
AJIS Special Issue December 2004 66

FROM DOCUMENTS TO USER INTERFACES

UNIVERSAL DESIGN AND THE EMERGENCE OF ABSTRACTION

Jason White

ABSTRACT

Abstract representations of content which allow it to be automatically adapted to suit the delivery
context, have emerged historically with the development of markup languages intended to facilitate the
storage and processing of electronic documents. This technological tradition is reviewed in the first
part of the paper, focusing predominantly on the nature and advantages of a ‘single authoring’
approach to the creation of content. Some of the lessons to be derived from the evolution and
deployment of markup systems are also discussed, then applied, in the second part of the paper, to the
question of how such abstractions can be extended to the design of user interfaces. Innovative work
related to the generic specification of user interfaces is reviewed. It is argued that the advantages of an
abstract approach depend for their realization on the development of more expressive style languages
and more sophisticated adaptation mechanisms, as well as continued refinement of the semantics of
markup languages themselves.

INTRODUCTION

In a paper presented at the Seventh International World Wide Web Conference in 1997
[Vanderheiden, 1997], Gregg Vanderheiden envisioned a technological future in which software
applications and informational resources would be universally available, irrespective of the needs
and circumstances of the user. Whether behind a desk, in a vehicle, in a noisy environment or a
remote location, to mention only some of the diverse possibilities, the same content and applications
would be accessible, via whatever hardware and software the circumstances demanded. Leaving
aside the important but typically overlooked question of whether such ubiquitous network
connectivity is socially desirable, this paper examines some of the basic technologies required to
implement Vanderheiden’s conception, reviewing the progress that has been made to date, and
identifying problems that remain to be solved. Not surprisingly, given the scope of this undertaking,
the analysis can neither be detailed nor comprehensive. What is offered, rather, is a general overview
of principles and technologies, suitably supported by examples drawn from languages and software
systems with which the author is acquainted. The technical coverage offered is likewise diverse,
touching on issues of general design as well as more practical questions of deployment and
availability.

MARKUP LANGUAGES AND DOCUMENT PROCESSING

The concept of markup has its origin in typesetting. By annotating or ‘marking up’ a manuscript, a
designer would specify to a compositor precisely how the published document was to be formatted
and presented. Following the transition from manual to electronic printing, the typesetting activity
itself, that is the construction of an image of the page which could be reproduced on paper, was now
carried out not by human beings, but by a computer program. Even so, the former division of labour
between designer and compositor remained; the files supplied as input to the electronic typesetting
system would include, in addition to the text of the document, control sequences to direct the
typesetting algorithms. This electronic markup, clearly analogous to its manual predecessor, provides
the historical and conceptual base from which modern markup languages have been formed. The
subsequent development of markup systems has taken two distinct turns of central interest for the
purposes of the present discussion: first, the move from concrete procedural semantics toward more
abstract structural descriptions of the document, and secondly, the emergence of syntactically
defined types of which document instances are specific manifestations.

