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Abstract 
Late evacuation in a bushfire is a crucial stage of emergency response, which requires a quick 
response under life-threatening conditions. Lack of operational intelligence and decision 
support system to execute evacuation of residents within a 10 minutes time window were 
among key factors, which contributed to the loss of 119 lives (68 percent of total fatalities) 
during the Black Saturday 2009 bushfire in Victoria. Hard constraints of the limited time 
window, the uncertainty of bushfire spread, road disruptions and elderly and disabled late 
evacuees pose multiple challenges for fire agencies. An application of analytics and decision 
support system, capable of computing Just-in-time allocation of resources, can enhance the 
capacity of fire services agencies. Using the multi-objective analytics, this paper therefore 
develops optimal resource allocation models to enhance emergency response to improve the 
efficiency of late evacuation response.

Three key operational challenges are tackled including timely evacuation, shelter assignment 
and routing. Three bushfire scenarios are constructed to incorporate constraints of restricted 
time-window and potential road disruptions. Capacity and number of rescue vehicles and 
shelters are other constraints. This mathematical model is solved by the application of the -
constraint approach. Objective functions are simultaneously optimised to maximise the total 
number of evacuees while minimise the number of assigned rescue vehicles and shelters. We 
argue that this model provides a scenario-based decision-making tool to aid maximise the 
resource utilisation and coverage of late evacuees. The analytics based insights drawn from 
various disruption scenarios could help emergency services agencies in identifying appropriate 
strategies to improve the efficiency of late evacuation response. 

Keywords: Bushfire, Late Evacuation, Multi-Objective Optimisation, Emergency 
Management

1 Introduction 
Bushfire is one of the most prevalent natural hazards in Australia. A bushfire is “a freely 
burning, uncontrolled and unplanned fire, which needs to be extinguished” (CFA Definitions 
2012). In recent years, there has been a substantial increase in the number of bushfires around 
the world (Cameron et al. 2009). Global warming and climate change have potentially 
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increased the risk of bushfire, particularly in peak seasons in many countries including 
Australia (Teague et al. 2009), USA (Westerling et al. 2006), Canada (Podur et al. 2002) and  
Russia (Kharuk et al. 2007).

Bushfire is a threat to communities, particularly those who live in bushfire-prone areas. Every 
year, bushfires (also referred as wildfire) cause significant financial and human losses (Butry 
et al. 2001). Although direct and indirect costs are difficult to estimate, there are three cost 
components: loss of human life and injury; economic costs; and damage to the ecosystem. The 
Bushfires Royal Commission has estimated the cost of the Black Saturday disaster to be $4.4 
billion, along with 173 lives lost (Teague et al. 2009). Due to the significance of bushfire hazards 
to Australia, much research is conducted in a variety of research areas including environment 
impact assessment, risk mitigation, community resilience and cost estimation (Cameron et al. 
2009; Church and Cova 2000; Ellis et al. 2004; Lindell and Perry 2003). However, the late 
evacuation of residents from bushfire-affected areas has attracted much less research attention 
in Australia until recent years. 

Applications of innovative optimisation techniques and analytics would help fire agencies in 
improving the operational response to bushfire emergency. This will in turn help saving lives 
and prevent injuries as well as reducing economic costs through a better utilisation of scarce 
resources. One of the key challenges in bushfire events is the operational capacity to design an 
efficient and effective evacuation plan from bushfire-prone areas to shelters within a restricted 
time windows with finite resources. Bushfire tends to disrupt the emergency supplies and 
transportation networks, which in turn makes the transfer of late evacuees difficult. For 
example, bushfire propagation rate increases twice with every 10-degree increase in slope and 
the bushfire spread doubles with a small change in wind speed. The temperature reaches to 
800-degree celsius during a bushfire (Whittaker et al. 2009), and the flames crown attained a 
height of about 30 meters (Victorian Bushfires Royal Commission Report 2009). As in the case 
of the Black Saturday bushfire in Victoria, late evacuation has proven to be extremely 
hazardous and lethal (Victorian Bushfires Royal Commission Report 2009). Late emergency 
evacuation in dynamic bushfire conditions, therefore, requires a robust modelling and analytic 
capability that consider the simultaneous optimisation of multiple objectives and constraints. 
Such decision support tool should be capable of dynamically selecting a shelter, assigning each 
evacuee to a shelter, maximise spatial coverage, and determine the optimal routing. Thus, it 
involves solving four key problems: allocation, assignment, spatial coverage and routing. 

Designing of a robust system is dependent on human behaviour and response to a threat. Thus, 
the decision to stay or leave early in a bushfire is a critical to community safety. People those 
expose to fire risk may decide to leave early, or take shelter-in-home or shelter-in-refuge (Cova 
et al. 2011). Obviously, early evacuation is the safest option to protect life. Nevertheless, there 
are some residents who prefer to stay and protect their properties. There are also those who 
leave at the last minute (Victorian Bushfires Royal Commission Report 2009). The late 
evacuation exposes the evacuees to radiant heat, which has been found a key factor in human 
fatalities (Teague et al. 2009). Late evacuation often increases the risk of injury or death.

