
AJIS Vol. 7 No. 1 Sept 1999

A GENERATIVE APPROACH FOR BUILDING DATABASE FEDERATIONS

Uwe Hohenstein
Corporate Technology
Siemens AG, ZT SE 2

D-81730 MOnchen (GERMANY)
E-mail: Uwe.Hohenstein@mchp.siemens.de

ABSTRACT

A comprehensive, specification-based approach for building database federations is introduced that supports an
integrated ODMG2.0 conforming access to heterogeneous data sources seamlessly done in C++.
The approach is centered around several generators. A first set of generators produce ODMG adapters for local
sources in order to homogenize them. Each adapter represents an ODMG view and supports the ODMG manipulation
and querying. The adapters can be plugged into a federation framework. Another generator produces an homogeneous
and uniform view by putting an ODMG conforming federation layer on top of the adapters.
Input to these generators are schema specifications. Schemata are defined in corresponding specification languages.
There are languages to homogenize relational and object-oriented databases, as well as ordinary file systems. Any
specification defines an ODMG schema and relates it to an existing data source. An integration language is then used
to integrate the schemata and to build system-spanning federated views thereupon.
The generative nature provides flexibility with respect to schema modification of component databases. Any time a
schema changes, only the specification has to be adopted; new adapters are generated automatically.

INTRODUCTION

Federated database systems (DBSs) provide solutions to give a uniform and integrated access to data stored in
several autonomous sources (Sheth and Larson (1990), Conrad et al. (1997)). A unified and consistent view of
the stored data resolves discrepancies (Sailor et al. (1992)) and conflicts (Spaccapietra and Parent (1994))
between database schemata, which result from representing real world situations in different ways. Users are not
aware of the location of items in a particular system. With all that, the autonomy of the constituent systems is
preserved. Each DBS still exists, and especially existing applications are not affected.
Research in the field of federated DBSs has brought up several prototypes (e.g., Rafii et al. (1991), Busse et al.
(1994), Kuno and Rundensteiner (1996)) and results (Kambayashi et al. (1991), IMS (1993)) that tackle
fundamental problems such as global transaction management and query processing. Several papers describe
integration methodologies (Reddy et al. (1994) or Schmitt and Saake (1996)) and languages for view definitions
(Kaul et al. (1990)). Despite the variety of approaches, some important points are often neglected.

1. Only few approaches such as Pegasus (Rafii et al. (1991)) incorporate object-oriented systems, and if
they do, they use an own system instead of arbitrary commercial ones. IRO-DB from Busse et al.
(1994) is one exception as it incorporates the commercial systems O2 and Ontos. Indeed, plugging
object-oriented systems in an - even object-oriented - federation framework is not as trivial as it
seems to be. For instance, it is not clear how to handle databases that use object versions. There are
no solutions discussed so far for those advanced concepts. Moreover, incorporating files is almost
neglected in spite of the relevance of huge amounts of file data.

2. The adapters (e.g., in Huck et al. (1994), Radeke (1995)) for incorporating existing data sources must
be hand-coded for any schema again and again. This is particularly a problem in case of schema
evolution. Any change of a local schema requires a corresponding re-implementation of the adapter.
In case of proprietary file systems, parsers must be implemented for each file (Abiteboul et al.
(1993)); the parser has furthermore to be enhanced with semantic actions that build objects at the
federation layer.

3. A lot of approaches such as Kaul et al. (1990) rely on querying only, or use own stand-alone
manipulation languages. For example, Pegasus uses an extension of OSQL, the language of HP's
object-oriented system, for manipulation. Data manipulation embedded in a standard language such
as C++ is neglected. There are two important points that cause trouble: First, federated schemata
must be represented in the programming language. This is quite critical in C++, because its semantics
is sometimes odd. Second, problems with view updates must be avoided. In IRO-DB (Busse et al.
(1994)) federated views are defined by means of the query language OQL of ODMG (Cattell and
Barry (1997)). It is extremely doubtful, whether updates on those views can be executed
unambiguously.

Our research prototype FIHD Flexible Integration of Heterogeneous Database Systems) provides a
comprehensive solution to these aspects. FIHD is a tightly coupled approach in the sense of Sheth and Larson