AJIS Special Issue December 2004 67

By the first of these moves, instead of specifying the font changes, spacing and other characteristics
of the manuscript throughout the file wherever they occurred, the structure of the document was
represented at a higher level, leaving the details of the formatting to be supplied elsewhere, for
example in a macro package. Low-level typesetting operations were superseded, in the markup, by a
more general description of the document, distinguishing headings, paragraphs, lists, footnotes, table
structures and other components of the material. Each instruction in the markup would be executed
by a call to the corresponding macro containing the procedures to be performed in generating a
properly typeset image of the page. Of course, this description is something of an idealization; in
practice, documents prepared in macro-based typesetting languages such as Troff and TEX
[Knuth, 1986] are usually an admixture of structural markup and lower level commands that directly
control the presentation. Nevertheless, having introduced a distinction between a declarative,
structural description of the document, and the operations and parameters needed for its realization
by a typesetting system, the conditions were laid for a more radical move, the conception of an
electronic document as instantiating a formally defined grammar, a so-called ‘document type’, to use
the terminology of the Standard Generalized Markup Language (SGML) [International Organization
for Standardization, 1986], and its simplified but more popular successor, the Extensible Markup
Language (XML) [Bray et al., 2004]. A document type definition (DTD), or more recently, an XML
schema [Fallside, 2001, Thompson et al., 2001, Biron and Malhotra, 2001], specifies, most
importantly, the names and possible orderings of the elements that can comprise documents of the
defined type. Textual content in the form of character strings, may also be permitted to occur in
contexts prescribed by the document type definition; likewise, elements may carry attributes, the
names and contents of which are again determined by the formal grammar. A principal function of an
SGML or validating XML parser is to determine whether a supplied document instance is of the
declared type, namely whether it fulfills the requirements set out in the DTD or schema.
By providing a grammar with which to specify document types, SGML and XML facilitate the
development of multiple, inter-operating application programs capable of processing document
instances. No longer is the markup in the document tied directly to macro calls; instead it is read,
parsed and processed by software, the details of which remain entirely unspecified by the markup
language, and which may access the content for purposes other than typesetting. Coordinate with
these developments, standardized style languages have been created for associating elements of the
document with rules, possibly in a quite contextually dependent fashion, that control the typesetting
process [International Organization for Standardization , 1996, Bos et al., 1998, Adler et al., 2001].
These rules are generally stored in style sheets, files that are read by the formatting software along
with the document instance and any other associated resources, such as vector or raster-based
images, required to construct the final presentation. Each style sheet defines a transformation which
allows documents conforming to a particular DTD or schema to be presented as determined by the
style sheet itself, as applied and executed by the typesetting application. Any number of alternative
style sheets, or indeed application programs, may be written that correspond to a particular document
type, allowing document instances of that type to be processed in multifarious ways. It is this
flexibility which enables a single document instance, in principle, to be formatted for a variety of
visual, auditory and tactile displays, each with its own constraints and stylistic requirements, without
ever modifying the markup of the document itself. In so far as document instances satisfy formally
defined type definitions, the software or style sheet developer can proceed with the assurance that
document instances will exhibit a tightly constrained and predictable structure, which, moreover, is
specified in a formal language, thereby easing the construction not only of general tools for creating
and reading marked up documents, but of highly customized applications and processes for treating
documents of particular types.
The advantages of the model that has thus been outlined, in which documents are written in formally
defined markup languages, have already been indicated. Nevertheless, in order that certain points can
be elaborated further, there is value to be gained by identifying them more precisely. In contrast to