Studies that have contextualised the bushfire emergency evacuation considering Australian 
bushfire emergency policy context to tackle the key operational challenges including timely 
evacuation, shelter assignment and routing are rather rare (Shahparvari et al. 2015a; 
Shahparvari et al. 2015b). This research bridges the gaps by developing a reliable mathematical 
model, which aims to maximise the number of evacuated late evacuees within the restricted 
time windows (clearance time) via shortest risk routes. The proposed model also is capable of 
allocating the optimal utilisation of the available resources such as accessible shelters and 
vehicles. This model has been implemented as a two-step framework with the application of 
the -constraint method. The main contributions of the model are summarised as follows:

Alignment to provide evidence to assess the “Stay or Go recommendation” policy, 
which has been developed based on many years of past experience. 
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The formulation of a novel capacitated mixed-integer multi-objective optimisation 
problem with time windows which is capable of generating and enhancing the 
requirement of quick responses and prioritising shipments during emergency 
evacuations.

The ability of the model to handle complex capacitated multi-location, multi-vehicles 
types under multi-time windows problems using a multi-objective optimisation 
modelling framework.

The application of the analytical tool to a real-world case study a bushfire. 

The remainder of the paper is organised as follows. The next section reviews relevant literature 
in the area of bushfire evacuation planning. Then, the problem statement is described followed 
by problem assumptions. The developed mathematical formulation and the solution approach 
are presented in the subsequent sections. The effectiveness of the model will be assessed and 
discussed by implementing a range of bushfire scenarios. The paper concludes with presenting 
a summary of the key findings.

2 Literature Review 
Evacuation is the process of “relocation from areas at risk to areas of greater safety” 
(Southworth 1991; Zel
transferring people from assembly points to safe shelters within the close vicinity. Evacuation 
is a complex process, which entails operations required across different phases (Figure 1). 
Evacuation process during a disaster can be categorised as pre-disaster, during-disaster and 
post-disaster phase. The pre-disaster is the initial phase of detecting an incident and make the 
decision to stay or leave before the disaster begins to threaten people’s lives. During-disaster 
phase includes five stages that should be carried out. It in this phase when risks and potential 
threats in specific areas are estimated by decision makers prior to issuing an evacuation order 
(Lindell 1995). In Phase III, the communities at risk are alerted with early warning. In phase 
IV, a decision to stay or evacuate is made by residents, which leads to the preparation for 
evacuation. In the next phase, transfer of people to safe areas or shelter occurs. This phase 
implies clearing of affected people from hazardous zones. 

In the penultimate Phase, people at risk are transferred to shelters outside of hazardous areas. 
As shown in Figure 1, the response time (clearance time), which includes phase five and six, is 
one of the main critical factors that plays a key role in evacuation processes. This study 
therefore focuses on these phases to enhance the evacuation response time. At last, and in the 
third category as post-disaster processes and at the final phase, verification and auditing are 
carried out to ensure that evacuees are evacuated to safe places.

Evacuation 
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order/
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public via 

transmitters

Incident
detection

Preparation 
for

evacuation

Movement 
through

evacuation 
network
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Pre-disaster During-disaster (Self-evacuees tend to by-pass these steps) Post-disaster

Figure 1 - Evacuation Phases (Source: adapted from Lindell, 1995)

In the event of bushfire, residents’ responses can be categorised into three groups; those who 
leave early; those who stay at their properties (Shelter in Refuge) and those who decide to 
shelter in the refuge. Cova et al. (2011) referred these decision-choices as the ‘protective 
actions’ (Figure 2). Bushfire evacuation can be mandatory, recommended, or voluntary. In 
most countries, evacuation during a bushfire is compulsory. In Australia and southern parts of 
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France a stay or go choice is given to residents except in the case of a severe bushfire (Arnol 
2007). People have the choice to leave early, or stay at home and protect their properties 
(Shelter-in-place). Some residents with disability, elderly, and parents with children, however, 
require additional support; whilst others might not have access to a personal vehicle. 