70

AJIS Vol. 7 No. 1 Sept 1999

(1990). An open federation framework allows plugging in relational and object-oriented DBSs as well as files.
The overall approach of FTHD is generative. Section 2 describes how generators produce adapters that "wrap" a
data source and provide a uniform access according to the ODMG2.0 standard (Cattell and Barry (1997)) for
object-oriented DBSs. Those adapters are implemented automatically on top of the component systems (cf.
Point 2). There are generators to wrap relational and object-oriented databases as well as file systems (Point 1).
A homogenization layer is achieved in this way.
All these generators require input, some mapping information that describes an ODMG schema and relates it to
the local schema. Section 3 is concerned with specification languages that serve this purpose. We introduce
three languages according to the kind of data source. A specification language for relational databases enables
remodeling tables in the ODMG2.0 object model, thereby using object-oriented concepts intensively in order to
express semantics as much as possible. This language incorporates ideas developed in the context of reverse
engineering and semantic enrichment in the sense of Castellanos (1993), Hainault et al. (1993), Chiang et al.
(1994), or Premerlani and Blaha (1994). Another language allows defining ODMG views on top of object-
oriented DBSs, handling specific concepts that are not available in ODMG. A third language enables one to
specify an ODMG view of files and to describe file contents in a grammar-like fashion.
Section 4 presents a specification language for defining federated schemata that yield system-spanning views. A
corresponding generator creates federation layers giving a uniform ODMG access to the federation. Each layer
supports an object manipulation and querying, seamlessly done in C++ (Point 3). This is especially important in
view of manipulating federations in C++.
In the conclusions, we summarize our ideas and outline some future work we are planning to do.

GENERATIVE APPROACH TO DATABASE FEDERATION

Our approach follows Sheth and Larson (1990) who define a reference architecture for federation frameworks.
Two steps in their architecture are essential for us, homogenization and data integration.

Homogenization eliminates syntactic heterogeneity resulting from different data models and access interfaces.
Each local schema, expressed in its native data model, is translated into a canonical data model. We rely on
ODMG2.0 (Cattell and Barry (1997)) as canonical model because it defines a complete database interface
consisting of an Object Model, an Object Definition Language (ODL), an Object Manipulation Language
(OML), and an Object Query Language (OQL). Hence, each homogenized schemata offers manipulation and
querying according to this standard for object-oriented DBSs.

Data integration then deals with integrating such homogenized schemata into federated ones. A federated
schema provides a unified, consistent, and transparent view of all the integrated data. Particularly, semantic
discrepancies between homogenized schema as described by Sailor et al. (1992) or Spaccapietra and Parent
(1994) are eliminated. We again define federated schemata in the canonical model, in ODMG2.0.
From a functional point of view, the homogenization layer requires adapters that convert local data into the
canonical model and map operations onto the local systems. Data integration has to support special operational
aspects such as global transaction management and global query processing.
In our federation approach, homogenization and data integration are done in a generative manner, i.e., the
homogenizing adapters and the federation layers are generated automatically by means of generators.
Each generator requires user input that defines a homogenized or a federated ODMG schema. To this end, we
adopt the ODMG Object Definition Language (ODL) and extend it to capture explicit information according to
the respective purpose. Languages ODL, define a homogenization of relational databases (x = 'R'), files (x =
'File') and object-oriented systems O (x = 'O'). Any ODL, specification defines how the specified schema is
related to the underlying data source.
Data integration is supported by an integration language ODLi,,,. ODLi,,, provides means to merge homogenized
schemata into federated ones defining an object-oriented and system-spanning view. In fact, the integration
language helps dissolve semantic heterogeneity between schemata, i.e., resolves conflicts between homogenized
schemata.
Figure 1 illustrates the process of generation. Given as input an ODL, homogenization specification,
corresponding generators GEN, produce ODMG interfaces lnterface_x automatically. Each interface provides an
ODMG wrapper that maintains an ODMG view of the local data and implements OML operations on top of
local systems. Other federation approaches generally require implementing a hand-coded adapter for each
database to be incorporated in a federation.
A generator GENin, produces a corresponding interface Interfacejnt to operate on the federation.

71

AJIS Vol. 7 No. 1 Sept 1999

Integration Layer

Homogenization Layer

Figure 1: Generative Approach

Similar to Roantree and Murphy (1997), the generators use a meta database to maintain information about all
the specifications. The meta database is pre-filled with data from the dictionaries of local DBSs, for example,
what tables are available in a relational database and what types are in an object-oriented one. Parsing a
specification, each generator fills the meta database with information about how homogenized schemata are
related to local ones, and how federated schemata are composed of homogenized ones.
The real kernels of the generators read the meta information and generate the ODMG2.0 conforming interfaces.
The outcome consists of C++ classes including methods for manipulation. Naturally, the implementations of
interfaces for relational, object-oriented databases and file systems must call the original component source,
while Interfacejnt is implemented on top of all those homogenizing interfaces.
Each of the interfaces (interface_R etc.) builds an adapter that already supports OML/OQL for the heterogeneous
data sources. These adapters can be plugged together in order to access several databases in parallel with one
common manipulation language. Using the homogenization layer, an application can open the databases and
access them in a homogeneous ODMG way. However, the individual databases must be handled separately
according to the respective disjoint schemata. There is no integrated view on all the data. It is the task of
federated schemata to provide a system-spanning view with an integrated Interfacejnt in addition.