AJIS Special Issue December 2004 68

procedurally oriented markup systems, a greater separation is maintained between the electronic
representation of the document, and the types of processing and transformation to which it may be
subjected. This is achieved by abstraction: the markup typically identifies aspects of the document
which the designer of the document type, having more or less regard to the various purposes for
which it may be used, considers structurally and semantically significant. With application software
of sufficient flexibility and sophistication, the document can be rendered to suit whatever output
device, presentational needs and preferences the user may possess. The conversion of an abstractly
marked up document instance into a concrete presentation can be carried out entirely by software
operating on behalf of the author or the user; or the rendering procedure may alternatively be
separated into distinct transformational stages, each carried out in succession at different points
along the delivery path from the author’s input to the perceived presentation provided by the output
device, for example a printer, a video monitor, a tactile display or a speech synthesizer. The
characteristics of the hardware and software through which the user interacts with the document,
along with those of the network by which it is delivered and the user’s needs and preferences, are
collectively known as the ‘delivery context’ [Gimson, 2003]. With this terminology, it can be said
that an abstractly marked up document can automatically be adapted to, and presented in, a wide
range of delivery contexts, subject to the availability of appropriate software and assuming that the
markup specifies explicitly the necessary semantic distinctions to enable the required processing to
be carried out. As a corollary, the presentation of the document can be systematically changed
merely by altering the rules governing its presentation, for example a style sheet, without changing
the document instance. This advantage, in its own right, has often been cited as a sufficient ground
for deploying structured markup systems, even in contexts in which the adaptation of documents to a
multiplicity of delivery contexts is not considered important. Moreover, the declarative semantics of
the markup enable document corpora to be searched more intelligently, with proximity queries
limited to specified structural components of the documents, and techniques for ranking search
results that rely on this inherent structure to gauge their relevance to the user’s interests.
Along with these considerable benefits come, not surprisingly, issues and problems that remain to be
addressed. Thus, style languages have not, in general, acquired the degree of expressive power to be
found in macro-oriented typesetting languages such as TEX and its associated tools. In practice on
the World Wide Web, where markup languages have been most broadly and spectacularly deployed,
the emergence of style languages has been gradual, and sophisticated style languages such as XSLT
[Clark, 1999], capable of achieving relatively complex hierarchical transformations, remain a rarity,
except to some extent in server applications. Likewise, markup languages for representing fonts and
vector graphics are far from common on the Web, whereas languages such as Postscript [Adobe
Systems, 1999] lie at the core of modern versions of TEX and other typesetting systems. Similarly,
to mention a further example, low-level markup languages designed to capture the prosodic
parameters of a speech synthesizer by which document can be formatted and rendered in audio, have
only been standardized quite recently [Burnett et al., 2004], and their degree of practical
implementation has so far been minimal.
Compounding these difficulties has been a tendency, which is again most prominent on the Web, to
implement document markup languages such as HTML [Raggett et al., 1999] directly in the
compiled code of the user agent software, rather than in a style language. Consequently, support for a
new markup language, or even, in many circumstances, an extension of or update to an already
implemented markup language, can often only be achieved by providing compiled software that must
be downloaded and installed by the user to be executed by the operating system. This compares
unfavourably with a design in which core presentational functions are implemented in the user agent,
with support for semantically rich markup languages being provided by interpreted or compiled code
written in a high-level programming language, which can be downloaded dynamically, cached and
executed in a secure environment established by the user agent.

AJIS Special Issue December 2004 69

The relative permissiveness of HTML user agents with regard to document instances that fail to
conform to a document type definition, combined with the predominance of the graphical desktop
workstation as a delivery context, has contributed to the common practice of abusing features of the
markup language to achieve a desired layout or other presentational effect, instead of adhering to the
semantics defined in the specification. The practical difficulty mentioned earlier of implementing
and deploying an extension to a markup language widely supported in user agents, has only
exacerbated these problems, leading ultimately to a vast legacy of syntactically invalid and
presentationally-oriented content. Both of these aspects are problematic: in so far as the documents
are syntactically invalid and unpredictable, the difficulty of writing software that can successfully
parse and process them is amplified; in as much as the documents fail to conform to the semantics
prescribed for elements and attributes of the markup language, they are less amenable to automatic
adaptation for presentation in diverse delivery contexts.
Two lines of advance toward solving these problems are already implicit in the preceding analysis.
First, there is a need to develop more sophisticated document presentation systems, encompassing
scalable rendering functionality suitable to a variety of devices and output modalities, and high-level
style languages for generating optimal presentations of content in a range of delivery contexts.
Secondly, and of particular advantage to legacy user agents, there is the possibility of shifting more
of the transformation and adaptation process from client to server, whether the latter be controlled by
the original author of the document or a third party. In recent years, the latter approach has received
considerable impetus from the emergence of portable computing devices and the concomitant need
for Web documents to be adapted to the comparatively small displays and limited functionality
offered by this hardware.

