
AJIS Vol 13, No. 1 September 2005

 225

REQUIREMENTS ENGINEERING AND SOFTWARE PROJECT SUCCESS:

AN INDUSTRIAL SURVEY IN AUSTRALIA AND THE U.S.

June Verner

Empirical Software Engineering

National ICT Australia

AustralianTechnology Park

june.verner@nicta.com.au

Karl Cox

Empirical Software Engineering
National ICT Australia

AustralianTechnology Park

karl.cox@nicta.com.au

Steven Bleistein

Computer Science and Engineering,
University of New South Wales &

National ICT Australia

steven.bleistein@nicta.com.au

Narciso Cerpa

Departamento de Ingeniería de Sistemas, Universidad de Talca,

Camino Los Niches Km. 1, Curicó, Chile
ncerpa@utalca.cl

ABSTRACT

Because requirements engineering is recognized as critical to successful software projects
we surveyed a number of software practitioners regarding their software development

practices during recent software projects. Relationships between requirements practices and

software project outcomes enable us to better understand requirements issues and their
relationship with project success. We asked three sets of questions directly related to

requirements issues: 1) requirements practices, 2) the sponsor and customers/users, and 3)

project management. Our respondents were from business organizations in the U.S. and
Australia, and were almost exclusively involved in in-house software development. The

most significant factors from each question set were: 1) the requirements were good, 2)

there was a high level of Customer/User involvement, and 3) the requirements were
managed effectively. Overall, the best predictor of project success was that the requirements

were good together with the requirements were managed effectively (93% of projects were
predicted correctly). Our survey shows that effective project management is fundamental to

effective requirements engineering.

INTRODUCTION

Requirements engineering (RE) can be simply described as identifying a problem’s context,

locating the customer’s requirements within that context and delivering a specification that

meets customer needs within that context. There are many requirements methodologies that

purport to do this, for example, soft systems methodology (Checkland 1981), scenario

analysis (Carroll 1995), and UML (Booch et al 1999). Sometimes they work, sometimes

they do not. The implication of such requirements methodologies, if we can label at least

aspects of them as such, is that the application of ‘x’ method will produce the right

requirements irrespective of the problem’s characteristics. This is conventional wisdom and

unsurprisingly, the creators and vendors of requirements methodologies claim, with one

exception (Jackson 2001) that their approach is a hammer and all problems are nails. While

there are many factors other than just application of a requirements methodology that

influence the success or failure of software projects in practice, in this paper we focus only

on requirements engineering. As Davis and Hickey state, we need as researchers, to be

AJIS Vol 13, No. 1 September 2005

 226

aware of what is really going on in practice to be able to position our research within that

context (Davis & Hickey 2002). Without this, we will forever practice our art in a context-

free bubble.

To document practitioners’ views regarding software project success or failure and the

practices they consider important to successful projects, we conducted wide ranging

structured discussions with twenty-one senior software practitioners employed by a large U.

S. financial organization. This discussion focused on software projects with which the

practitioners had been recently involved. We later had similar discussions with another

group of software practitioners from the U.S who worked in a variety of other commercial

organizations and also developed in-house software. Based on these discussions we

developed a questionnaire in order to investigate those software development practices that

lead to successful project outcomes. We chose a survey because of its simplicity and our

wish to find relationships amongst variables; a survey gave us coverage of a greater number

of projects at lesser cost than would an equivalent number of interviews or a series of case

studies.

The original practitioner group responded to our questionnaire by answering it twice, once

for a project they considered successful and once for a project they considered a failure.

Our questionnaire was later distributed to the second group of practitioners. Then the

questionnaire was answered by a group of Australian practitioners based in Sydney. Our

sample is not random but rather a convenience sample of practitioners known to us.

The questionnaire was organized into a number of sections covering the entire software

development process. We also asked respondents if they considered the project they

referenced, when answering the questionnaire, to be a success. Only questions relating to

requirements engineering and requirements management are considered in this paper.

Sections of the questionnaire, not considered here are discussed elsewhere e.g., (Verner &

Evanco 2003, 2005).