Evacuate 100% (e)

Shelter in Refuge 100%
(r)

Shelter in Place 100%
(p)

e+ r + p =100%

0% 0%

0%

Figure 2 - Protective Actions Ternary Diagram (source: Cova et al., 2011)

In Australia, the “Stay or Go” policy transfer the responsibility and decision of staying and 
protecting the property or leave early to individuals. The current Australian ‘Stay or Go’ policy, 
which is a replacement of previous plan ‘prepare’, stay and defend, or leave early’, has 
strategically design to reduce risk to government agencies by making people responsible for 
their actions (Paveglio et al. 2008). One key limitation of this policy in Victoria is the lack of 
consideration for late evacuees who are not well integrated into the evacuation procedures 
(Teague et al. 2009). The policy emphasizes the importance of timely evacuation and 
condemned the policy of prepare and protect. An early evacuation is desirable and is most 
preferred option to minimise risk in a bushfire.  Similarly in the United States, the “Ready, Set, 
Go” (RSG) policy is in use, which provides information on when and how to prepare and 
evacuate or take refuge in a shelter. People who decided to stay and protect their properties in 
an extreme weather required an efficient and effective emergency response. Hence, planning 
and resourcing are the key issues in emergency management.

The evacuation problem has traditionally been solved as an optimization problem that 
minimises/maximises a certain objective function subject to supply, demand and time 
constraints. Numerous objective functions have been formulated in the literature with the goal 
of expediting the evacuation process. In comprehensive research, Cohon (2004) identified 
some objectives, such as clearance time, the number of an evacuee, and resources, which 
should be considered in decision making. While the early evacuation occurs by car (Pel et al. 
2012), however, the late evacuation has to be carried out using high-capacity vehicles such as 
buses to transfer people to shelters (Vuchic 2005). Although, real-time location-allocation and 
routing of late evacuees to shelters are subject to a range of other objectives, including 
capacities, distances, and susceptibility or vulnerability to the disaster, which should also be 
simultaneously optimised while operating within a range of stringent constraints. (Li et al. 
2012; Negreiros and Palhano 2006). Nevertheless, the most challenging objective of 
emergency situation management is cited as the quick and safe transportation of late evacuees 
to shelters within a very tight time window. To deal with such a problem, the key questions 
required to be tackled including when, where, and how to safely transfer the late evacuees from 
assembly points within a short time window under stringent conditions? 

Real-time assignment of evacuees to a shelter is affected by a range of factors, including its 
capacity, distance, and susceptibility or vulnerability to the hazard (Li et al. 2012; Negreiros 
and Palhano 2006). Furthermore, other objectives should also be simultaneously optimised 
while operating within a range of constraints. Allocation of shelters, in terms of optimal 
location, number and capacity, is critical to emergency planning (Alexander 2000). A number 
of studies have developed mathematical formulations to discuss transit-based evacuation 
under both unpredictable (e.g., earthquake; see (Sayyady 2007)) and predictable (e.g., cyclone; 
(Chan 2010; Margulis et al. 2006)) disasters. In addition, several studies consolidated 
location-allocation problem with routing problem (Chan 2010; He et al. 2009; 
Mastrogiannidou et al. 2009). Concerns over unplanned evacuation resources such as lack of 
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rescue vehicles, shelters availability that may be a reflection of uncoordinated pre-emergency 
planning. Furthermore, sufficient attention has not been given to the integration of transit-
based systems with the emergency evacuation location-allocation in the frame of OR/MS 
(Operations Research/Management Science). The focus of this research is therefore on 
analysing the operational aspects of the late evacuation process, that is, the transfer of people 
from assembly points to the designated shelters.

In conclusion, there are only a few studies that have employed multi-objective optimisation 
models for late evacuation problems (Shahparvari et al. 2015a; Stepanov and Smith 2009). The 
majority of studies have focused on minimising the total evacuation time without considering 
other objectives such as resource utilisation or area coverage. Therefore, this study aims to 
apply an optimisation approach to deal with the multi-objective evacuation problem to 
generate the possible solutions to improve emergency evacuation planning in case of bushfires.

3 Mathematical Formulation 
A typical evacuation problem contains various objective functions, uncertainties and 
constraints, which makes the multi-objective programming method much more appropriate. 
Hence, in this paper, a Multi-Objective (MP) method is utilised to formulate the problem. 

3.1 Modelling Assumptions 

For initialising model parameters, the following assumptions are set out to represent bushfire 
emergency evacuation conditions. 

Shelters are pre-designated by Country Fire Authority.

Number and capacity of shelters and rescue vehicles are finite.

The late evacuee population in each assembly point are known from real population 
data.

Evacuees can be transferred to more than one shelter.

Access to some routes is restricted by bushfire.

The transfer time between assembly points and shelters is known and computable.

3.2 Notations  

i Index for assembly points (townships and origins);

j Index for candidate shelter areas (safe places or destinations);

k Index for vehicle types;

I Set of assembly points;

J Set of candidate places of shelters;

3.2.1 Parameters 

Capj Capacity of shelter j;

Di Population of people (late evacuees) in assembly point i to be evacuated;

j Binary variable; 1 if shelter j is accessible, 0 otherwise;

ij Binary variable; 1 if road is not disrupted between assembly point i and shelter j, 0 
otherwise.

tij Estimated transportation time between assembly point (township) i and shelter j;

p Total maximum number of required shelters;

TVk Total maximum number of vehicle type k;

VCk Capacity of vehicle type k;
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TWi Time window for evacuation people from assembly point i;

Qk Usage cost of vehicle type k;

W Weighted sum coefficient

3.2.2 Decision Variables 

Xij Denotes the number of affected people transferred from the assembly point i to the 
designated shelter j

Denotes the number of rescue vehicles type k that is required to be utilised in order to 
transfer the evacuees from assembly point i to shelter j.