APPLICATION OF MARKUP LANGUAGES TO USER INTERFACES

In the preceding section, the focus of the analysis was deliberately confined to the adaptation and
presentation of electronic documents, setting aside altogether problems related to interactivity. Thus
the question arises whether the approach championed earlier in the paper, whereby content is written
in abstractly specified and syntactically well defined markup languages, then transformed according
to separately provided rules to suit the requirements of the delivery context, can be applied to the
construction of user interfaces in general. Promising work has recently been carried out in extending
the basic approach to interfaces which, unlike static documents, accept input from the user and
undergo modification, whether in response to input or other changes in the state of a program, as
application software is executed. Two related specifications encapsulate the results of this effort: the
XML Forms Language (XForms) [Dubinko et al., 2003], and the draft Protocols for a Universal
Remote Console currently under development by the INCITS V2 working group [InterNational
Committee for Information Technology Standards , 2004a,b,c,d,e]. The overview which shall be
offered here is necessarily partial; its purpose is to expound the common principles and abstractive
techniques underlying the design of both specifications, while largely disregarding important
differences between them. To that extent, vital technical details are omitted altogether, or mentioned
only incidentally. For the sake of clarity, the terminology of the draft Universal Remote Console
specifications, which is more widely applicable to a variety of user interfaces, shall here be used,
except where the XForms language is specifically under discussion; but this should not be taken to
imply any claim that either design is technically superior to, or more general than, the other.
With these reservations firmly established, the basic components of an abstractly represented user
interface can now be identified. The purpose of a user interface is to enable the user of an application
to enter input, call software functions which process it, and render the output. Accordingly, the
connection between the user interface and the data processing components of the application
consists, first, of the constants and variables available to be presented to, and in the latter case set by,
the user; and secondly, the application functions that the user can directly invoke. In the Universal

AJIS Special Issue December 2004 70

Remote Console specifications, these components are collected in what is known as a user interface
socket—an XML document in which variables, constants and application commands are declared. In
XForms, the same purpose is served by the XForms model, combined with XML events [McCarron
et al., 2003] to enable application functions to be activated. In both cases, the data type of each
variable can be constrained by XML schema declarations [Biron and Malhotra, 2001], and XPath
expressions [Clark and DeRose, 1999] can be supplied to ensure that validity requirements
encompassing one or more variables are met prior to the processing of the data.
Having thus described the data and functionality accessible via the user interface, it is necessary to
characterize the actions that the user can perform to set or update the values of variables and to call
application functions, together with the outputs that may be presented in response. This is achieved
by defining elements referred to in the Universal Remote Console specifications as abstract
interactors, which in turn are based on the corresponding XForms form controls. As the name
implies, the abstract interactors do not presuppose any particular style of presentation or input
mechanism. They are equally suited, for example, to the construction of a speech-based interface
oriented toward the processing of natural language, as to the creation of a graphical user interface.
Each abstract interactor is explicitly bound to an element of the user interface socket, subject to
limitations imposed by its type. Each type of interactor, represented as an XML element, supports a
specific operation within the user interface: selection of a single item from a set, selection of multiple
items from a set, selection of a value from a totally ordered set, text input, the presentation of output,
and execution of application functions, among others [for an early development of these user
interface abstractions see Raman, 1997]. The data entered must of course satisfy the requisite type
and validity constraints defined in the user interface socket. Abstract interactors may be arranged in
logical hierarchies reflecting the structure of the user interface, with related options and actions
being grouped together. For example, in the user interface of a bibliographic database, the input
fields into which the title, author and other details of the search query are entered, form a logically
distinct group, separate from the options that place limits on the number of records to be returned or
control the order in which matching records are to be sorted.
Even an abstractly defined user interface is not complete without labels and explanatory text, written
in one or more natural languages, that identify and help the user to understand the options provided.
In XForms, this essential information is included as part of each form control. In the Universal
Remote Console specifications as presently drafted, however, it is stored separately in resource
sheets that may be retrieved and interpreted as part of the process of deriving a concrete user
interface from the abstract description. This allows for a multiplicity of resource sheets
corresponding to any given application, each customized to suit the natural language, culture and
other characteristics of a given class of users. In addition to associating a label and help text with an
abstract interactor, a resource sheet can specify key words that identify the interactor; these may be
used, for instance, by speech recognition systems. Correspondingly, a single character can be bound
to the interactor to enhance operation via a keyboard or similar input device. Reference to modality-
specific resources such as visual and auditory icons, or formal grammars for speech recognition
systems, is also supported. It is the task of the software implementing the universal remote console to
combine the abstract definition of the user interface with the data from an applicable resource sheet
to create an interface suited to the requirements of the delivery context.
Just as generic markup has advantages over procedural markup in that it separates the details of
layout and formatting from the structural description of a document, thus permitting a document
instance to be processed in ways that are limited only by the ingenuity of the application or style
sheet developer, it has the potential to yield corresponding benefits as applied to the abstract
characterization of user interfaces. Most user interfaces designed today are written in a conventional
programming language, with a quite specific delivery context in mind, for example a graphical
workstation, and are carefully designed for the intended environment. Other delivery options are, at
best, treated as secondary concerns: a user interface library may, for instance, support accessibility