Our perspective could be broadly considered a review of in-house requirements

management practices. This perspective is important because most software engineering

research has emphasized “technical matters above behavioral matters” (Glass 2002).

Moreover, there has been a general lack of quantitative survey-based research regarding

early non-technical aspects of software development. In addition, in-house software

development failure is unlikely to receive the same attention as third-party software

development failures with their attendant litigation and negative media coverage. Our

motivation is to show which requirements engineering practices are directly related to

project success. The Standish reports on the state of software engineering practice indicate

that requirements engineering is critical to software success (Standish 1999).

When requirements are poorly defined and RE processes are ad hoc, the end result is nearly

always an unsatisfactory product or a cancelled project. A Standish Group Report revealed

that three of the top ten reasons for challenged projects or outright project failure were lack

of user involvement, unstable requirements and poor project management (Standish 1999).

A more recent survey of twelve UK companies found that requirements problems

accounted for 48% of all software problems [18]. Another recent report from the U.K.

stated that only 16% of software projects could be considered truly successful. “Projects are

often poorly defined, codes of practice are frequently ignored and there is a woeful inability

to learn from past experience” (Jobserve.com 2004). Another survey of 150 companies in

the U.S. showed that the majority requirements modelling technique of choice was “none”

(Neill & Laplante 2003).

In Section 2, we discuss some details of the questionnaire responses, in Section 3, the

AJIS Vol 13, No. 1 September 2005

 227

results of the questionnaire, and in Section 4, the implications of our results. Section 5

presents our conclusions and suggestions for further research.

QUESTIONNAIRE RESPONSES

We received completed questionnaires from 143 respondents, reporting on 164 distinct

projects. As noted earlier, the majority of our respondents were developers involved with

software for use within their own organizations (financial institutions, banks,

pharmaceutical companies, insurance companies, etc.). The responses to the first set of 42

questionnaires described 42 projects, 21 regarded as successful and 21 unsuccessful. The

second set of responses included descriptions of 80 unique projects reported from various

companies in the northeastern U.S. The third set of responses, completed by developers

working in Sydney, Australia, included descriptions of 42 unique projects

A sample of 164 projects is a reasonable size for empirical software engineering research.

Sixty-six percent of projects were regarded as successful and 34% unsuccessful, 88% were

development projects (63% successful), and 12% were large (in terms of effort)

maintenance/enhancement projects (75% successful). The percentage of projects by

number of full-time IT employees is 1-4 = 39%; 5-9 = 24%; 10-19 = 19%; 20-29 = 5%; 30-

39 = 4%; 40-99 = 6%; and 100-180 = 8% (range 1-180, median 6).

RESULTS AND ANALYSIS

The percentage of “yes” responses to the survey questions is shown in Table 1. Table 2

shows significant correlations with project success (<0.05) as well as some associations

between responses to selected questions. We have classified our questions in these tables as

follows: “C” refers to questions that deal with the project sponsor, customers and users;

“R” to questions directly related to requirements; and “M” to questions related to the

management of the development process.

Requirements Questions

Although good project management necessitates that requirements are complete and

consistent [28], gathering requirements with a specific methodology (R1) was not

significantly correlated with project success (Table 2). However, in 49% of our projects

respondents did not know what requirements methodology was used. For the ones that did

know, four projects used prototyping and eleven used JAD sessions with prototyping; for

the remainder of projects, interviews and focus groups were the main requirements

gathering method.

AJIS Vol 13, No. 1 September 2005

 228

Table 1: Percentage “Yes” Responses to Questions

ID Question Success
18

% Yes

Failure
19

% Yes

Total
20

% Yes

C0 Were the stakeholders committed and

involved?

66 57 63

C1 There was a high level of customer/user

involvement

80 47 69

C2 There was a high level of customer/user

confidence in the development team

70 29 56

C3 There was a low level of customer/user

turnover

73 55 65

C4 Senior level project sponsorship lasted right

through the project

80 50 70

C5 You were affected by large numbers of

customers/users

29 33 30

R1 Were requirements gathered using a specific

method?

53 50 52

R2 Were requirements complete and accurate at

project start?