3.2.3 Auxiliary Decision Variables 

Yj (Binary variable) If it is possible to transfer the evacuees to the designated shelter j it 
takes 1 and 0 otherwise. 

Sj (Binary variable) If a candidate shelter j is assigned to serve the evacuees, it takes 1 and 
0 otherwise.

3.3 Objective Functions 

The following two objective functions are optimised simultaneously subject to constraints on 
resources and network structure: 

To maximise the number of people transferred to a designated shelter within the 
defined time windows 

To minimise usage of number of available resources (i.e. the number of assigned 
shelters and rescue vehicles).

3.4 Mathematical Model 

The developed formulation as a multi-objective model comprises two objective functions and 
a range of constraints as follows: = (1)

The first objective function shown in (1), maximises the number of evacuees assembled in 
assembly point i which must be transferred toward shelter j in minimum time and across the 
shortest route.   =  + (2)

The second objective function (2) minimises total number of designated shelters and rescue 
vehicles. This goal is set to decrease expenditures of allocating new facilities and to distribute 
evacuees by utilisation of minimum available shelters and rescue vehicles. w1 and w2 as 
auxiliary coefficients, are utilised as a weighted sum method and are selected in the range of 
(0, 1) to represent weight of impression for each parameter (i.e. shelter and vehicle).  

3.5 Constraints 

The objective functions are subject to the following constraints:

(3)

Constraint (3) ensures that the number of allocated shelters is less than number available 
shelters.   j (4)

Constraint (4) determines if it is possible to assign a shelter (Yj) among all possible candidate 
places (Sj).   j (5)
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Constraint (5) ensures that people at assembly point i would be transferred to shelter j, only if 
the shelter j is accessible and available. Also, this constraint measures that transferred people 
to shelter j does not exceed the shelter capacity.   i,j (6)

Constraint (6) defines that people at assembly point i can be transferred to shelter j if the 
connective road between i and j is accessible and available. (2 ×  )   i,j (7)

Constraint (7), as time window constraints expresses that total evacuation time (2×tij) of each 
assembly point i should not be more than its available time window considering available 
rescue vehicles and their limited capacities.

k (8)

Constraint (8) measures the numbers of allocated rescue vehicle type k to transfer people from 
each assembly point i to shelter j to not exceed the total number of available vehicles.  i (9)

Constraint (9) restricts the number of transferred peopled from assembly point i to shelters j
to their capacities. , 0 i,j,k (10)

Constraint (10) expresses the negative numbers could not be considered for the integer 
variables.,  = 0  1 j (11)

Constraint (11) restricts the assignment of shelters and transferring issues to binary values, as 
Sj, Yj are either allocated or not.

4 Case Study: Lake Eildon National Park  
The problem is formulated and applied to a real case study of a bushfire prone area in 
Northeast of Victoria in Australia. The area of study contains six townships (Eildon, Thornton, 
Mainton, Alexandra, Acheron, and Bonnie), which are located near the Lake Eildon national 
park. With a total population of about 1036 people, this hilly region is thus not densely 
populated.  Based on the analysis carried out by CFA, approximate one-third (33%) of residents 
were affected by the Black Saturday Bushfires, majority of which could be deemed late evacuees 
(Teague et al. 2009). Four potential safer townships (i.e. Taggerty, Merton, Yarck, and Yea) are 
nominated by CFA to shelter late evacuees during an emergency evacuation situation. Shelters 
are assumed to have a finite capacity to accommodate the evacuees (Table 1) (e.g. the Merton 
public cricket ground oval can shelters 450 persons).

Real transportation network and travel time between the townships are computed. Therefore, 
the travel time between any two nodes the network are calculated based on real distances and 
travel speed zones. Shelters availability and roads connectivity are affected by the direction 
and path of bushfires. Hence, time windows are defined to prioritise the bushfire arrival time. 
Time windows are calculated on the basis of wind direction and distance between bushfire 
ignition point and townships using the average bushfire spread rate, which is approximately 
20 kilometres per hour (Teague et al. 2009). Also, two different types of vehicles (Bus can carry 
40 and Van 10 people) are incorporated. For the base case, 20 buses and 30 vans are available 
to be assigned to gain the optimal routing process. Also, to balance vehicles assignment, a 
usage cost for each type of vehicle is considered as 100 financial unit for bus and 40 for the 
van. 
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Townships
[i]