AJIS Special Issue December 2004 71

via assistive technologies that provide alternative input and output mechanisms for people with
disabilities, but the graphical interface remains the primary focus of the design. What distinguishes
XForms and the Universal Remote Console specifications is the achievement of a more adequate
demarcation of the underlying structure from those aspects of the user interface which vary with the
delivery context, while allowing additional resources to be specified that enable the interface to be
automatically enhanced or customized for specific environments. Furthermore, this generic approach
challenges the traditional distinction between user interfaces as such, intended to be operated directly
by human beings, and application interfaces exposed to external software. Thus one can envisage
complex and largely automated tools that locate and interact with devices and applications
supporting such interfaces, with little, if any, direct human intervention. It is these possibilities that
open the way to the prospect of sophisticated systems composed of collaborating, networked devices
serving our needs through interactive and evolving interfaces that take advantage of whatever input
or output mechanism the occasion demands [see the discussion in Vanderheiden and
Zimmermann, 2004]. In short, it is partly through making the user interface amenable to automated
as well as human interaction that the technological future which Vanderheiden imagines can become
actualized.
Although, as XForms and the Universal Remote Console specifications illustrate, significant
progress has been made in recent years toward the development of suitable abstractions with which
to describe user interfaces generically, the problem of transforming these into concrete interfaces
optimized for the delivery context, remains still to be solved. As has already been pointed out, in the
application of generalized markup to electronic typesetting, the rules relating the structure of a
document to its presentation in the final output, have come to be codified in style languages that
control the rendering process. Given a document instance conforming to a specified schema and an
appropriate style sheet, a typesetting system can generate a quality presentation tailored to the
delivery context for which the style rules are designed. The convenience of this solution lies as much
in the availability of flexible style languages with which to specify presentation, as in the abstractions
underlying the markup with which the structure of the document is captured. To gain the benefits of
extending this basic model to the design of user interfaces, it is desirable to develop versatile and
sophisticated style languages with which to express general rules whereby abstract descriptions can
be converted into highly usable, effective and consistent interfaces, with each adapted to a particular
delivery context. By thus partially automating the derivation of concrete interfaces from abstract
specifications, it would become possible, as in the field of document processing, to apply a common
set of style rules to a multiplicity of interfaces, making only such modifications as are needed to
accommodate the unusual or exceptional features of a specific software application. The advantages
noted earlier in connection with document processing, including consistency of presentation and the
opportunity to make uniform changes simply by modifying applicable style rules, would carry over,
mutatis mutandis, to the construction of user interfaces. Thus, the predictability of interactional
conventions within and among applications would be enhanced, without limiting the flexibility of the
software developer, in writing specially crafted style rules, to customize the interface for chosen
delivery contexts. Adaptation of an existing abstract interface to a new delivery context could be
accomplished by defining a new set of style rules, or, in more complex situations, implementing
specialized software for interpreting the markup in which the interface is described. As is true of
markup systems generally, languages for characterizing abstract user interfaces can be interpreted in
a server or client environment according to the requirements of the implementation, including the
extent to which compatibility with legacy software and standards is necessary[this point is further
elaborated in Maes and Raman, 2001].

