
AJIS Vol4 No. 1

A CONTENT SPECIFICATION FOR BUSINESS PROCESS MODELS

Akhilesh Bajaj & Sudha Ram

Dept. of M.I.S., University of Arizona
Address: email: abajaj@misvms.bpa.arizona.edu
mailing address: Akhilesh Bajaj Dept. of M.I.S.

Karl Eller Graduate School of Management, Mclelland Hall
University of Arizona, Tucson, AZ 85721, U.S.A.

phone: (520) 621 - 2748
fax: (520) 621 - 2433

ABSTRACT

Business process modeling is an essential prerequisite to business process reengineering (BPR), and workflow
management (WFM). Process models have been traditionally used to model software processes, and many business
process models are adaptations of these process models. Using these process models to represent business processes
results in two problems. First, since these process models usually represent different perspectives of systems (or in this
case, businesses) the user needs to integrate multiple existing models to completely represent the business processes.
This reduces the ease of use, and leads to a lower acceptance by users. Second, business processes contain concepts not
found in software processes (e.g., physical objects, roles, etc.). Traditional process models cannot represent these new
concepts, and hence traditional process models model business processes inadequately. These two problems can be easily
solved if a comprehensive business process model exists, that models all perspectives of a business process, and that
allows representation of these new concepts. As a first step towards this goal, we propose a content specification that
would need to be satisfied by such a business process model.
The primary contribution of this work is a comprehensive content specification for a business process model that will
solve the two problems listed above. This content specification also serves as a framework to analyze process models in
detail, and to compare them based on their content (i.e., what concepts they model) and the degree to which they model
each aspect of a business process (i.e., how much of a business process they model).

INTRODUCTION

Process models have traditionally been used to model software processes [Curtis (1992)]. Recently, attention
has turned to modeling and reengineering business processes, especially in the emerging area of workflow
management [Attie (1993), Georgakopoulos (1994), Georgakopoulos (1995), Joosten (1994), Joosten (1995)].
Most work in this area has entailed extending existing process models, which were used earlier primarily for
software processes.
While a large number of process models (over a hundred) exist [Olle (1986)], adapting any of these to model
business processes poses two problems. The first is that different models model different facets of a system
[Curtis (1992)]. Thus, [Booch (1994)] advocate the use of class diagrams, object diagrams, state transition
diagrams, physical diagrams to model different aspects of a system. [Barker, (1992)] also advocate different
models (dependency charts, functional hierarchy charts, data flow diagrams (DFDs), etc.) for modeling
different aspects of a system. [Martin (1987)] recommend decomposition diagrams, dependency diagrams,
entity-relationship (E-R) diagrams, state transition diagrams, and DFDs to model different aspects of business
processes. While many of these models sufficed for software processes, none of these models are considered
sufficient by themselves to model a business process comprehensively. Many commercial tools based on one or
more of these models exist for modeling business processes ([Georgakopoulos (1995)] provide an extensive
listing of these). However, many of these tools either also use different models to model different aspects of
business processes (E.g., [Booch (1994)]), or alternately, arbitrarily extend these models in their software,
without any attempt at formality. Many of these models were formulated initially in the late 1970's and early
1980's, and researchers have recently tried to add formal extensions to these models [Kung (1991), Tao (1991),
Ward (1986)]. However, once again, none of these extensions result in a model that comprehensively captures
all aspects of a business process. One of the requirements of a model is that it should be easy to use [Curtis
(1992), Kramer (1991)]. The fact that a model can only model some perspectives of a business process leads to
a situation where many (often complicated) instances of different models have to be integrated to form a
complete view of business processes. This has resulted in low ease of use for users, and low acceptance of
models by industry. The second problem is that business processes require some new concepts that were not
needed for modeling software processes. E.g., physical objects, humans, location, time, etc. need to be modeled
in business processes [Georgakopoulos (1995), Joosten (1995)].
In order to solve these 2 problems, a single business process model is needed, that can comprehensively model
all aspects of a business process. In this work we take a first step towards this goal, by proposing a contents
specification for business process models. Each dimension of this framework represents a need that should be
fulfilled, in order to model a business process. This specification makes two contributions. First, it serves as a