47 25 40

R3 If not complete at start were requirements

completed later?

80 23 56

R4 Overall, were the requirements good? 81 28 66

R5 Did the project have a well defined scope? 81 46 69

R6 Did the scope increase during the project? 61 74 66

R7 Customers/users made adequate time available

for requirements gathering?

80 42 66

R8 Was there a central repository for

requirements?

77 44 66

R9 Did requirements result in well defined

deliverables?

79 37 64

R10 Did the size of the project have a negative

impact on requirements?

31 52 38

M1 The requirements were managed effectively 86 35 64

M2 Was the project manager experienced in the

application area

69 69 69

M3 Was a defined development methodology

used?

73 50 66

M4 Was the methodology appropriate for the

project?

81 46 65

M5 Was delivery decision made with appropriate

requirements information?

67 20 51

18
 This column represents the percentage of “yes” answers to questions for successful projects.

19
 This column represents the percentage of “yes” answers to questions for projects that were failures.

20
 This column represents the percentage of “yes” answers to the questions for all projects.

AJIS Vol 13, No. 1 September 2005

 229

M6 The project manager was able to choose the

development methodology

41 25 34

Thirteen of the 15 projects using prototyping and/or JAD were successful. Eight U.S.

projects used UML to document requirements; only four were successful; practitioners

commented that there were “too many new things without a pilot” and “unfamiliar methods

used”. This indicates that either UML imposes what might be considered non-requirements

notations upon the requirements, or that some developers were unfamiliar with UML. Also,

the failed UML projects all had other problems, e.g., poor estimates, and no risk

management, so their failures were not necessarily only due to use of UML. No Australian

projects used UML

What appears to be more important than a defined requirements gathering methodology

(R1) is that the project has a defined software development methodology (M3) that is

appropriate for the project (M4), as both of these variables were significantly correlated

with project success. Surprisingly, one-third of projects did not have a defined development

methodology.

Nearly half the projects began with incomplete requirements (R2). It is therefore not

surprising that the scope was changed for many projects (R6); a S
2
 test of R2 with R6 was

significant. The scope was also more likely to change for larger projects.

Table 2: Correlations of Questions to Project Success and to Other Questions

ID Question Direction

of Success

Relation

-ship

Significant

Correlation

with Project

Success

S
2
 Correlation

with Other

Questions

C0 Were the stakeholders committed

and involved?

 C4

C1 There was a high level of

customer/user involvement

+ 0.000 C2, C4, R5

C2 There was a high level of

customer/user confidence in the

development team

+ 0.000 C1, R5

C3 There was a low level of

customer/user turnover

+ 0.019

C4 Senior level project sponsorship

lasted right through the project

+ 0.000 C0, C1, R5

C5 You were affected by large

numbers of customers/users

R1 Were requirements gathered using

a specific method?

 M4

R2 Were requirements complete and

accurate at project start?

+ 0.006 R6 (-), M4, R5

R3 If not complete at start were

requirements completed later?

+ 0.000 M4, R5

AJIS Vol 13, No. 1 September 2005

 230

R4 Overall, were the requirements

good?

+ 0.000 M4

R5 Did the project have a well defined

scope?

+ 0.000 M1, M3, M4,

M5, C1, C2, C4,

R2, R3, R4, R6

(-), R7, R8, R9,

R10 (-)

R6 Did the scope increase during the

project?

 R2(-), R5 (-)

R7 Customers/users made adequate

time available for requirements

gathering?

+ 0.000 M4, R5

R8 Was there a central repository for

requirements?

+ 0.000 M1, M4, R5

R9 Did requirements result in well

defined deliverables?

+ 0.000 M4, R5

R10 Did the size of the project have an

impact on requirements?

- 0.000 R5 (-)

M1 The requirements were managed

effectively

+ 0.000 R8, M4, R5

M2 Was the project manager

experienced in the application area

M3 Was a defined development

methodology used?

+ 0.007 M4, R5

M4 Was the methodology appropriate

for the project?

+ 0.000 R1,R2,R3,R4,R

5,R7,

R8,R9,C4,M1,

M5

M5 Was delivery decision made with

appropriate requirements

information?