AJIS Special Issue December 2004 72

CONCLUSIONS: THE CHALLENGE FOR USER INTERFACE DESIGN

Structured markup languages have here been considered in connection with two domains of
application: the representation of electronic documents, and of interactive user interfaces,
respectively. These should not indeed be regarded as mutually exclusive categories; rather, the latter
introduces a dynamic dimension that is absent from the former. A conventional document can thus
be conceived of as a purely presentational, entirely non-interactive, user interface. It has been argued
in this paper that the use of generic, syntactically defined, markup languages for the encoding of
documents, is a technically advantageous practice in that it allows the abstract representation of the
electronic content to be kept distinct from the various means by which it may be processed and
displayed to a user. An important benefit of this design lies in the flexibility with which structurally
marked up documents can be adapted, typically by applying style rules, to a wide range of delivery
contexts. Significant shortcomings in contemporary implementations of the preferred approach have
also been noted, including a failure to build consistently upon well designed foundations provided
for example by vector graphics and audio formatting languages [the concept of an audio formatting
language is developed in Raman, 1998], and the inadequacy of currently deployed style languages
by contrast with typesetting systems such as TEX. These limitations have also given rise to
difficulties in deploying extensions to popular markup languages, in particular HTML.
The demands placed on the design of style languages and other mechanisms that process, transform
and render marked up content, become all the more complex if what is abstractly represented is not
merely the structure of a static document, but instead that of a dynamic user interface. As recent
work in the development of markup languages for describing user interfaces has shown, appropriate
abstractions enable the essential aspects of an interface to be captured quite independently of any
assumptions regarding the delivery contexts in which it may be presented. The technologies needed
to adapt such abstract interfaces to various delivery contexts, and, where possible, to do so by
applying rules that can be conveniently specified by the application designer or by a third party, are
yet to be developed. To what extent the craft of user interface design, like that of typography, can be
carried out by specifying rules for converting abstract structural descriptions into concrete
presentations and interactions optimized for the delivery context, continues to be largely an
unanswered question. In typesetting and document processing, there is already a strong argument for
the use of generic markup systems[see also Taylor, 1996]. Many of the advantages of this
technology which have been identified with respect to electronic documents, have counterparts, so it
has been argued, in its application to user interfaces, assuming of course that the required processing
and adaptation mechanisms, as already mentioned, can in fact be developed. In so far as these
benefits are realized, the abstract solution may largely supersede the current practice of individually
coding a user interface specifically for its intended delivery context. The technological possibilities
which this would open up, and the benefits that would thereby accrue to users, have barely been
touched on in this paper. However, the broad advantages have been clearly identified, leaving the
detailed possibilities to be further explored as the technologies themselves are developed.

REFERENCES

Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach, Tony Graham, Paul Grosso, Eduardo

Gutentag, Alex Milowski, Scott Parnell, Jeremy Richman, and Steve Zilles. Extensible

stylesheet language (xsl) version 1.0. Recommendation, W3C, October 2001. URL
http://www.w3.org/TR/2001/REC-xsl-20011015/.

Adobe Systems. Postscript Language Reference. Addison-Wesley Pub. Co., third edition, 1999.
Paul V. Biron and Ashok Malhotra. Xml schema part 2: Datatypes. Recommendation, W3C, May

2001. URL http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

AJIS Special Issue December 2004 73

Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading style sheets, level 2.
Recommendation, W3C, May 1998. URL http://www.w3.org/TR/1998/REC-CSS2-19980512.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, and John Cowan.
Extensible markup language (xml) 1.1. Recommendation, W3C, February 2004. URL
http://www.w3.org/TR/xml11.

Daniel C. Burnett, Mark R. Walker, and Andrew Hunt. Speech synthesis markup language (ssml)
version 1.0. Recommendation, W3C, September 2004. URL http://www.w3.org/TR/2004/REC-
speech-synthesis-20040907/.

