. 

7 1000 cases 

a, b ∈ [-1000,1000] 

Artificial4.c Artificial program constructed from 

connected combinations of the 

functions in Table 1. 

10 10000 cases 

a, c ∈ [0,10] 

b ∈ [1,1000] 

 

Experimental method 

 

For the purposes of comparison between infection and DRDR scores, the authors have observed that 

the infection estimate is the most crucial component of the PIE testability for a given program 

location. Also as mentioned previously the MSG-Infection tool, which uses the mutant schemata 

approach, has been generated mainly to improve the mutation analysis and accordingly to improve 

the performance of the infection analysis. As a reflection the experiments have concentrated on 

infection analysis only. On the other hand, as authors observed that for some programs the infection 

analysis will be zero or close to zero. This means conducting such experiments will be waste of 

time. Because of that the purpose of the experiments was to find some concepts such as DRDR, 

which might give an influence of the expected infection estimate without conducting the real 

analysis.  

For each assignment location in each of the chosen programs the DRDR scores and the infection 

analysis estimates were obtained. The number of test cases used for each program is listed in Table 

2; each test case was constructed randomly using a uniform distribution within the input domains 

also listed in Table 2. Each C program together with its input data (test cases) was submitted to the 

MSG-Infection system and the infection estimate results were reported automatically. To determine 

the DRDR scores however, a special instrumented version of each C program was created, which, 

when executed, generated files containing the domains and the ranges for each individual location of 

the C program under test. A simple post-processor tool was then used to determine the unique 

domain and range tuples and hence the DRDR scores. 

Experimental results 

 

This section reports the results of the experiment. For each of the eleven programs selected for the 

experiment, the infection analysis estimates and corresponding DRDR scores for each program 

location are presented as pairs of graphs. 

Figures 2 through 11 show infection estimates and corresponding DRDR scores for all locations of 

the programs Average.c, Quadratic.c, Cubic.c, Functions1.c, Functions3.c, Functions4.c, 

Artificial1.c, Artificial2.c, Artificial3.c and Artificial4.c respectively. 
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 Figure 2(a). Infection for Average.c             Figure 2(b). DRDR for Average.c 
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 Figure 3(a). Infection for Quadratic.c            Figure 3(b). DRDR for Quadratic.c 
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 Figure 4(a). Infection for Cubic.c              Figure 4(b). DRDR for Cubic.c 
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Figure 5(a). Infection for Functions1.c           Figure 5(b). DRDR for Functions1.c 
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Figure 6(a). Infection for Functions3.c           Figure 6(b). DRDR for Functions3.c 
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Figure 7(a). Infection for Functions4.c           Figure 7(b). DRDR for Functions4.c 
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Figure 8(a). Infection for Artificial1.c            Figure 8(b). DRDR for Artificial1.c 
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Figure 9(a). Infection for Artificial2.c           Figure 9(b). DRDR for Artificial2.c 
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Figure 10(a). Infection for Artificial3.c          Figure 10(b). DRDR for Artificial3.c 
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     Figure 11(a). Infection for Artificial4.c          Figure 11(b). DRDR for Artificial4.c 

 

Finally infection estimates and corresponding DRDR scores for the remaining program 

Functions2.c, which is a special case, are presented with reference to its individual locations. This is 

because these locations represent different isolated functions involving a second parameter b, which 

has been considered as a constant when determining the infection and DRDR scores. The most 

interesting functions are a mod b and a div b. Results are reported for 40 different cases of the 

variable b, where the value of b varies from -10000 to +10000 in steps of 500. 

Figures 12 and 13 show infection estimates and corresponding DRDR scores for the a mod b and a 

div b functions of the Functions2.c program respectively, for the 40 different cases of the variable b. 
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Figure 12(a). Infection for Functions2.c                   Figure 12(b). DRDR for Functions2.c 



AJIS Vol.11 No. 1 September 2003 

 70 

 

 

 
-1
0
0
0
0

-8
5
0
0

-7
0
0
0

-5
5
0
0

-4
0
0
0

-2
5
0
0

-1
0
0
0

1
0
0
0

2
5
0
0

4
0
0
0

5
5
0
0

7
0
0
0

8
5
0
0

1
0
0
0
0

b

0

0.2

0.4

0.6

0.8

1

In
fe
c
ti
o
n

Infection

Infection for 40 cases (f = a div b)

 

-1
0
0
0
0

-8
5
0
0

-7
0
0
0

-5
5
0
0

-4
0
0
0

-2
5
0
0

-1
0
0
0

1
0
0
0

2
5
0
0

4
0
0
0

5
5
0
0

7
0
0
0

8
5
0
0

1
0
0
0
0

b

0

0.001

0.002

0.003

0.004

0.005

0.006

D
R
D
R DRDR

DRDR for 40 cases (f = a div b)

 
Figure 13(a). Infection for Functions2.c                   Figure 13(b). DRDR for Functions2.c 

 

 

Analysis of results 

 

Viewing the figures, one can see that there are often similarities between the infection and the 

DRDR graphs for a given program. They frequently take the same shape even though the scales may 

be different. 