+ 0.000 M4, R5

M6 The project manager was able to

choose the development

methodology

Our results, shown in Tables 1 and 2, indicate that requirements continue to be a big

problem for software development (Moynihan 1997, Schenk et al 1998) and one of the

most common causes of runaway projects (Glass 2001). Given that control over

requirements is necessary to move from the lowest CMMI level, it is clear that many of the

organizations in our sample are still at the lowest level (CMMI 2004). These results agree

with (Neill & Laplante 2003), whose respondents thought that their companies did not do

enough requirements engineering. While sixty percent of projects began with poor

requirements, fewer than 10% of projects used a development methodology designed to

deal with unclear requirements.

Not surprisingly, and consistent with observations made by Glass (1998), we found that

good requirements (R4), that were complete and accurate at the start of the project (R2),

with a well-defined project scope (R5), resulting in well-defined software deliverables

(R9), were all positively correlated with project success. The importance of user

AJIS Vol 13, No. 1 September 2005

 231

involvement in requirements gathering (R7) supports the observations of both

Clavadetscher (1998) and Glass (1998). We found that if requirements were initially

incomplete, completing the requirements during the project (R3) was positively correlated

with project success. Although Boehm (1991) includes a “continuing stream of

requirements changes” in his top ten risk items, we did not find that changing the scope

during the project (R6) was correlated with project failure. Also, being able to effectively

manage requirements and any changes to them (M1) through a central repository (R8) was

positively correlated with project success. The fact that only 66% of our projects used a

central repository supports the suggestion that “we fail to use requirements management to

surface (early) errors or problems” (Clavadetscher 1998).

When the size of a project impacted on requirements gathering (R10), project failure was

more likely. This result agrees with (Glass 1998), suggesting that project size hampers

requirements gathering, and leads to unclear, incomplete, and potentially unstable

requirements. Large numbers of customers and users had no significant impact on project

failure.

Using logistic regression with the responses to the requirements questions, the best

predictor of project success was R4 (the requirements were good) which predicted 89%

successes, 58% failures, and 78% of projects correctly overall.

Sponsor, Customer and User Questions

A project that has customers/users who have a low turnover rate (C3), who have confidence

in the development team (C2), and who have a high level of involvement in the project

(C1), is likely to be a success. However, having a large number of customers and users (C5)

was not correlated with project failure. Evidence shows that a high level of customer/user

involvement right through the project from requirements elicitation to acceptance testing is

necessary for project success (Standish 1999). The correlation between customer/user

involvement (C1) with level of confidence they have in the development team (C2) is

interesting and leads us to ask about causal effects. “Are customers/users involved because

they are confident in the development team or if they are involved do they become more

confident in the development team?” We suspect that the answer is the former. This leads

us to suggest that development teams who do not present themselves well to users and

manage customer/user expectations properly may be sowing the seeds for failure.

We were not surprised that a high degree of senior level sponsorship that lasted right

through the project (C4) was significantly related to (C0) committed and involved

stakeholders and (C1) a high level of customer/user involvement.

Using logistic regression with responses to the sponsor, customer and user questions, the

best predictor of project success was C1 (there was a high level of customer/user

involvement), with C2 (there was a high level of customer/user confidence in the

development team) which predicted 90% successes, 51% failures and 78% correctly

overall. On its own C2 (there was a high level of customer/user confidence in the

development team) predicted 70% projects correctly overall.

Project Management Questions

A PM experienced in the application area (M2) was not correlated with project success.

“Successful project managers are generalists, not technical specialists”; while a certain

level of technical competence is helpful, managerial and interpersonal skills are more

AJIS Vol 13, No. 1 September 2005

 232

important (Jurison 1999).

A project that has a PM who manages requirements effectively (M1), and uses a well

defined software development methodology (M3) that is appropriate for the project (M4)

and that has estimates of effort and schedule made with appropriate requirements

information (M5) is likely to be successful. Good estimates of effort and schedule (C4)

have a huge effect on project success (DeMarco & Lister 2003). As early as 1975 Brooks

stated that more projects have gone awry for lack of calendar time than from all other

causes combined (Brossler 1999). Optimistic estimation is still one of the two most

common causes for runaway projects (Glass 2001) with cost and schedule failures

exceeding any other kinds of software failures in practice (Glass 2003). Boehm (1991)

includes unrealistic schedules and budgets in his top 10 risk items.

