
AJIS Vol. 12, no. 1 September 2004

 18

SECURING XML DOCUMENTS

Charles A. Shoniregun
School of Computing and Technology,

University of East London,

Longbridge Road, Barking, Dagenham Essex, RM8 2AS, UK
E-mail: C.Shoniregun@uel.ac.uk,

cshoniregun@acm.org,

C.Shoniregun@infonomis.org.uk

Oleksandr Logvynovskiy
Business, Computing & Information Management,

London South Bank University,
Borough Road, London SE1 OLU UK
E-mail: a.logvynovskiy@lsbu.ac.uk,

a.logvynovskiy@infonomis.org.uk
ABSTRACT

XML (extensible markup language) is becoming the current standard for establishing interoperability

on the Web. XML data are self-descriptive and syntax-extensible; this makes it very suitable for

representation and exchange of semi-structured data, and allows users to define new elements for their
specific applications. As a result, the number of documents incorporating this standard is continuously

increasing over the Web. The processing of XML documents may require a traversal of all document
structure and therefore, the cost could be very high. A strong demand for a means of efficient and
effective XML processing has posed a new challenge for the database world. This paper discusses a

fast and efficient indexing technique for XML documents, and introduces the XML graph numbering

scheme. It can be used for indexing and securing graph structure of XML documents. This technique
provides an efficient method to speed up XML data processing. Furthermore, the paper explores the

classification of existing methods impact of query processing, and indexing.

Keyword: XML data, XML document, numbering scheme, securing graph structure

INTRODUCTION

The web and database communities have developed several approaches to resolve this problem. One

is to convert semi-structured data into structured. This requires a pre-defined schema and a non-

trivial translation of the data. Another option uses a partial schema to convert the XML data into

structured data, where a partial schema is extracted from the data by using data mining techniques.

Data that does not fit into this schema, will be stored and queried separately.

An XML query combines searching by value and structure. The structure search incorporates

navigating through relationships among the elements. The major difficulties of the structure search

are full XML document traversals and presence of cross-references that may require a closure

computation. As the costs of these operations are significantly high, it is especially important to

employ suitable indexes to speed up the searching operations. The processing of XML documents

may require a traversal of all document structure and, therefore, the cost could be very high

(Logvynovskiy and Lü, 2003). A strong demand for a means of efficient and effective XML

processing has posed a new challenge for the database world.

RELATED WORK

Within XML databases there are usually two kinds of indexes: value (data) indexes and structure

(path) indexes. Value indexes deal with coercing values and types of elements while structure

indexes are meant to provide access to nodes reachable through certain paths. The LORE project

uses four indexes: two for value and two for structure. The structure indexes were used to simplify

searching of paths of elements and provide access to parents of nodes. The value indexes were

designed for type coercion. LORE also uses a structure called DataGuide as a path index. DataGuide

(or strong DataGuide) is a concise labelled graph representing each path in the data exactly once.

DataGuide is used for query optimisation and as a path index, though it requires several index

lookups (McHugh, 1999), while the STORED system applies data mining techniques to discover a

AJIS Vol. 12, no. 1 September 2004

 19

partial schema and then converts semistructured data into relations. For the parts of the

semistructured data that do not fit the schema are stored separately in native form. Cooper et al

(2001) have considered an approach of indexing XML paths as strings. They use a structure, called

Index Fabric, analogous to a B-tree, to store paths encoded as stings. This technique has been

implemented over relational database management systems (DBMSs) and has shown better results

than traditional indexing schemes.

Li and Moon (2001) proposed the XISS system to index and store XML data. There are two indexes

used for value related data and three indexes used for structure related data. These three indexes

(value / structure related data) are element, attribute, and structure indexes. Along with the identifier

of each node these indexes contain a pair of numbers assigned to the node – extended traversal

number and size of the node, which are later used by a selection algorithm for computing of

ascendant-descendant relationship without tree traversal. Within the XISS system indexes are used

for speed up processing regular expression queries. A complex path expression is decomposed into

several subsequent simple ones, which are then processed by one of the three join algorithms. The

indexing scheme makes path query processing much faster than conventional algorithms. One

unique feature of this approach is able to determine the ancestor-descendant relationship quickly and

without traversal of the data tree. However, this scheme only deals with data that have tree-like

structure. This means the data model of XML documents has to be a tree, i.e. the branches of the tree

are independent, and there are no links between nodes of different branches.