Since the figures suggest that a correlation between infection and DRDR is plausible, statistical 

analysis of the corresponding values has been conducted. The correlation coefficients for the 

selected programs are given in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AJIS Vol.11 No. 1 September 2003 

 71 

Table 3. Correlation (r
2
) between infection and DRDR for the selected programs 

Program Functions r
2
 Confidence Relationship 

Average.c All 0.2700 75% Weak positive linear relationship 

Quadratic.c All 0.9946 95% Strong positive linear relationship 

Cubic.c All 0.1742 50% Weak positive linear relationship 

Functions1.c All 0.3446 95% Weak positive linear relationship 

Functions2.c a mod b  0.6859 95% Substantial positive linear relationship 

Functions2.c a div b  0.4013 95% Weak positive linear relationship 

Functions3.c All 0.5764 95% Substantial positive linear relationship 

Functions4.c All 0.9982 99% Strong positive linear relationship 

Artificial1.c All 0.4852 90% Weak positive linear relationship 

Artificial2.c All 0.3980 90% Weak positive linear relationship 

Artificial3.c All 0.3051 80% Weak positive linear relationship 

Artificial4.c All 0.6561 95% Substantial positive linear relationship 

 

From Table 3, the percentages of the correlation that explain the variations in the infection using the 

DRDR scores are about 27%, 99%, 17%, 34%, 69%, 40%, 58%, 100%, 49%, 40%, 31% and 66% of 

the selected programs respectively. As further evidence, the student’s t-distribution test, with the 

confidence level given in Table3 for the selected programs, has been used to check the null 

hypothesis (that there is no relationship between the variables: infection and DRDR), against the 

alternative hypothesis (that there is a relationship between the suggested variables). The results of 

the tests were to reject the null hypothesis and accept the alternative hypothesis. This means that 

there is a relationship between infection and DRDR. An indication of the strengths of the 

relationship for each of the selected programs, or particular function within a program, is also given 

in Table 3. 

 

SUMMARY AND CONCLUSIONS 

 

This paper has summarised and reviewed some of the many interpretations of the concept of 

‘testability’ before focusing on the particular definition introduced by Voas and colleagues. The 

propagation, infection and execution (PIE) method of determining Voas’s notion of testability of 

program locations has been briefly explained and a prototype system called MSG-Infection 

developed by the authors for automating infection and execution analyses has been introduced. 

MSG-Infection is novel in being an adaptation of an existing Mutant Schemata Generation (MSG) 

system. 

Since it has been suggested that there is a possible link between testability and the so-called domain-

to-range ratio (DRR) metric, an attempt has been made to investigate partial relationship between 

infection and DRDR empirically. The authors have argued that the infection component of the PIE 

testability estimate can be considered the most crucial component for this investigation. To assist 

this investigation the authors have proposed two minor changes: (1) inverting the metric, to make the 

potential partial relationship direct rather than reciprocal, and (2) measuring it dynamically, to help 

automate its determination. The resultant metric, the dynamic range-to-domain ratio (DRDR), has 

been determined for the assignment locations in a number of programs. The infection estimates have 

also been determined for the same locations using the MSG-Infection system.  

The experiment utilised a mixture of artificial and non-artificial programs. The artificially 

constructed programs were designed to incorporate, either in isolation or in various combinations, a 

number of simple mathematical functions studied theoretically by Voas. Although in most cases the 

trends shown by both infection and DRDR appear similar, when analysed statistically the correlation 

shows variation from a strong linear relationship to a weak linear relationship. The strongest 

correlation observed, somewhat surprisingly, was for the non-artificial program Quadratic.c which 

determines whether a quadratic equation has integral solutions. The next strongest correlation 

observed, perhaps less surprisingly, was for the function  a mod b. The graph of infection values as 

b varies provides pleasing confirmation of the expectation that testability decreases as b decreases 

and the corresponding graph of DRDR provides dramatic evidence of the same trend, even though 
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the numeric values are on different scales. However, the other programs demonstrate much weaker 

correlation between infection and DRDR.The tentative conclusion is that, whilst it is intuitively 

tempting to suppose there might be a link, it would appear that any such link is far less direct than 

one might hope. Hence, although this study has shed some light on the partial relationship between 

testability and the domain-to-range ratio, further research is certainly required. 
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