Using logistic regression with the responses to the project management set of questions, M5

(making delivery decisions with appropriate requirements information), with M4 (the

development methodology was appropriate for the project) and M1 (the requirements were

managed effectively) was the best predictor of project outcome, predicting 86% successes,

77% failures, and 83% correctly overall. On its own M1 (the requirements were managed

effectively) predicted project outcome correctly for 77% of projects. This result supports

Davis, who claims that requirements triage is critical: determining which requirements a

product must have given a time constraint and resources available within that time frame

(Davis 2003).

Important Correlations

The most important project success prediction factors are that the requirements were good

(R4) and that the requirements were managed effectively (M1). These two factors alone

correctly predicted 93% of successful projects. Having good requirements is highly

correlated with a high level of customer/user involvement. It is difficult to get good

requirements without customer/user involvement.

We investigate two factors more thoroughly since they are discussed little in the

requirements research literature. These are (R5) did the project have a well-defined scope,

and (M4) was the development methodology appropriate for the project? As shown in

Table 2, both have significant correlations with many other factors. Note that there are also

many other significant correlations that we have not discussed in this paper nor are shown

in Table 2.

Scope

A well-defined scope is critical to project success. We found that scope was significantly,

positively correlated with a number of factors:

• C1, a high level of customer/user involvement. Without this level of

customer/user involvement, it is not easy to identify the problem to be

solved. Without this identification it is impossible to define a project’s

scope. Asking, “what functions do you want?” and not asking, “what is

this system for, who’s involved?” is not likely to help define scope

accurately. You can only ask these questions throughout the project when

you have a high level of customer/user involvement.

• C2, there is a high level of customer/user confidence in the development

team. C2 is significantly correlated with C1. It is interesting that this is an

AJIS Vol 13, No. 1 September 2005

 233

important factor though not particularly well addressed in the research

literature. Without a high level of confidence, one is less likely to elicit

the right scope and from this weak starting place one is less likely to elicit

the right requirements.

• C4, senior project sponsorship lasted right through the project. This is a

critical success factor. High level support induces greater cooperation that

could be missing without such sponsorship. A high level sponsor may

also be more aware of the wider scope of the project’s impact.

• R2, the requirements were complete and accurately defined at the start of

the project. There is a natural correlation to scope. With inaccurate scope

or unmanaged scope creep, it will be difficult to identify a complete

requirements set.

• R3, the requirements were completed at some stage in the project. Similar

to R2, a well-defined scope even if it creeps, can still allow a complete

requirements set at some point during development. So long as the

project chunk being worked on at one time has well-defined scope and

the requirements are complete, then project success is more likely.

• R4, overall the requirements were good. Given a well-defined scope, it

should be easier to identify all the necessary requirements, i.e.

requirements were good.

• R6, did the scope increase during the project? This is negatively

correlated; that is, the more scope increased, the less likely it was to be

well-defined.

• R7, customers/users made adequate time available for requirements

gathering. Exploration of the problem space with customers and users

who have time to discuss this allows for better scoping of the project and

of manageable chunks for development.

• R8, there was a central requirements repository. This is a critical success

factor. It is entirely necessary to have one, and only one, repository to

store the requirements. This, of course, aids in scoping the project. It is

easy for the development team to see the scope of their project and know

that it is the agreed scope project-wide.

• R9, the requirements resulted in well-defined deliverables. This is often

difficult to do without a well-defined scope simply because the goal posts

may keep shifting.

• R10, the size of the project had an impact on requirements. This is

negatively correlated; that is, the larger the project, the more important it

is to define scope. It is also much more difficult to achieve.

• M1, the requirements were managed effectively. A well-defined scope

and decomposition of the project into related, manageable requirements

chunks is difficult. Good project management and in particular,

requirements management, is essential for a successful project outcome.