22

AJIS Vol 4 No. 1

framework to analyze and compare existing models, based on their content and which perspectives of a
business process they model. Second, it is a useful guideline for developing a comprehensive business process
model that will solve the two problems mentioned above. The rest of this paper is organized as follows. In the
next section, we examine two taxonomies that have been used to study existing process models. We also
examine some requirements for process models that have been suggested earlier. After that, we specify the
content specification for a comprehensive business process model. We then demonstrate the use of this
specification as a framework for detailed analysis and comparison of two existing process models. Finally, we
discuss how this content specification can be used for further research.

EXISTING FRAMEWORKS AND REQUIREMENTS FOR PROCESS MODELS

Existing frameworks to study process modeling

Many taxonomies have been proposed to classify existing process models [15-19 in Tolvanen (1994)]. We
consider two recently proposed frameworks here. The first classifies models based on the size of the system
they try to model, as well as the contents and functionality of the model. The second is based purely on the
content of the models.
[Tolvanen (1994)] propose a two-dimensional framework for analyzing business process models. The first
dimension is divided along the size of the information system (IS) being modeled, and has 5 values: methods
for modeling: specific internal ISs, internally integrated ISs, organizational interface ISs, interorganizational
relationships and ISs for business networks (many organizations).
The second dimension is based on what information the model captures. It consists of four sub-dimensions,
each of which represents one functionality dimension. The sub-dimensions are:
Scope of analysis: What aspects of the real-world are modeled. E.g., DFDs have processes and dataflows.
System Structuring: How these elements are put into an orderly whole. E.g., the principles of decomposition
that govern a model.
Heuristics for candidate designs: The rationale behind generating designs automatically. E.g., A shortest path
algorithm to generate the shortest path in a graph.
Standards of Performance Evaluation: How to assess and select the candidate designs or solutions.
[Falkenberg (1991)] propose viewing each model as containing objects, with a set of intuitive axioms that
govern how the designer can use these objects, as well as a set of rules, derivable from the axioms and the rules
of the language used to create the model. Thus, DFDs have processes and dataflows as objects, with a set of
axioms. E.g., an axiom is: each process must have at least one dataflow connected to it. If the DFD model is
specified using predicate logic, then rules can always be derived using the rules of predicate logic, and the
axioms of the model. In a sense, this taxonomy corresponds to the "scope of analysis" and "system structuring"
sub-dimensions proposed by [Tolvanen (1994)].
These two frameworks reflect the fact that most taxonomies of process models are based on: the content and
functionality of the model, the aspects of a process that are captured, and on the size and complexity of the
system that the model can represent. However, the dimensions used in most existing taxonomies are broad, and
do not allow an extensive analysis of the models. As part of this work, we propose a detailed content
specification for business process models. The specification represents different aspects of a business process
that must be modeled in order to represent the process. Any process model will meet these requirements to
varying degrees. This specification improves on existing frameworks for analyzing process models because it
allows a much more detailed analysis of process models, based on their content and what aspect of a business
process are modeled. It also serves as a good design prescription when developing a business process model.

Previously identified requirements for process models

Several requirements for process models have been identified in past research. [Opdahl (1994)] describe the
concepts of transportation (through space), transformation (of state) and storage (transportation through
time) as basic aspects of processes. In addition, they distinguish between simple input/output relationships
between processes, and the actual flow of data and matter between processes.
[Rubin (1992)] discuss the importance of time ordering in dynamic modeling. Object states, events, and the
sequence in which these events occur are all stated to be important. Sequencing is classified as concurrent,
repetitive, selective or optional. They construct the lifecycle of objects as a series of states, with events
causing changes to these states. They also specify other desirable attributes of a process model: it should be
analyzable for syntactic correctness, consistency, completeness. In addition, it should support more advanced
analyses of concepts such as reachability, deadlocks, race conditions and behavioral ambiguities.