(Origins)

Population 
[  ]

(Numbers)

Time Windows
[  ]
(Mins)

Shelters
[j]

(Destinations)

Capacity 
[ ]

(Numbers)

Traversal Time
[ ]

(Mins)     
Bonnie 171 150

 Taggerty 350  28.8 14.4 24.6 31.2 
Mainton 29 90

 Merton 450  18 27.6 17.4 18 
Alexandra 398 105

 Yarck 500  10.8 20.4 10.2 10.8 Acheron 96 120  Yea 500  4.8 26.4 16.2 16.8 
Thornton 121 75

 7.2 28.2 18 18.6 Eildon 221 30  15.6 34.8 24.6 25.2

Table 1 - Summary of Inputs and Assumptions

4.1 Development of Bushfire Scenarios 

Three comprehensive What-IF bushfire scenarios are considered. It ranges from a simple 
through to more complex bushfire scenarios, as described in Table 2.

Bushfire Scenario Intensity Wind Direction and Road Conditions Road Disruptions
Bushfire Scenario A Low South-eastern to north-western wind direction 

spreads the bushfire and disrupts 2 roads 
   (Northern Mainton Rd)    (Back Eildon Rd)

Bushfire Scenario B Medium Wind direction changes to East – west and 
restricts 4 main roads 

   (Northern Mainton Rd)   (Southern Mainton Rd)   (Goulburn Valley Hwy)   (Back Eildon Rd)

Bushfire Scenario C High Bushfire Spotted in three different points and as a 
result of a north-eastern to south-western wind 
direction, 7 roads are disconnected

   (Northern Mainton Rd)   (Maroondah Hwy)   (Southern Mainton Rd)   (Mainton Rd)   (Taggerty-Thornton Rd)   (Goulburn Valley Hwy)   (Back Eildon Rd)

Table 2 - Bushfire What-IF Scenarios

Also, Figure 3 illustrates the bushfire scenarios accompanied by bushfire-spread isochrones. 
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Figure 3 - Bushfire Scenarios

5 Solution Approach 
The multi-objective mixed-integer problem solutions are not typically straightforward. In 
other words, there is not generally a feasible absolute optimal solution enables to optimise all 
objective functions concurrently (Ehrgott 2006). To take such a problem, Pareto-optimal 
solutions have attracted much more attentions that typically referred to as ‘‘a posteriori’’ or 
‘‘non-dominated solution generation’’. Pareto front optimal solutions are sort of common 
MOIPs (Multi-Objective Integer Problems) solution approaches that attempt to optimise the 
main objective by degrading at least one of the other objectives. 

The Epsilon constraint method is sort of common Pareto front solution techniques, which has 
been widely employed to solve similar mixed integer multi-objective problems (Vira and 
Haimes 1983). In this approach, the main objective of problem out of n is chosen as to be 
optimised while remaining objectives are converted into form of inequality constraints by 
assigning allowable levels of epsilon as an upper or lower bound given target values. All other 
objective functions will be minimised while are constrained to the first objective function value. 
Therefore, this method provides a vast range of flexibility for the decision makers by varying 
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the lower or 
mathematical terms, decision maker let fn(x) be the objective function selected among M 
objective functions to be optimised, the multi-objective problem is transformed as follows: ( ) ( )   p {1,2,…,M} (12)

Where S is feasible solution space. Therefore and given all of these, the Epsilon constraint 
approach was chosen as an efficient method to solve the research problem.

In this paper model, the main objective is set to save more human lives and evacuate more 
people within the time windows. Therefore, the first objective f1 is chosen as the main objective 
to be optimised, while, f2 is converted into a hard constraint by the application of the -
constraint method. Respectively in the next step, the second objective function will be 
minimised. 

Step 1: This step aims to evacuate the entire evacuee population by minimising the number of 
assigned shelters and rescue vehicles within the bushfire-prone areas. Hence, the 
model will solve considering the objective function f2 as hard constraint of covering the 
entire evacuee population. The output of this step determines preliminary minimised 
values for parameters of Sj as number of required shelters and  as number of 
required rescue vehicles that required evacuating all the evacuees. Respectively, these 
initial values will be used as an upper bond in the next step to calculate the optimal 
values. The model formulation will be converted as follows: ( ) (13)

Subject to Constraints (3, 4, 5, 6, 7, 8, 10, 11)  =  i (14)

Step 2: This step optimises the initial values for allocated resources while maximising the 
number of evacuated people. Hence, values for number of required shelters (Sj) and 
rescue vehicles  ( ), which were obtained from the previous step will be used as a
upper bond for total number of shelters (p) and total number of available vehicle type 
k (  ). In reality the value of p and  are usually known and given by the fire agencies 
based on maximum available budget, resources and capacities.  It is obvious that by 
given the preliminary values for these parameters, the first step is not necessarily 
required. So the preliminary values of the aforementioned parameters are set in the 
constraints. Also, penalty value is considered to adjust the constraints (equation 12). 
Consequently, the proposed multi-objective model is converted into the following 
single-objective problem: (x)

Subject to  ( )  (15)

The value of  is determined as follows:=   . (16)

Here [0,1] indicates the maximum percentage of total penalty. In this problem, the 
value is selected randomly in the range of (0.4, 0.9) at the discretion of decision 

makers. Besides, value of p is set by multiplying by the initial value of Sj. Respectively,
is calculated by multiplying of by the initial value of   .