• M3, a defined development methodology was used. A development

methodology appropriate to the problem enables a better scoping of the

requirements in that there is more likelihood that the project is scoped

according to the relevant aspects of the defined methodology. As an

example, all requirements relating to an information system will be

AJIS Vol 13, No. 1 September 2005

 234

scoped together to fit an information systems method within the wider

methodology.

• M4, the methodology was appropriate for the project. This is very similar

to M3 above. A project’s parts are significantly better scoped if the

development methodology of choice is appropriate to the project’s parts.

• M5, the delivery decision was made with appropriate requirements

information. A well-defined scope will significantly improve the success

of delivery decisions because without this knowledge it will be difficult

to know what can be delivered as a complete piece of work within the

project.

Appropriate Methodology

An appropriate lifecycle development methodology is shown to be significantly correlated

with project success. There is some literature to support this notion, for instance (Jackson

2001), though it appears vendors are happy to assume their one-size-fits-all does indeed fit.

An appropriate methodology, M4, is significantly correlated with:

• C4, senior level sponsorship lasted right through the project. A senior

sponsor can enforce the right methodology and can equally defend a

project manager or developer’s choice of methodology. This support is

important to successful uptake of the approach.

• R2, the requirements were complete and accurate at the start. Naturally,

complete requirements allow for an identification of sub-problem types

within the a project, and then a choice of the appropriate methodology

becomes more apparent.

• R3, requirements were completed at some point in the development. As

for R2, understanding aspects of the problem allows the right choice of

method for that problem part. So though requirements might not be

completed at the start, awareness of the types of problems being

addressed allows for choice of the right methods.

• R4, overall the requirements were good. Requirements are often better

achieved when they are developed using the appropriate method.

• R5, see M4 in section 3.4.1.

• R7, customers/users made adequate time for requirements gathering.

When this occurs, it is easier to get the right requirements, to understand

the problem and then to select the appropriate methodology.

• R8, there was a central repository for requirements. This helps the

appropriate selection of methodology simply because there is one

location to look for requirements and therefore one place to organize the

requirements appropriately. It is easier to select the methodology based

on this structure and single point of information.

• R9, did the requirements result in well-defined deliverables? An

appropriate methodology and an appropriate, well-defined scope, allow

for well-defined deliverables that are actually delivered according to their

scope as defined.

• M1, the requirements were managed effectively. Requirements

management is part of project management. Methodological selection

AJIS Vol 13, No. 1 September 2005

 235

is simplified through good requirements management as it is easier to

understand the problem to be solved, and from there select ways to do

that appropriately.

• M5, delivery decisions were made with the appropriate requirements

information. This is correlated with an appropriate methodology. It is

much easier to make these kinds of decisions when you can trust the

approach you are using for development.

There are many factors other than those we have discussed above. You can’t make accurate

delivery schedules without scoping your project. You can’t get this information except for a

combination of factors, including budget, which we have not considered at all. Although

this discussion appears simple, it is more complex than we portray. Politics, for instance, is

something almost entirely ignored in the requirements research literature. In the workplace,

it is a highly significant factor to what requirements are actually delivered and what

methodology is selected.

DISCUSSION

The developers we surveyed mainly develop in-house software for their organization’s use.

Their organizations have a heavy reliance on software for many business functions. While

we would not assume that our results are typical of all organizations, we believe that they

are reasonably typical of organizations that develop in-house software. Surveys are of

course based on self-reported data which reflects what people say happened, not what they

actually did or experienced. Because we surveyed software developers our results are

limited to their knowledge, attitudes, and beliefs regarding the projects and PMs with which

they were involved. However, as the majority of projects are fairly small (63% employed

fewer than 10 people and 84% fewer than 20), we believe that our respondents have a

reasonable knowledge of most project events. The overall preponderance of small projects

may however, bias our results.

Overall, the best logistic regression prediction equation using data from each of the three

groups of questions, was R4 (overall the requirements were good) with M1 (the

requirements were managed effectively) which predicted 93% successes, 59% failures and

83% correctly overall.