23

AJIS Vol 4 No. 1

They describe four commonly represented perspectives that a process model should represent: functional (what
activities are being performed, what is being produced, what is being consumed, etc.), behavioral (when
activities are performed, as well as how (feedback loops, iteration, entry criteria, exit criteria, etc.)),
organizational (where and by whom in the organization are activities performed, where artifacts are stored, and
the physical communication mechanisms by which they are performed), and finally, informational (which
informational entities are produced, manipulated or consumed by a process).
[Curtis (1992)] describe process modeling to include the modeling of phenomena that are enacted by humans as
well. They enumerate five basic uses of process models: to facilitate human understanding, to automate
process descriptions, to set a standard for actual process execution in the organization, to provide a framework
for analyzing processes, and to automate actual processes. Other information that people need from process
models is "what is going to be done, who is going to do it, when and where will it be done, how and why will it
be done, and who is dependent on its being done." [Curtis (1992)]
[Kramer (1991)] list adequacy, readability and ease of use, hierarchical decomposability and amenability to
formal analysis and reasoning as typical requirements for process models.
In the workflow literature, [Georgakopoulos (1995)] define a workflow as a collection of tasks organized to
accomplish some business process. They state that workflow models must describe processes, subprocesses,
dependencies between these, and required roles that can fulfill these tasks. They also list capturing process
objectives (such as customer satisfaction) in the workflow model.
[Attie (1993)] specify certain dependencies that can exist between various tasks, and propose a finite automata
model to enforce these. Some of the dependencies they list are: existence dependencies (if task A occurs, then B
must also occur), conditional existence dependency (if A and B occur, then C must occur), temporal
dependencies (if A and B both occur, then A must precede B), etc. [Joosten (1994)] describe how triggers can
be a part of a workflow model.
In addition, there has been extensive work on modeling dependencies between workflow transactions operating
on a database (e.g., [Georgakopoulos (1994)]). We do not review this literature here, since it is specific to
transaction processing, and hence at a lower level than the process models we are trying to classify here.
The requirements listed above justify the dimensions in our specification, which is described next.

A CONTENT SPECIFICATION FOR BUSINESS PROCESS MODELS

We divide our specification into broad dimensions such as system, state, space, time, etc. These dimensions
are chosen based on previous requirements (described in the previous section). Within each dimension are
listed the actual sub-dimensions pertinent to that dimension.

System
• The model must define what is an entity in the system, and how it is recognized. E.g., an

entity could be defined as a logical object that is different from other objects.
• The model must be able to clearly distinguish between entities in the system, and those

outside the system. E.g., DFDs use external entities to model entities outside the system.
• Entities must be able to take on one of many different roles. The set of possible roles must be

predefined in the system. Examples of roles are: agent, resource, responsible agent,
customer, performer, etc.

• Entities must be distinguishable into artifacts (non-human physical objects), information
entities (non-human, non-physical objects), or humans.

State
• The model must define what it means by statejype. E.g., the "attributes" of a set of entities

may make up a state_type, and values of attributes of all these entities might constitute a
state_instance.
The definitions should be verifiable, and unambiguous (i.e., the analyst should be able to tell
what statejype the system is in, and what state_instance it is in).

Space
• The model should be able to capture the spatial location of entities in the system.
• It should support a measure of spatial distance, and be able to model spatial constraints

based on this measure. E.g., it should be able to model the fact that a milling machine can
never be more than 50 meters from a lathe.

24

AJIS Vol 4 No. 1

Time
• The model should be able to capture the temporal location of statejnstances in the system.

Thus, a stateJnstance will occur at a particular time, which will be its location on the
temporal dimension.

• It should support a measure of temporal distance, and be able to model temporal
constraints based on this measure. E.g., state Jnstance SI must not lag behind stateJnstance
S2 by more than 6 hours.

Transformation / Transportation / Storage
• The model should support the notion of three activity_types: an activity-type that transforms

the value of a state_type, an activity Jype that transports entities through space and an
activity<_type that transports statejtypes through time (storage). This is based on the idea
proposed by [Opdahl (1994)], where processes, flows and stores respectively support the 3
aspects of transformation, transportation and storage. E.g., Activity_type A transforms
statejype S. An instance Al of A may then transform instance 57 of S to instance S2 of 5.