The structure of the XML document can be considered as either syntactical or logical. In the first

case a document is treated as a tree, and in the latter case the document can be viewed as a graph.

However, only in some simple cases does an XML document have a logical tree structure where

each of its elements has exactly one parent element. In general, the logical relationship between

different elements within an XML document is a graph. Various models have been proposed with

little difference (McHugh, 1999). If directly applied the numbering scheme proposed by Li and

Moon (2001) on XML documents with graphs as their data models, requires significant additional

query costs. For example, 0b shows a query that involves selecting node 2 and all of its reference

nodes. If the numbering scheme proposed was used then 4 nodes need to be accessed. However, if

the reference links can be modelled by the numbering scheme, then only two nodes need to be

searched. Indeed, we have extended the numbering scheme to handle XML documents with various

types of data models, including graphs and trees.

Extended XML Numbering Scheme

Securing graph structure describes the motivation for introducing an extended numbering scheme

for XML documents and the details of the algorithms designed to maintain the indexes based on the

extended numbering graph scheme.

Each XML document consists of a number of elements. Each element has its name, attributes, and

content. Names of the elements are represented by tags, which are delimiters of the elements. The

ancestor-descendant relationship is represented as nesting of the descendant element within the tags

of the ancestor element. Due to the fact that the source data have a tree structure, where nodes of the

tree correspond to the elements and labelled arcs stand for tags. Since such a tree represents the

containment relationship between nodes of the document, it is referred to as a containment tree. An

example of XML data and its interpretation as a tree are shown on 0a, 1b, and 1c.
The containment tree does not cover all semantic relationships between nodes but additional

relations among elements can be defined through references or links. The name of the link describes

its semantic role and the value of the link contains a path to the referenced node. The path sequence

of names provides all ancestors of the node in the containment tree (W3C, 2001). Links are defined

as the content of value of the attribute or the element. Depending on whether one needs to deal with

the links as values or relations (arcs), the XML document can be treated either as a tree or as a graph

(Papakonstantinou et al., 1995)0.

AJIS Vol. 12, no. 1 September 2004

 20

a) b)

<DB ID=1>

 <B ID=3 Ref=7>

 <D ID=4 Ref=1>
 </D>

 <B ID=6>
 <C ID=7>

 </C>

 <D ID=8 Ref=5>

 </D>

</DB>

DB

A A

B

C

B D
D

R

R

R

1

2

4 6 8

7

3

5

с)

DB

A A

B

C

B D
D

1

2

4 6 8

7

3

5

Figure 1 XML source data and its tree and graph representations

Tree Numbering Scheme

First, let us consider the trees that are involved in the representation of our approach. The idea of

using numbering scheme to determine the ancestor-descendant relationship between any two nodes
of a tree was firstly introduced by Dietz (1982)0. Each node of a tree is associated with a pair of

numbers. These numbers are calculated during pre-order and post-order traversals of a tree. It is

stated that given nodes x and y and their pre- and post-order traversal numbers (nx pre, nx post) and

(ny pre, ny post) respectively, x is an ancestor of y (y is a descendant of x), iff nx pre < ny pre and

nx post > ny post. 0, shows an example of numbering of a tree. Such an approach to find the relationship

between nodes is very useful for indexing of XML trees, since it avoids tree traversals during query

execution. The pre- and post-order numbers of each node can be calculated and stored in a database.

There is one disadvantage of this scheme: when a node is inserted, removed, or updated, the

recalculation of all numbers will be required. To overcome this drawback, Dietz’s numbering

scheme was modified Li and Moon, to calculate and compare pairs of extended pre-order numbers

and ranges of descendants (size of sub-tree) of any two nodes within a tree. “Extended” means that

extra space are reserved for future possible insertions. Deletions do not require recalculation either,

increasing only the available space within the parent node range. The proposition was: given nodes x

and y and their extended pre-order and size numbers (nx order, nx size) and (ny order, ny size) respectively,

x is an ancestor of y (y is a descendant of x), iff nx order < ny order and nx order + nx size ≥ ny order + ny size.

The extended numbering scheme is applied to the same example shown on 0, b. For simplicity, each

node on the example is assigned to the pair (norder, norder + nsize) instead of (norder, nsize) – one can be

obtained from another through simple arithmetical transformation. A bar originating from each node

visually represents the range of the node.