We were surprised that so many projects started (and continued), with unclear

requirements. Why are PMs prepared to go ahead with projects without either appropriate

requirements or a development methodology able to deal with unclear requirements? It is

common knowledge that good requirements lead to software development success so why

are PMs apparently so unaware that they are prepared to jeopardize project success in this

fashion? Poor requirements have a negative effect on the estimation process; this then leads

to schedule and cost underestimates, inadequate staffing and then staffing itself becomes a

major risk factor.

Many project management problems are in fact requirements problems in disguise,

particularly those related to scheduling and effort estimation. The results suggest that

senior management needs better education regarding the importance of adequate

requirements, and that good requirements are necessary to produce appropriate schedule

and effort estimates.

While some consider that using UML for requirements modeling and management is

helpful, in this research we find no supporting evidence. To the contrary, in at least one

AJIS Vol 13, No. 1 September 2005

 236

project the use of UML was forced upon the development team with no accompanying

training; project failure was the outcome.

It might be important to distinguish between scope creep and requirements creep more

clearly. Evolving requirements throughout a project tends to have no significant impact on

success as long as requirements were considered complete at some point during the project.

In contrast, scope increase was not correlated with project success. Perhaps scope ought to

be defined as the boundaries of the problem domain within which to seek requirements. It

is important that these boundaries be defined clearly early in the project, whereas the

requirements within those boundaries may evolve continuously.

Finally, having a central repository for requirements is clearly correlated with project

success. This is good news, because it is relatively easy to do. In fact, it is difficult to

understand why a project would not have a central repository for requirements given the

technology available today.

CONCLUSIONS AND FURTHER RESEARCH

We discovered that:

1) it is not the number of users involved that is important, but rather

managing the size of the project in terms of functionality;

2) it is not the requirements methodology per se, but rather use of an

appropriate software development methodology into which the requirements

methodology fits;

3) it is not scope creep, but rather that scope is well defined when it creeps;

4) it is not a project manager experienced in the application area, but rather

a project manager who manages requirements effectively;

5) it is not necessarily having complete requirements at the start of the

project but rather completing the requirements at some stage during the project;

and

6) projects that had a central repository for requirements were more likely to

succeed.

The most important correlations for project success are to get good requirements and to

manage those requirements effectively. Getting good requirements means a number of

things. Some that are important are a high level of customer/user involvement, high-level

sponsorship throughout, to scope the project effectively and it is critical to have a good

project manager who can manage, rather than one who just happens to know the application

domain.

Table 1 shows that current practices are fair at best. There is much opportunity for

improvement at the start of a project in the requirements area. This is very important if we

wish to increase the quality and success of our software projects. Analysis of our survey

suggests further research is required in order to investigate:

What kinds of pressures lead project managers not only to start projects with poor

requirements, but also to actually complete them without really knowing what the

requirements are?

How might the requirements analysis activity be better integrated with scheduling and cost

estimation?

It may be important to distinguish more clearly between project requirements versus project

AJIS Vol 13, No. 1 September 2005

 237

scope. Is it possible that a good definition of scope at the outset of a project enables project

teams to better deal with loosely defined requirements that later evolve?

Customer involvement and customer confidence in the project team indicate better

likelihood of success. How are these interrelated? Do customers become more involved

because they are confident in the team, or are they confident because they are involved?

What motivates customer involvement and confidence?

This research serves as a starting point in motivating continuing research in requirements

practice in industry and project success factors. We intend to continue with this research in

the future.

REFERENCES

Boehm B. W., Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ

(1981).

Boehm B. W., “Software Risk Management Principles and Practice”, IEEE Software Vol.

8 No 1, 1991, pp32-41

Booch, G., Rumbaugh, J., Jacobson, The UML User Guide, Addison Wesley, 1999.

Brooks F. P. Jr., The Mythical Man Month. Essays on Software Engineering, Addison

Wesley, USA (1975).

Brossler P. “Knowledge Management at a Software House: A progress report” Proc

Workshop on Learning organizations (1999), pp 77-83.

Carroll, J. (ed.), Scenario-Based Design: Envisioning Work and Technology in System

Development, Wiley Publications, 1995.