Sequencing and Control Flow
• The model should support sequencing of a set of activityjtypes.
• It should support the atomic execution of a set of activitity_types. E.g., If an instance of

activity_type A occurs, then an instance of activity_type B must also occur.
• It should support concurrent execution of a set of activityjtypes.
• It should support either / or execution between two or more sets of activity Jypes, based on a

predicate (similar to the "switch" statement in programming languages).
• It should support while and repeat-until flow on a set of activityJypes, also based on a

predicate.
Note that the above specifications subsume the concept of triggers (execution of an activity based on a

predicate).

Decomposition
• Entities:

The decomposition of entities must be supported. E.g., a document must be decomposable
into its sections, which are themselves entities. The rules for this decomposition must be
clearly stated. E.g., In the object-oriented (OO) paradigm, super-classes may be decomposed
into sub-classes, following a strict inheritance.

• States:
The model must support the decomposition of statejtypes.
Descriptive substates: If an overall statejype is used to describe a part of the system, it
should be possible to decompose this overall statejype along descriptive substate Jypes.
E.g., An automobile assembly line can have an overall statejype, say,
"state_of_assembly_line" and this overall statejtype may be further described by the
descriptive substate_types: "cars_output_rate", "defects_output_rate" and "worker_morale".
Thus, statejtypes are decomposed in this dimension on a purely descriptive basis.

Spatial substates: The model should support the decomposition of statejtypes along the space dimension.
E.g., it should be able to represent the statejype of the whole office, as well as the substatejype of different
cubicles spatially located in the office. Statejtypes are decomposed in this dimension on a purely spatial basis.

Temporal substates: The model should support the decomposition of statejtypes along the time dimension.
E.g., it should be able to represent the statejtype of the assembly line across a week (maybe by using an
average measure for the week), and this statejtype can be decomposed into substatejtypes that represent the
state of the assembly line for a day. These substate Jypes can be further decomposed into substate_types that
represent the state of the assembly line for an hour, etc. Statejtypes are decomposed in this dimension on a
purely temporal basis. Note that this is different from transporting a statejype across time, as described earlier.
In the latter case, no decomposition of statejtypes takes place.

• Activityjtypes:
The model must support the decomposition of activity Jypes.

25

AJIS Vol 4 No. 1

—Decomposition of activityjypes that transform state Jypes:
Subactivitv types acting on descriptive substate types: This would be a decomposition of activityjtypes on a
descriptive dimension. E.g., An overall activity_type might transform the statejtype "state_of_assembly_line"
and its descriptive subactivityJypes will transform the descriptive substate Jypes "cars_output_rate",
"defects_output_rate" and "worker_morale".

Subactivitv types acting on spatial substate types: This is a decomposition of activity Jypes on a spatial
dimension. Thus, if an activityjype A transformed a stateJype S, the spatial subactivityjypes of A would
transform the spatial substatejypes of S.

Subactivitv types acting on temporal substate types: This is a decomposition of activity Jypes on a temporal
dimension. Thus, if an activityjype A transformed a state Jype S, its temporal subactivityjypes would
transform the temporal substatejypes of S.

Note that the decomposition of activity Jypes that transform state Jypes corresponds to the decomposition of
state Jypes described earlier. In addition to activityjypes that transform state Jypes, we have two more
activity Jypes, whose decomposition is described below.

-Decomposition of activity Jypes that transport entities through space:
If an activityjype A transports a set of entities {£/...£„} through space distance L, then its subactivityjypes
may transport a subset of these entities through L.

Another type of decomposition would be subactivityjypes of A that transport the entire entity set {£/...£„}
through distances L! ... Ln, such that LI + L2 +....+ Lm = L.

-Decomposition of activity Jypes that transport state Jypes through time:
If an activityjype A transports a state Jype S through a time distance T, then its subactivityjypes transport S
through time distances T(...Tn such that T] + T2 ... + Tn = T. Note that A can also be decomposed into
subactivityjypes that act on substatejypes of S, but this has already been described earlier.

• The model should have atomic constructs that signify the end of a decomposition. E.g.,
primitive activityjypes might signify the end of activity Jypes decomposition for a system.