AJIS Vol. 12, no. 1 September 2004

 21

1

2

4 6 8

7

3

5

a) b)

1

2

4 6

8

7 3

5

(1, 100)

(10, 40)

(15, 19)

(30, 35)

(50, 90)

(60, 75)

(65, 71)

(80, 87)

(1, 8)

(2, 3)

(3, 1)
(4, 2)

(5, 7)

(6, 5)

(7, 4)

(8, 6)

Figure 2 Numbering and extended numbering of the XML tree.

This numbering scheme was used to implement indexes in XISS project and had shown improved

performance for processing queries.

Graph Numbering Scheme

We consider the same XML document as a logical graph (it is illustrated in 0, a). The graph is

constructed based the numbered tree by interpreting links among its nodes. Such a numbering

system could not be able to explicitly specify the ancestor-descendant relationship. For example, the

link o4 → o1 would create a cycle in the graph that makes the node o1 an ancestor and a descendant

of the node o4 simultaneously.

1

2

4 6 8

7

3

5

a)

{(1, 100)}

{(10, 40)(1, 100)}

{(15, 19)(65, 71)}

{(50, 90)}

{(60, 75)}

{(65, 71)}

{(80, 87)(50, 90)}

b)

1

2

4 6

8

7 3

5

(1, 100)

(10, 40)

(15, 19)
(30, 35)

(50, 90)

(60, 75)

(65, 71)

(80, 87)
{(30, 35)
(1, 100)}

Figure 3 Numbering and extended numbering of the XML graph.

To resolve this problem, we propose a XML graph Numbering Scheme (XNS) that assigns a set of
order-range pairs to a node instead of the single pair. The numbering set {(nx

order, n
x
size)} of each

node x of the graph consists of:

• A primary numbering pair (nx order, nx size) that is assigned to the node x during extended

numbering of the XML containment tree. This pair is denoted as (n
x
x order, n

x
x size);

• A linked numbering pair is referred to as a primary numbering pair (ny order, ny size) of any

node y that is linked by x directly or indirectly (through its descendants). Such a pair is

denoted as (n
x
y order, n

x
y size).

The new linked pair (ny order, ny size) will be included into the numbering set only if it refers to the

range not reachable through any other pair in the set, i.e. interval [ny order, ny order + ny size] is not

contained in any interval [n
x
i order, n

x
i order + n

x
i size] from the set {(n

x
order, n

x
size)}. Note that the

AJIS Vol. 12, no. 1 September 2004

 22

numbering set of each node will never be empty and consists at least of one numbering pair, the

primary numbering pair. The ancestor-descendant relationship between two nodes is determined as

follows. Given nodes x and y and their numbering sets {(n
x
order, n

x
size)} and {(n

y
order, n

y
size)}

respectively, x is an ancestor of y (y is a descendant of x), iff ∃i, (n
x
i order, n

x
i size) ∈ {(n

x
order, n

x
size)},

that n
x
i order < n

y
y order and n

x
i order + n

x
i size ≥ n

y
y order + n

y
y size. In other words, there exist such a node i,

which is referenced by x and the ancestor of the node y. An example of the graph numbering is given

on 0, b. The primary pairs are shown in bold. Node o8 has the linked pair (50, 90), corresponding to

node o5 and representing the link: o8 → o5. Nodes o2, o4 have the linked pair (1, 100), corresponding

to node o1 and representing the reference o4 → o1 (node o2 as parent of o4). Lastly, node o3 has the

linked pair (65, 71), corresponding to node o7 and representing the reference o3 → o7. Nodes o2, o4

are ancestors of the node o3 but do not have the linked pair (65, 71) as they can reach node o7 via

their linked pair (1, 100). The root node o1 has not any linked pairs: every node of the graph is

reachable through its primary pair.

ALGORITHMS

This section describes algorithms designed to maintain index records for cross-references (links) of

XML graph. Each record of the index has such a form [ox, oy, (ny, sy), add_info], where oy, ny, sy are

the identifier, the extended pre-order, and the size of the node y corresponding to the linked pair

(n
x
y order, n

x
y size) of the node x. And add_info is the additional information stored in index, like IDs of

the parent, first children, sibling etc. For simplicity, we omit add_info in the following discussion.