6 Results and Analysis 
The main aim of this section is to demonstrate how the proposed methodical formulation can 
be utilised to improve the performance of the evacuation process in an emergency situation to 
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save lives of more human beings. Therefore, a real case study in three bushfire scenarios was 
comprehensively examined and presented to demonstrate the problem methodology. Also, 
Sensitivity analysis against changing the key parameters such as number of required vehicles 
and number of assigned shelters is provided. Furthermore, the shelter capacity usage in each 
scenario is investigated is this section. The model was implemented using the CPLEX solver 
12.6. According to the proposed solution approach, the outputs are as follows:

Step 1: Preliminary number of available resources (shelters and rescue vehicles)

The objective value for the first step solution is 87.9 that represents the minimised cumulative 
value of assigning facilities and resources to evacuate the evacuees entirely. Also, the 
preliminary output of the solving model in this step indicates that all 4 available shelters (j1, j2,
j3, and j4) should be utilised to cover the evacuation demand of late evacuee population within 
the time windows. Besides, results show that at least 23 rescue vehicles including 13 Buses and 
10 Vans are required to transfer all the evacuees. In this case study, the optimal output was 
obtained by assuming 0.95 for parameter w1 and 0.05 for w2. Obviously the higher assigned 
value for w lead to stronger impact of the associated parameter in the model.

Step 2: Optimal number of shelters, vehicles and routing 

6.1 Optimal evacuees’ transportation to the assigned shelters 

In this step, the model is solved while is constrained to the preliminary values of required 
resources values that were achieved in the first step. Table 3 represents the optimal distribution 
of evacuees within the accessible routes in transportation network in each scenario. 
Respectively, Table 3 represents the optimal assignment of the required vehicles followed by 
the number of required trips to evacuate the evacuee population. 

Bushfire Scenario A  
Low Intensity

Bushfire Scenario B  
Medium Intensity

Bushfire Scenario C 
High Intensity  (Evacuated people)   (Evacuated people)   (Evacuated people)             0 100 71 0  0 100 0 71  0 0 100 71 0 29 0 0  29 0 0 0  29 0 0 0 100 100 100 98  100 100 100 98  100 100 100 98 96 0 0 0  0 0 96 0  0 0 96 0 52 0 0 69  100 0 0 21  0 0 41 80 76 0 97 48  100 0 21 100  100 0 97 24

U
se

d
 

C
ap 324 229 268 215

U
se

d
C

ap 329 200 217 290

U
se

d
 

C
ap 229 100 434 273

 (Shelters Assignment)  (Shelters Assignment)  (Shelters Assignment)            
1 1 1 1 1 1 1 1 1 1 1 1

Table 3 - Optimal Evacuation Plan to the Assigned Shelters

As it is shown in Table 3, Eildon (i6) has the minimum time window and people should be 
evacuated within 30 minutes before bushfire reaches there. Therefore, in bushfire scenario A, 
Merton (j2) is not accessible and there are no transportation to there. The optimal plan for this 
township is to transfer 76 people to Taggerty (j1), 97 people to Yarck (j3) and the rest of 48 
evacuees to Yea (j4). In scenario B, bushfire intensity is medium and Goulbourn valley highway 
and Mainton road also are blocked. Regarding to the new road disruptions and scenario’s 
constraints as time windows, shelter capacities and vehicles availability, the optimal 
emergency evacuation plan is to evacuate 100 people to shelter j1, 21 people to j3 and rest of 
100 people to shelter (j4). Respectively, the optimal evacuation routing plans for other 
hazardous townships are presented in Table 3. Also, Figure 4 visualises the optimal emergency 
evacuation routing and distribution of late evacuees in each scenario.
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Figure 4 - Optimal Evacuation Routing Plan

6.2 Optimal number of assigned rescue vehicles and trips 

Respectively, Table 5 represents the optimal assignment of vehicle and number of trips that 
are required to evacuate the late evacuee population. For example, in scenario A, Eildon has 
the shortest time window. Therefore, 2 buses are assigned to transfer 76 evacuees from Eildon 
(i6) to Taggerty (j1). Accordingly, 97 people are transported to Yarck (j3) by 4 buses in one-way 
trip and the rest of 48 evacuees are evacuated by assignment of 2 buses and 1 van traveling 1 
and 5 times between Eildon (i6) and Yea (j4) simultaneously to transfer Eildon population 
within the 45 minutes predefined time window. As it can be realised from the results, due to 
the predefined route disruption in the Northern Mainton road, evacuees could not be 
transferred to Merton (j2). In the scenario B, 100 people are evacuated to Taggerty (j1) by 
assignment of 3 buses trip 3 times while 1 bus is assigned to serve evacuation process from i6

to j3.
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Bushfire Scenario A
Low Intensity 