Constraints and Axioms
The model should support the following constraints:

• availability of resources;
• real-time constraints for activityjypes and state Jypes (e.g., a state jnstance can exist only

for a certain time period);
• spatial constraints, as described earlier;
• temporal constraints, as defined earlier; and
• state Jype constraints. E.g., The state Jype: "working_state" for a researcher can never have

a "vacation" state jnstance.
• The model must explicitly use axioms that make any instance of the model unambiguous, and

that show if the instance of the model is correct.
• The model must be specified in a language with well defined rules, that allow the derivation

of new rules from axioms. E.g., the model may be specified using a language based on
predicate logic.

Advanced Analyses
The model should support analyses that show:

• if a state Jype is reachable;
• whether deadlock is possible;
• whether or not a particular model specification is optimal, based on pre-defined criteria (e.g.,

does the model
specification consume the minimum resources to achieve the final state?);

• whether a process will ever go into an infinite loop; and
• whether a certain sequence of activities will ever cause a race condition.

The dimensions and sub-dimensions for the content specification are summarized in figure 1.

26

AJIS Vol 4 No. 1

Transportation/
Transformation/ Sequencing/ Decomp- Constra nts/

Syst

1 1
Entiti" RoL

:m State Sp ice Time

I I I I
State.type 1

Dtftin 1 sPat™1

guisha'ble Statejnst- location

ance

ItJmpora
location
1

cin.tr- '"duainu

spattal

Storage

Ttansp-
. ortationnporal

tance Trans
. i °temper 1
constraints

mat

Control flow osition Axioms

on
Stor

I
aton

OR *
°~ ition

Concurr-
ent exec-
ution

Either/or

Er title:

StAcs

resources
real-time
spatial
temporal
state

Activities

While
repeat

Advanced
Analyses

reachability
deadlock
optimality
infinite loop
race condition

anguage
axioms

Fig. 1. Dimensions and subdimensions of the content specification for business process models

USING THE CONTENT SPECIFICATION TO CLASSIFY EXISTING MODELS

We now show how our content specification can be used to analyze and compare existing process models.
DFDs are considered intuitively appealing and are popular [Opdahl (1994)]. There are also a lot of commercial
models available based on the IDEFO model [Laamanen (1994)]. We examine both these process models. The
intention is not to criticize either of these models, but to demonstrate the usage of our specification as a
framework for analysis and comparison.

Data Flow Diagrams

In their basic form, DFDs [DeMarco (1978), Gane (1982)] consist of activators (processes, external entities
and data-stores) and dataflows. A short, and by no means complete list of axioms that are used to ensure
consistency in the DFD model are shown in table 1.

27

AJIS Vol 4 No. 1

E a c h d a t a f l o w m u s t h a v e one source and one d e s t i n a t i o n .
DFDs may h a v e cycles bu t no po in t cycles.
D F D s c a n n o t h a v e isola ted ac t iva to rs , w h i c h h a v e no f l o w s connec t ed .
Da t a stores and ex te rna l en t i t i e s have to be m u t u a l l y d i s t i n c t (as do processes).
Each d a t a f l o w m u s t h a v e a process at at least one end of i t
Any a c t i v a t o r connected w i t h o n l y one f low has to be an e x t e r n a l e n t i t y
Processes can be h ie ra rch ica l ly decomposed , but it has to be a s t r ic t tree h i e r a r c h y (i.e. par t ia l

order + o n l y one pa ren t)
If a d a t a f l o w exists at d i f f e r e n t l eve l s , it m u s t fo l low the h i e r a r chy , i.e. the d a t a f l o w at a lower

leve l can occur be tween two ac t iva to r s i ff i t occurs at a h i g h e r level be tween ances tors of the
ac t iva to rs .