The process of creating an index includes into two steps:

1. create the index of the XML graph nodes from the source data. This step will produce index

records for primary pairs of each node of the graph;

2. create index records for linked pairs of each node of the graph. The pseudo-code of the

algorithm is described in 2 below:

Algorithm 1 CREATE INDEX

Input: source XML data file

Output: index of the numbered XML tree

 //building tree index (records for primary pairs of each node)

1: for each input element of the XML file do

 generate id, extended pre-order and size numbers oi, ni, si

 add index record [oi, oi, (ni, si)]

 end for;

 //resolving links (records for linked pairs of each node)

2: for each node oi of the tree do

 for each link oi → oj do

 INSERT LINK oi, oj

 end for

 end for.

In the first step, the input source XML document is treated as a containment tree. The id o, the

extended pre-order number n and the size s are generated for each node. Then the record [o, o, (n, s)]

is stored in a table. This record corresponds to the primary pair of the node. In the second step, the

data is considered as a graph. Each node of the graph will be iteratively visited to resolve every

reference (link) of the node. The appropriate records for the linked pairs of the node will be

recorded. The Insert Link algorithm is designed to carry out the operations involved in this step,

which is described in Figure 3 a. Each of the nodes in the graph has its primary pair. Let us start with

adding link o3 → o7. First, ancestors records of the node o3 (including itself) are selected, including

A = {[o1, o1, (1, 100)], [o2, o2, (10, 40)], [o3, o3, (15, 19)]}. Then select the set of linked pairs of the

AJIS Vol. 12, no. 1 September 2004

 23

node o7: D = {[o7, o7, (65, 71)]}. For each ancestor a ∈ A, a record [a, o7, (65, 71)] is to be added in

the index, if the node o7 is not already a descendant of a. Thus the records [o2, o7, (65, 71)] and

[o3, o7, (65, 71)] are added, and no record for the node o1 will be added, since o7 is already its

descendant. Next, let we add link o4 → o1. The ancestors records of the node o4 (including itself) are

selected, including A = {[o1, o1, (1, 100)], [o2, o2, (10, 40)], [o2, o7, (65, 71)]}. Then select the set of

link pairs of the node o1: D = {[o1, o1, (1, 100)]}. For each ancestor a ∈ A, a record [a, o1, (1, 100)]
is to be added in the index, if the node o1 is not already a descendant of a. The records

[o2, o1, (1, 100)] and [o4, o1, (1, 100)] are added, and no duplicate record for the node o1 need to be

added. The record [o2, o7, (65, 71)] will be removed since it is overlapped by the record

[o2, o1, (1, 100)]. When we add the link o8 → o5, the ancestors records of the node o8 (including

itself) are selected, including A = {[o1, o1, (1, 100)], [o5, o5, (50, 90)], [o8, o8, (80, 87)]}. Then select

the set of link pairs of the node o5: D = {[o5, o5, (50, 90)]}. For each ancestor a ∈ A, a record
[a, o5, (50, 90)] is to be added in the index, if the node o5 is not already a descendant of a. Thus, only

the record [o8, o5, (50, 90)] is added, and no records for nodes o1 and o5 need to bee added. The final

result is shown on 0, b and the Algorithm 2 below shows the insert link.

Algorithm 2 INSERT LINK

Input: index, referencing node oi and referenced node oj

Output: index updated with records referencing node oj

 //select ancestor records of the node oi

 //note, that this selection includes oi

1: select index records for ancestors of the node oi: A = {[op, or, (nr, sr)]}, such that op is the

parent of oi;

 //select records of the node oj

2: select index records for of the node oj: D = {[oj, ok, (nk, sk)]};

 //

3: for each record [oj, ok, (nk, sk)] ∈ D do

 //

 for each record [op, or, (nr, sr)] ∈ A do

 //

 Ancestor ← op;

 AddNode ← TRUE;

 //

 while Ancestor = op do

 //

 if (or is parent of ok) then AddNode ← TRUE;

 //

 if (ok is parent of or) and

 (op ≠ or) then DELETE RECORD [op, or, (nr, sr)];

 end while

 //

 if AddNode = TRUE then INSERT RECORD [op, ok, (nk, sk)];

 end for

 end for

AJIS Vol. 12, no. 1 September 2004

 24

The algorithm for deletion the link oi → oj is straightforward: to delete all records of the form