Checkland, P., Systems Thinking, Systems Practice, Wiley Publications, 1981.

Clavadetscher, C. “User Involvement: Key To Success”, IEEE Software. Vol. 15, Issue 2

(Mar/Apr 1998) p. 30, 32.

CMMI http://www.sei.cmu.edu/cmmi/ accessed 5
th
 July 2004

Collier B, T. DeMarco and P. Fearey, “A Defined Process for Project Postmortem Review”,

IEEE Software, Vol. 13, No. 4 (1996), pp. 65-72

Davis, A., 2003, “The Art of Requirements Triage”, IEEE Computer, March, pp42-49

Davis, A., and A. Hickey, “Requirements Researchers: Do We Practice What We Preach?”,

Requirements Engineering Journal, 2002, 7, pp107-111.

DeMarco T. and T. Lister, Waltzing With Bears, Dorset House Publishing New York NY,

2003

Glass R “Error-Free Software Remains Extremely Elusive”, IEEE Software

January/February, 2003, pp103-104.

Glass, R. L. “How Not To Prepare For A Consulting Assignment And Other Ugly

Consultancy Truths”, Communications of the ACM. Volume 41, Issue 12 (December

1998) pp11-13.

Glass R. L., “Frequently Forgotten Fundamental Facts about Software Engineering” IEEE

Software, May/June 2001, pp112, 110, 111.

Glass R. L., “Project Retrospectives, and Why They Never Happen”, IEEE Software 2002,

September/October, pp112, 111.

T. Hall, S. Beecham, and A. Rainer, “Requirements problems in twelve companies: an

empirical analysis” IEE Proceedings Software, 149 (5), pp153-160, 2002

Jackson, M., Problem Frames, Addison Wesley, 2001.

Jobserve.com, “UK Wasting Billions on IT Projects”,

http://www.jobserve.com/news/NewsStory.asp?e=e&SID=SID2598, 21/4/2004.

AJIS Vol 13, No. 1 September 2005

 238

Jurison, J., , Software Project Management, The Manager’s view (1999) Communications

of AIS Volume 2, Article 17.

Kerth, N. L., Project Retrospectives: A Handbook for Team Reviews, Dorset House

Publishing, New York 2001.

Keuffel, W., “Planning for and mitigating risk” Software Development 7 9 (1999) pp81-

85

Kwak, Y. H. and Stoddard J., “Project risk management: Lessons learned from software

development environments”, in press, to appear in Technovation, 2004

Kwak, Y. H. and Ibbs, C. W. “Calculating project management’s return on investment”

Project Management Journal 31, 2, 2000 pp38-47

Moynihan T., “How experienced Project Managers Assess Risk”, IEEE Software, Vol 14,

(MAY/JUNE 1997) pp35-41.

Neill C. J. and Laplante P. A., Requirements Engineering: State of the Practice” IEEE

Software, November/December 2003 pp 40-45.

Osmundson J. S., Michael J. B., Machniak, M. J., and Grossman M. A., “Quality

management metrics for software development” accepted for Information and

Management, 2003.

Phan, Dien D., Douglas R. Vogel and Jay F. Nunamaker Jr., ”Empirical studies in software

development projects: Field survey and OS/400 study, Information & Management 28

(1995) pp271-280

Pressman, R. Software Engineering: A Practitioners Approach, McGraw Hill (1996).

Schenk, K.D and Vitalari, N. P., et al. “Differences Between Novice and Expert Systems

Analysts: What Do We Know and What Do We Do?”, Journal of Management

Information Systems, Vol. 15, Issue 1 (Summer 1998) pp9-51.

Standish Group “Chaos: A Recipe for Success”, Standish Group International, 1999

Verner J. M. and Evanco W. M., “A Investigation into Software Process Knowledge” in

Managing Software Engineering Knowledge, (eds) A. Aurum, R. Jeffery, C. Wohlin

and M. Handzic, Springer-Verlag, 2003, pp29-47.

Verner J. M. and Evanco W. M., “In–house Software Development: What Software Project

Management Practices Lead to Success?” IEEE Software Jan/Feb vol. 22, issue 1,

2005, pp86-93