James Clark. Xsl transformations (xslt) version 1.0. Recommendation, W3C, November 1999. URL
http://www.w3.org/TR/1999/REC-xslt-19991116.

James Clark and Steve DeRose. Xml path language (xpath) version 1.0. Recommendation, W3C,
November 1999. URL http://www.w3.org/TR/1999/REC-xpath-19991116.

Micah Dubinko, Leigh L. Klotz, Jr., Roland Merrick, and T. V. Raman. Xforms 1.0.
Recommendation, W3C, October 2003. URL http://www.w3.org/TR/2003/REC-xforms-
20031014/.

David C. Fallside. Xml schema part 0: Primer. Recommendation, W3C, May 2001. URL
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

Roger Gimson. Device independence principles. Note, W3C, September 2003. URL
http://www.w3.org/TR/di-princ/.

InterNational Committee for Information Technology Standards . Ansi/incits 389, information
technology—protocol to facilitate operation of information and electronic products through
remote and alternative interfaces and intelligent agents: Universal remote console, 2004a.

 InterNational Committee for Information Technology Standards . Ansi/incits 390, information
technology—protocol to facilitate operation of information and electronic products through
remote and alternative interfaces and intelligent agents: User interface socket description, 2004b.

 InterNational Committee for Information Technology Standards . Ansi/incits 391, information
technology—protocol to facilitate operation of information and electronic products through
remote and alternative interfaces and intelligent agents: Presentation templates, 2004c.

 InterNational Committee for Information Technology Standards . Ansi/incits 392, information
technology—protocol to facilitate operation of information and electronic products through
remote and alternative interfaces and intelligent agents: Target properties sheet, 2004d.

 InterNational Committee for Information Technology Standards . Ansi/incits 393, information
technology—protocol to facilitate operation of information and electronic products through
remote and alternative interfaces and intelligent agents: Resource description, 2004e.

 International Organization for Standardization . Iso 10179: Document style semantics and
specification language, 1996.

 International Organization for Standardization. Iso 8879: Standard generalized markup language,
1986.

Donald E. Knuth. The TeXbook. Addison-Wesley Pub. Co., 1986.
Stéphane H. Maes and T. V. Raman. A “single authoring” programming model for the next web. In

Scientific Emphasis Proceedings, 2001. URL
http://www.stephanemaes.com/ESSEM/ScientificEmphasis/Proceedings/2001/06/singleauthoring
.htm.

Shane McCarron, Steven Pemberton, and T. V. Raman. Xml events: An events syntax for xml.
Recommendation, W3C, October 2003. URL http://www.w3.org/TR/2003/REC-xml-events-
20031014.

Dave Raggett, Arnaud Le Hors, and Ian Jacobs. Html 4.01 specification. Recommendation, W3C,
December 1999. URL http://www.w3.org/TR/html401.

T. V. Raman. Auditory User Interfaces: Toward the Speaking Computer. Kluwer Academic
Publishers, 1997.

AJIS Special Issue December 2004 74

T. V. Raman. Audio System for Technical Readings, volume 0302-9743; 1410 of Lecture Notes in
Computer Science. Springer-Verlag, 1998.

Conrad Taylor. What has wysiwyg done to us? The Seybold Report on Publishing Systems, 26(2),
September 1996.

Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. Xml schema part 1:
Structures. Recommendation, W3C, May 2001. URL http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/.

Gregg C. Vanderheiden. Anywhere, anytime (+anyone) access to the next-generation www. In
Proceedings of the Sixth International World Wide Web Conference, 1997. URL
http://decweb.ethz.ch/WWW6/Technical/Paper253/Paper253.html.

Gregg C. Vanderheiden and Gottfried Zimmermann. Interface sockets, remote consoles, and natural
language agents: A v2 urc standards whitepaper, August 2004. URL
http://www.incits.org/tc_home/V2HTM/docs/V2/04-0065/V2Whitepaper.htm.