Table 1. Some axioms in the DFD process model

Let us see how our framework can be applied to this model:

System: we see that DFDs support the notion of entities outside the system (external entities) and inside the
system (dataflows). There is no concept of roles. They do not distinguish between entities (all internal entities
are considered to be information entities).
State: The state is represented by dataflows. Thus, a dataflow plays the part of both, an internal entity and the
statejtype of the entity. E.g., a dataflow called "unsigned_purchase_order" may go to a process called
"purchaser", who may sign it and a dataflow called "signed_purchase_order" (the same entity in a new state)
will emanate from the "purchaser".
Space and Time: None of the sub-dimensions of the space or time dimensions are explicitly supported by
DFDs. However, they could be informally mentioned in the descriptions of the dataflows. E.g.,
"unsigned_order_in_purchase_dept." captures the spatial location of the purchase order.
Transformation/transportation/storage: In DFDs, processes transform flows. They could also potentially be
used to transport flows through space. E.g., A process called "move_information" may transport a flow called
"customer_data" across a computer network. Data-stores are used to transport flows through time. Note that it
is not possible for a flow to be simultaneously transported through time and be transformed or transported
through space (since data-stores are not processes). It is, however, possible for a flow to be transported through
space, and transformed at the same time (since both these functionalities are served by processes).
Sequencing / Control Flow: DFDs only support the notion of sequencing. The sub-dimensions of atomic
execution, repetition, either/or, while/repeat and concurrent execution are not supported.
Decomposition: Traditionally DFDs allow only the decomposition of processes. Since dataflows model entities
and states, the decomposition of these is not explicitly supported. However, the decomposition of activity jypes
(processes) is very well supported. The only activity_type whose decomposition is not well supported is one
that transports state_types through time (since these are modeled using data-stores). Thus, processes can be
decomposed in ways that support all the decomposition requirements of activities described earlier, except for
the decomposition of activity_types that transport state_types through time. E.g., an overall process may
transform a dataflow "insurance claim". Its decompositions may transform the dataflows:
"accident_description" and "repair_cost_estimate". Thus, in a sense, the fact that the decomposition of most
activity jtypes is supported and strictly hierarchical, implies that the decomposition of state_types is implicitly
supported and is also strictly hierarchical. Finally, DFDs do support the notion of primitive processes, that
signify the end of a decomposition.
Constraints and Axioms: DFDS do not explicitly support constraints modeling resource scarcity, real-time
constraints, spatial constraints, temporal constraints or state_type constraints. The axioms in DFDs do make
instances of DFDs unambiguous. However, traditionally DFDs were not formulated in a language that allowed
derivation of new rules from axioms.

28

AJIS Vol 4 No. 1

Advanced Analyses: DFDs do support reachability (by modeling a DFD instance as a directed graph, where
every dataflow is a node, and every process an arc, it is possible to determine reachability of a dataflow). They
do not support analyses for deadlock, optimality, infinite loops or race conditions.
We now examine some extensions and enhancements to the DFD model, and see how they fit in our
framework. [Falkenberg (1991)] proposed a formal specification of DFDs in a language based on predicate
logic. This clearly meets the previously unfulfilled requirement that a model must be specified in a language
that is formal and allows derivation of rules from axioms. [Kung (1991)] proposed a formal decomposition for
processes in DFDs, again using predicate logic as the base language. [Tao (1991)] also proposed a formal
specification for DFDs, based on set theory. [Ward (1986)] proposed extensions to DFDs that met requirements
in the sequencing I control flow and the time dimensions of our framework. Our examination of DFDs has
shown that the dataflow concept (as well as the process concept, to a lesser degree) is overloaded. [Opdahl
(1994)] describe extensions to DFDs that reduce the overloading of the dataflow concept somewhat, in that
dataflows and predicate conditions are modeled separately.

The IDEFO Model

The IDEFO model [Laamanen (1994)] consists of boxes, that represent the system's functions and arrows that
represent one of: inputs, outputs, controls or mechanisms, to support the function. A short, and incomplete, list
of axioms that are used to ensure consistency in the IDEFO model is shown in table 2.