[op, oj, (nj, sj)], where op is the ancestor of oi. This is to remove the records for links from parents of

the node oi to oj and from oi node itself to oj. The pseudo-code of the algorithm is described in

Algorithm 3 DELETE LINK

Input: index, referencing node oi and referenced node oj

Output: index updated with records referencing node oj

1: select index records for ancestors of the node oi: A = {[op, oj, (nj, sj)]}, such that op is the

parent of oi

 //select records of the node oj

2: for each record [op, oj, (nj, sj)] ∈ A do

 //

 DELETE RECORD [op, oj, (nj, sj)];

 end for;

ANALYSIS

To assess the usability of this indexing method, we focused on the growth of index depending on the

number of cross-reference links in XML documents. Because if the indexes growth dramatically and

require enormous storage space, this method would not be applicable. We have chosen two real-

world data sets (Digital Bibliography and Library Project (DBLP), and Internet Movie Database

(IMDB)) to estimate the number of records in their indexes:

• DBLP contains computer science bibliography information. Each DBLP file represents a

single publication. All the documents are grouped into classes of publication (book,

conference paper, journal article, etc.).

• IMDB is a highly cyclic semistructured database with information about movies, actors,

directors, producers, writers, etc. IMDB includes 49 files (>500Mb). We chose a subset of

two files (movies, actors). The characteristics of the DBLP and IMDB data sets are

summarised in Error! Reference source not found. below.

Data Set Size (Mb) Files Elements Links

DBLP 96.6 251,520 2,095,552 25,745

IMDB 88.1 2 2,221,423 1,624,311

Table 1 XML data sets

To estimate the index size S for a database, it is necessary to find numbers of records corresponding

to primary nprimary and linked nlinked numbering pairs of each node:

S = nprimary + nlinked.

The number of primary pairs nprimary is equal to the number of elements in the database N. The

number of linked pairs nlinked depends on the number of referencing nodes nref and how many

ancestors precede these referencing nodes (according to the 0). The number of preceding ancestors

of any node is equal to the path length of this node li. Consequently, the number of linked pairs nlinked

equals: nlinked = Σ li, i = [1, nref]. If the path lengths of nodes are approximately equal to each other,

the previous statement turns into the following:

nlinked = L · nref,

AJIS Vol. 12, no. 1 September 2004

 25

where L is the average path length of referencing nodes; nref is the number of referencing nodes. The

number of referencing nodes nref depends on the topology of the graph, since every link increases the

number of ancestors for the referenced node. For example, the number of ancestors of the node o7 in

0: Numbering and extended numbering of the XML tree, a is equal to 3 (nodes o1, o5, o6), while the

number of ancestors of the same node o7 in the 0: Numbering and extended numbering of the XML

graph, a is equal to 7 (nodes o1 to o6).

First, we consider the topology of DBLP data. A DBLP document contains information about the

type of publication, the title, the authors, and so on. It may also include a reference to other

publication in the database. Each reference is given as an absolute path from the entry directory. The

length of any path does not exceed 3 and has form «class of publication/issue title/document name».

So the average path length of referencing nodes is LDBLP = 3. The approximate topology of the

DBLP dataset is shown on 0, a and b. It is assumed that there are no cross-references between any

two documents, i.e. if book A has reference to book B, then book B can not have references to the

book B.

“class of publication”

“issue title”

“document name”

“cite”

L

N

a) b)

“actor”

“movie”

…

Lmovie

Lactor

N

Nactor

Nmovie

Figure 4 Approximate topology of DBLP data

The index size S for the DBLP database is:

S = NDBLP + LDBLP · nBDLPref,

where NDBLP, LDBLP, nBDLPref are the number of elements, the average path length of referencing nodes

and the number of referencing nodes in the DBLP data set. As a result of the number of elements,

the increase of the index size of DBLP is a linear function and directly proportional to the number of

references. The statistical results regarding the DBLP data set are summarised in Table 2 below:

Data Set
Number of primary pairs

records, nprimary = NDBLP
Number of references, nref

Number of linked

pairs, nlinked
(LDBLP = 3)

Growth of

index, %

DBLP 2,095,552 1,000 3,000 0.1

 publications:251,520 10,000 30,000 1.4

 100,000 300,000 14.3

 25,745 (present in DB) 77,235 3.7

Table 2 Estimation of Index Growth for DBLP data set

Since the average path length of referencing nodes in DBLP is low, the index size tends to grow

slowly too.