Bushfire Scenario B
Medium Intensity

Bushfire Scenario C
High Intensity (Number of Vehicles)  (Number of Vehicles)  (Number of Vehicles)             0 2V 1B 0  0 2V 0 1B  0 0 1B 1B 0 2V 0 0  2V 0 0 0  2V 0 0 0 1B 1B 2V 1B  1B 1B 2V 1B  1B 1B 2V 1B 1V 0 0 0  0 0 1B 0  0 0 1B 0 1V 0 0 1B  2V 0 0 2V  0 0 2V 1B 2B 0 4B 2B  3B 0 1B 4B  2B 0 4B 1B

1V 1V 1V
Number of Vehicle Trips Number of Vehicle Trips Number of Vehicle Trips             0 10 2 0  0 10 0 2  0 0 3 2 0 4 0 0  2 0 0 0  4 0 0 0 3 3 10 3  3 3 10 3  3 3 10 3 10 0 0 0  0 0 3 0  0 0 3 0 6 0 0 1  10 0 0 4  0 0 6 2 2 0 4 2B  3 0 1 1B  2 0 4 1B

5V 10V 3V

Table 4 - Optimal Assignment of Rescue Vehicles and Number of Trips (V= Van, B = Bus)

Finally, due to limitation in number of available resources and route disruptions, combination 
of 4 buses and 1 van are assigned to evacuate the remaining 100 evacuees to Yea (j4). In the 
same way for Eildon at the scenario C and due to severe road disruptions and longer traversal 
times to reach the accessible shelters, the optimal vehicle assignment is to transfer population 
by 6 buses and 1 van towards the defined shelters. 

Slightly further, Thornton (i5) evacuees must be evacuated within 75 minutes to the safest and 
closest shelters. In the scenario A, this process is planned to be fulfilled by designation of one 
van trips 6 times transferring 52 evacuees to shelter (j1) plus 1 bus transferring 69 people to 
shelter (j4) trips 2 times.  

While in the scenario B, the optimal vehicles assignment is to consider 2 vans travel 10 times 
between i5 and j1 and 2 vans travel 4 times between i5 and j4. Interestingly, in the scenario C, 
all the evacuees are evacuated to shelter j3 and j4 by the application of 2 vans travel 6 times and 
1 bus travels 2 times to optimise the number of the utilised vehicles within the limited time 
windows. The results indicate that Mainton evacuees have more time and are evacuated by 
assigning fewer vehicles that travel more. Figure 6 illustrates a better representation for the
optimal emergency evacuation vehicle assignment and number of trips in each scenario.  
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Figure 5 - Number of Vehicles and Trips for Evacuation

6.3 Objective Function (Number of evacuated people) 

As the results show (Table 5), based on predefined bushfire scenarios, all the evacuees could 
safely be transferred to the safe shelters. Solving the model in the first step, results 88.8 for the 
objective function in scenario A. In scenario B, the first objective function value equals to 91.7 
while due to bushfire conditions, the objective function value in scenario C is increased to 95.8. 
The increase in the preliminary objective values is caused by decreasing the transportation 
network size aftermath of bushfire propagation. In all the scenarios, however, the final 
objective value is 1036 and indicates that all the 1036 late evacuees in hazardous townships are 
safely routed and sheltered by optimal assignment of the available resources.

6.4 Number of Required Vehicles 

The results of the first step solution of ‘scenario A’ indicates that minimum 13 buses and 10 
vans are required to transfer the entire evacuee’ population. However, the proposed figures are 
not necessarily optimal. Hence, in the second step and by the application of the -constraint 
method, the number of required vans is decreased to 9 vans to optimise the number of available 
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resources. In the same way in scenario B and C, the total numbers of assigned vehicles are 
optimised. For example, the total optimal number of required buses in ‘scenario B’ is 13 buses 
while there is an increase in number of vans to mitigate the impact of extra road disruptions 
and cover the evacuation demands. Accordingly, in scenario C, more vehicles are assigned to 
speed up the evacuation process. 

Despite Eildon (i6) is ranked as the second township in terms of the number of evacuees, the 
highest number of the vehicles in all scenarios are assigned to Eildon (i6) to evacuate people 
regarding to its short time window and long distance to nearest accessible shelters. Therefore, 
the model has assigned more vehicles to accelerate the evacuation process in Eildon. 