Input, ou tput and control arrows can only have one direction (input and control arrows go into the
box, while output arrows come out of the box.
There can be mult iple arrows of any one type for a func t i on .
Mechanism arrows that come into the box ident i fy the means by wh ich a f u n c t i o n performs inpu t s

to outputs . Outward arrows (call arrows) s ignify that the decomposit ion at the present level of
abstraction is complete, but tha t fur ther details can be found in lower levels.
All child diagrams must have at least 3 and at most 6 sub func t ions .
Boxes (funct ions) can be decomposed, fo l lowing a strict tree hierarchy.
Arrows are viewed as condui ts containing other arrows. At any point , the appropriate detail can be

shown, by decomposing or grouping or both.
Once an arrow belongs to a f u n c t i o n , it can only belong to the f u n c t i o n , a child or an ancestor.
Arrows can belong to mult iple funct ions (e.g. input to one func t ion can also be i npu t to another

func t ion) .
Arrows can play multiple roles, e.g. ou tput from a func t ion can be inpu t to another f u n c t i o n .

Table 2. Some axioms in the IDEFO model.

Let us see how our framework can be applied to this model:

System: Entities in IDEFO are modeled using arrows. They can take on one of 4 roles: inputs, outputs, controls
and mechanisms. Entities external to the system are not modeled. Entities may be artifacts, information entities
or human artifacts, as long as they play one of the 4 roles.
State: The state is represented by arrows. Thus, arrows represent both the entity and the state_type of the entity
in IDEFO. E.g., "unresolved_operational_issues" may be an input to a box, and the output may be
"resolved_operational_issues", which represents a new stateJnstance of the implicit statejtype
"operational_issues_status".
Space and Time: The sub-dimensions in the space and time dimensions are not explicitly modeled in IDEFO.
However, as in DFDs, it is possible to capture some aspects of space and time in IDEFO. E.g., the input to a box
may be "document_at_location_X", the box may be: "move_document_to_Y", and the output may be
"document at location Y".

29

AJIS Vol 4 No. 1

Transformation I transportation / storage: In IDEFO, boxes can be used to transform input arrows. They can
also be used to transport input arrows through space (if the input arrows represent entities), or through time (if
the input arrows represent states of entities).
Sequencing and control flow: IDEFO models sequencing of functions. However, atomic execution, repetition,
concurrent, either / or and while/repeat execution are not supported.
Decomposition: In IDEFO, decomposition is primarily done along the box (function) dimension. This means
that activity_type decomposition is the primary decomposition. In addition, decomposition and aggregation of
arrows (in the form of "forking") is supported, although "it is still unclear as to the proper implementation of a
fork arrow" [Laamanen (1994)]. Thus, the decomposition of entities and states is not well supported (since
arrows represent these). We do not mention examples here, but it should be clear that, since boxes can
represent all the activity_types in our framework, and since their decomposition is well supported, activity Jtype
decomposition is supported along all the sub-dimensions in that dimension, in our framework. Also, as we saw
for DFDs, it is possible to model statejype decomposition implicitly, by decomposing activity_types. The
IDEFO model does model the end of decomposition (boxes that do not have downward arrows emanating from
them are not further decomposed).
Constraints and axioms: IDEFO does not explicitly support constraints modeling resource scarcity, real-time
constraints, spatial constraints, temporal constraints or statejtype constraints. The axioms in IDEFO make an
instance of IDEFO unambiguous. However, like DFDs, IDEFO is not formulated in a language that allow
derivation of rules from axioms.
Advanced Analyses: IDEFO does support reachability (by modeling an IDEFO instance as a directed graph,
where every input and output is a node, and every box an arc it is possible to determine reachability of an input
or output). It does not support analyses for deadlock, optimality, infinite loops or race conditions.

Differentiating between the 2 models

System: IDEFO supports roles and different types of entities. DFDs support external entities.
State: We find that dataflows in DFDs and arrows in IDEFO are overloaded to model both entities and states.
Space and Time: This is not formally supported in either model.
Transformation / transportation / storage: In DFDs, processes are used to transform and transport, while data-
stores are used for storage. In IDEFO, boxes are used for all 3 aspects.
Sequencing / Control Flow: This is similar in both models.
Decomposition: Both models support activityjtype decomposition. Neither supports the decomposition of
entities or states.
Constraints and axioms: Both models have axioms that signify correctness, and unambiguity of an instance of
the model.
Advanced Analyses: Both models allow analyses for reachability of state, but none of the other analyses are
supported.