AJIS Vol. 12, no. 1 September 2004

 26

Now consider the topology of IMDB data. There are several different types of IMDB documents:

movies, actors, directors, etc. Each of the types has different structure and references to the

documents of other types. The database contains many cross-references between documents. For

example, “The Matrix” movie has links to the actors “Keanu Reeves” and “Laurence Fishburne”.

These actor documents have cross-reference to the “The Matrix” movie. We have selected the subset

of the IMDB of two types (movie titles and actors). The approximate topology of the IMDB subset

is shown on 0, b. Each type of documents has its average path length of referencing nodes Lmovie and

Lactor, and number of referencing nodes nmovie and nactor respectively. If an average number of actors

in each movie is denoted Nactor, then each of the Nactor actor nodes will have (Nactor – 1) linked pairs

to other actors and linked pairs to the movie. The movie node will have Nactor pairs for the actors.

Thus, the number of linked pairs for one movie node and its ascendants is Lmovie ·Nactor and the

number of linked pairs for one actor node and its ascendants is Lactor · ((Nactor – 1) + 1) = Lactor · Nactor.

The total of linked pairs is:

nlinked = nmovie (Lmovie ·Nactor + Lactor · N
2
actor),

where nmovie, Lmovie are the number of elements, the average path length of movie referencing nodes;

Nactor, Lactor are the average number of actors and the average path length of actor referencing nodes.

Even in the case of two types of documents, the index size grows non-linear. The statistical results

regarding the DBLP data set are summarised Table 3 below:

Data

Set

Number of primary

pairs records, NIMDB

Number of

references, nmovie

Number of linked pairs,

nlinked (Nactor= 20, Lmovie= 5,

Lactor = 3)

Growth

of index,

%

IMDB 2,221,423 1,000 1,215,000 54.7

 movies: 229,180 10,000 12,150,000 546.9
 actors: 367, 932 100,000 121,500,000 5469.4

1,624,311 (present in

DB)
1,973,537,865 88841.1

TABLE 3 ESTIMATION OF INDEX GROWTH FOR IMDB DATA SET

CONCLUSION

Our results showed that the indexing method introduced in this paper is efficient in cases where the

number of cross-reference is relatively low as a result of securing the graph structure. However, in

the case of circular references or where a large number of cross-referencing is involved, the number

of index records will be increased at a non-linear rate. Indeed, the problems of Internet security

cannot be ignored by companies as this would result in the loss of competitive advantage in the

market place and what the future holds for Internet security technology cannot be predicted to the

rate technology is advancing (Shoniregun, 2002).

REFERENCES

B. F. Cooper, N Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon (2001) A fast index for

semistructured data. In Proceedings of the 27th VLDB Conference, Roma, Italy

P. F. Dietz (1982) Maintaining order in a linked list. In Proceedings of the 14th Annual ACM

Symposium on Theory of Computing, San Francisco, California.

R. Goldman, J. Widom (1997) DataGuide: enabling query formulation and optimization in

semistructured databases. In VLDB.

Q. Li, B. Moon (2001) Indexing and querying XML data for regular path expressions. In

Proceedings of the 27th VLDB Conference, Roma, Italy.

O. Logvynovskiy , K. Lü (2003), Structural Sequence Join for XML Regular Path Expressions,

PREP’03, Exeter, UK, April.

AJIS Vol. 12, no. 1 September 2004

 27

J. McHugh, J. Widom (1999) Query optimization for XML. In Proceedings of the 27th VLDB

Conference.

Y. Papakonstantinou, H. Garcia-Molina, J. Widom (1995) Object exchange across heterogeneous

information sources. In Proceedings of the 11th International Conference on Data

Engineering.

Shoniregun C.A. (2002), The Future of Internet Security, ACM Ubiquity: Information Technology

(IT) magazine and forum, Volume 3, Issue 37, Oct 29.

W3C (2001) XML Query Language (XQuery) 1.0. W3C Recommendation, December 20,

http://www.w3.org/TR/xquery/ (Assessed date 21 may 2002).