Bushfire Scenario 
A

Bushfire Scenario 
B

Bushfire Scenario 
C

First Step Objective Value 88.8 91.7 95.8
First Step TV 13 Bus, 10 Van 14 Bus, 10 Van 15 Bus, 12 Van
Optimum Objective Value (Evacuated 
People) 1036 1036 1036

Uncovered People 0 0 0
TVk Optimum Number of Required Vehicles     13 Bus, 9 Van 13 Bus, 11 Van 14 Bus, 7 Van

Table 5 - Objective Functions Results

6.5 Number of Required Shelters 

Figure 6 provides the results of sensitivity analyses. Results indicate that due to pre-
determined evacuation time windows, road blockages, distances and capacities, at least 4 
shelters are required to be assigned to evacuate all evacuees in all the scenarios. Obviously, 
assigning more shelters increases the total objective function value. 

Figure 6 - Number of Required Shelters

Figure 7 depicts the percentage of usage capacity of the designated shelters for each scenario. 
In scenario A, due to the close distance to the townships, most evacuees are sheltered at 
Taggerty (j1). However, considering the increase in number of road disruptions in scenario B, 
the usage percentage of this shelter has decreased to 49.43% and evacuees are transferred to 
other shelters. Finally, in the scenario C, most evacuees are evacuated to Yarck (j3). The 
capacity usage of other shelters is shown in Figure 7.
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Figure 7 - Shelters Capacity Usage

6.6 Distribution of evacuees to assigned shelters 

In the scenario A, people are relocated to the assigned shelters normally, however, due to 
distance, limited time windows of assembly points and the Northern-Mainton road disruption, 
most evacuees (31%) are evacuated to Taggerty (j1). In the scenario B, Goulburn Valley highway 
disruption has impacted the transportation distribution and 353 people (34%) are planned to 
be transferred to Yea (j4) to maximise evacuated people in evacuation process (Figure 8).

Finally in scenario C, severe bushfire conditions have heavily disrupted the transportation 
network. Beside disruptions in the two arterial highways (Maroondah and Goulburn Valley), 
Taggerty-Thornton road as the only direct linkage to Taggerty (j1) is disrupted. Consequently, 
most late evacuees (42%) are evacuated to Yarck (j3) instead of Yea (j4). Nevertheless, regarding 
limited capacity of Yarck (j3) rest of the evacuees was planned to be transported to the closest 
available shelters such as Yea (j4) and Taggerty (j1). Due to Maroondah highway blockage and 
the shortage of time, only 10% of population could be evacuated to Merton (j2). 

Figure 8 - Distribution of Evacuees to the Assigned Shelters

7 Conclusion 
This paper developed a novel optimisation model to enhance the capacity of the emergency 
agencies to response to a bushfire. The model incorporated the key parameters and 

Taggerty Merton Yarck Yea
Bushfire scenario A

Low intensity 92.57% 50.89% 53.60% 43.00%

Bushfire scenario B
Medium intensity 49.43% 50.89% 55.60% 71.20%
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High intensity 65.43% 22.22% 86.80% 54.60%
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assumptions to adjust the potential impact of a range of constraints such as time window, road 
disruption and resource capacity. Using a real case study in Victoria, this model has 
dynamically optimised emergency evacuation routines including evacuation of late evacuees, 
dynamic selection of routing and, vehicle assignment and shelter allocation. Timely 
evacuation, distance to the nearest accessible shelters, and the number and capacity of 
required rescue vehicles are the key decision criteria to formulate the problem. The problem is 
formulated as a mixed-integer multi-objective linear programming model, which maximises 
the number of evacuees from towns at a higher risk to safe shelters by minimising available 
shelters and vehicles. The -constraint method is applied using a three-step solution 
framework to solve the model. The solution method firstly prioritised the objective functions 
and then converted the main model to two sub-models to hierarchically optimise the objective 
functions. Using three bushfire scenarios, the model optimises the number transferred 
evacuees, vehicle utilisation, shelter allocation and optimal routing. These scenarios include 
different wind directions influence bushfire propagation direction, speed and intensity to 
disrupt egress links. 

The results show that all late evacuees (a total of 1036) can be evacuated within the time 
window assigned to different townships and available resources. However, a minimum of four 
operating shelters are needed at all times to absorb the late evacuees in the area. With three 
shelters, 91 out of 1,036 people could not be evacuated. Five shelters, on the other hand, will 
add an additional capacity but will require additional financial resources whilst remaining 
underutilised. In all the scenarios, Yarck plays a key role in providing refuge to evacuees 
because of its centrality to serve the region. 

It is worth nothing that beside the evacuee’s protective decisions, evacuation time limitations 
and available resources, there are other factors that may affect the evacuation process. Among 
them, bushfire propagation risks, multiple roads and traffic congestions are most critical ones, 
which need to be considered in future research.
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