CONCLUSION

The content specification proposed here can be used as a framework for a detailed analysis of business process
models, based on the content and the aspects of a business process they model. Two widely used process
models: DFDs and IDEFO were analyzed as a demonstration of the use of this framework.
The content specification defined here is part of a larger research project whose overall goal is to provide
support to workflow management using a database management system. We plan to use this content
specification to formally define a business process model that will meet all the requirements listed here. We
anticipate the new model will contribute to solving the two problems identified earlier: the problem of difficulty
of use amongst end-users and the problem of capturing all the concepts required by a business process.

REFERENCES

Attie, P.C., Singh, M.P. Sheth, A. & Rusinkiewicz, M. Specifying and Enforcing Intertask Dependencies.
Proceedings of the 19th VLDB, Dublin, Ireland, pp. 134-145,1993.

Barker, R. & Longman, C. CASE*Method: Function and Process Modelling. Oracle Corp., UK Ltd.
Booch, G. Object Oriented Design with Applications. Benjamin-Cummings, 1994.
Curtis, W., Kellner, M.I. & Over, J. Process Modeling. Communcns. of the ACM. vol. 35, pp. 75-90, 1992.
DeMarco, T. Structured Analysis and System Specification. Yourdon, Inc., 1978.

30

AJIS Vol 4 No. 1

Falkenberg, E.D., van der Pols, R. & van der Weide, Th. P. Understanding Process Structure Diagrams.
Information Systems, vol. 16, no. 4, pp. 417-428 (1991).

Gane, C. and Sarson, T. Structured System Analysis. McDonnell Douglas, 1982.
Georgakopoulos, D. & Hornick, M. A Framework for Enforceable Specification of Extended Transaction

Models and Transactional Workflows. International Journal of Intelligent and Cooperative
Information Systems, vol. 3, pp. 225-253,1994.

Georgakopoulos, D., Hornick, M. & Sheth, A. An Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure. Distributed and Parallel Databases, vol. 3, pp.
119-153,1995.

Joosten, S. Trigger Modeling for Workflow Analysis. Proc. CON 1994: Workflow Management, pp. 236-
247,1994.

Joosten, S. Conceptual Theory for Workflow Managament Support Systems. Tech. Report. Center for
Telematics and Information Technology, Univ. of Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands.

Kramer, B. and Luqi. Towards Formal Models of Software Engineering Processes. J. Systems and
Software, vol. 15, pp. 63-74, 1991.

Kung, C. Process Interface Modeling and Consistency Checking. J. Systems and Software, vol. 15, pp. 185 -
191,1991.

Laamanen, M.T. The IDEF Standards. Methods and Associated Tools for the Information Systems Life
Cycle IFIP (A-55) A.A. Verrjin-Stuart and T.W. Olle (Ed.). Elsevier Science B.V. (North-Holland),
1994.

Martin, J. Recommended Diagramming Standards for Analysts and Programmers: A Basis for
Automation. Prentice-Hall, Inc. (1985).

Olle, T.W. et al. (Eds.) Proceeding of the IFIP WG 8.1 Working Conference on Comparative Review of
ISD methodologies: Improving the Practice, Borth-Holland, The Netherlands, 1986.

Opdahl, A.L. & Sindre, G. A Taxonomy for Real-World Modelling Concepts. Information Systems, vol. 19,
no. 3, pp. 229-241, 1994.

Rubin, K.S. & Goldberg, A. Object Behavior Analysis. Commncns. of the ACM. vol. 35, pp. 48-62, 1992.
Tao, Y and Kung, C. Formal Definition and Verification of Data Flow Diagrams. J. Systems and Software,

vol. 16, pp. 29-36,1991.
Tolvanen, J. & Lyytinen, K. Modeling Information Systems in Business Development: Alternative

perspectives on business process re-engineering. IFIP, (A-54) B.C. Glasson, et al. (Ed.). Elsevier
Science B.V. (North-Holland), 1994.

Ward, P.T. The Transformation Schema: An Extension of the Data Flow Diagram to Represent Control
and Tuning. IEEE Trans. Software Engg. vol. SE-12, pp. 198-210, Feb. 1986.

31