HOMOGENIZATION

Homogenizing Relational Databases with Semantic Enrichment

The task of homogenizing relational databases is to convert relational tables into ODMG schemata and to
provide an ODMG conforming access to tables. Relational DBSs, since having rather primitive modeling
structures, do not carry much semantics. This is rather bad, since data integration is a complex task, as it
requires a deep knowledge about the semantics of data. Wrong semantics could lead during integration to
inadequate and defective federated schemata. In our approach homogenizing relational systems is thus
combined with ideas developed in the context of semantic enrichment (Castellanos (1993), Hohenstein and
Korner (1995)) and reverse engineering (Hainault et al. (1993), CACM (1994), Chiang et al. (1994), Premerlani
and Blaha (1994)). Implicit knowledge is expressed explicitly by using object-oriented concepts extensively.
The price we pay for comprehensive remodeling capabilities is an explicit specification. Indeed, the advantage
of our approach lies in the fact that semantic enrichment is precisely specified. This gives us the opportunity to
regain any implicitly given semantics and to remodel schemata in object-oriented terms in various ways. In
automatic types of reverse engineering, as against, there is a danger of expressing wrong semantics, a fact we
definitively want to avoid.
We adopt the Object Definition Language ODL of ODMG2.0 and extend it to capture explicit remodeling
information. Our specification language ODLR enables one to remodel relational tables in an object-oriented
manner.
Figure 2 presents a relational schema representing a part hierarchy: It models atomic and complex parts, the
latter may be composed of either parts. Table A contains atomic parts, and C complex ones. Since atomic and
complex parts may be part of a complex part, there is a table P that consists of the keys of A and C and maintains

72

AJIS Vol. 7 No. 1 Sept 1999

common properties such as name and the build date. The hierarchy is expressed by a foreign key father in P that
refers to the cid of the father part in C.
Semantic enrichment should produce the ODMG schema presented in UML. There are an object type PART and
two subtypes ATOMIC and COMPLEX. The composition hierarchy of parts is explicitly modeled by means of a
relationship Components/PartOf.
Figure 2 also presents a corresponding ODLR specification. Object types are defined by interface declarations, as
usual in ODMG ODL. The clause from relation is an extension to ODL. It relates object types to tables. Type
PART is built from table P directly, [pid] denotes the relational key of P. Each tuple, which is uniquely identified
by its key value, refers to one object. Composite keys are possible and denoted as [pid.name,...]. COMPLEX :
PART from relation C[cid = P.pid] specifies that subtype COMPLEX is basically found in table C. Moreover, each
tuple in C is related to a tuple in P by means of equal id values. [cid=P.pid] is in fact a join condition that is
necessary to access inherited P attributes.
An equation Long Mid = M.mid connects an object type's attribute Mid to a relational attribute mid of table M.
The build date of a part is stored in several relational attributes day, month and year, in tables A and C, since both
contain parts. Date BuildDate = (A.day,A.month,A.year) + (C.day.C.montfi.C.year) combines those relational attributes
to a predefined ODMG type and merges the values obtained fot the tables.

Tabl
A

es:
pid
4
5
6
7

name
ABD
ABE
ABF
ACG

day
4
5
6
7

month
4
5
6
7

year
1994
1995
1996
1997

father
2
2
3
3

machine
20
20
30
30

material
Steel
Silicon
Steel
wood

C | pid name day month year father machine assembly
1
2
3

A
AB
AC

1
2
3

1
2
3

1999
1998
1998

NULL
1
1

10
20
30

Glue
weld
screw

M mid Type

10
20
30

aaa
bbb
ccc

Object-oriented schema:

\ /
MACHINE

\
Produces ProducedBy

0..1 1..*

CMateriaj^ ATOMIC

s \ ,
PART

/\

/
PartOf

I..*

0..1

COMF1

Components

-EX — (^Assembjy^

73

AJIS Vol. 7 No. 1 Sept 1999

ODLR specification:
interface PART from relation A[pid] + C[pid]
(extent parts key id)
{ attribute Long Id = P.pid + C.pid;

attribute String Name = A.name + C.name;
attribute Date BuildDate = (A.day, A.month, A.year) + (C.day, C.month, C.year);
relationship MACHINE ProducedBy inverse Produces = (MI M.mid = A.machine + C.machine);
relationship COMPLEX PartOf inverse Components = (CI C.cid = A.father + C.father);

};

interface MACHINE from relation M[mid]
(extent machines key Mid)
{ attribute Long Mid = M.mid;...

relationship Set<PART> Produces inverse ProducedBy = {A+CI A.machine + C.machine = M.mid};
};

interface COMPLEX: PART from relation C[pid]
{ attribute String Assembly = C.assembly;

relationship Set<PART> = Components inverse PartOf = {A+C I A.father+C.father = C.pid};
};

interface ATOMIC: PART from relation A[pid]
{ attribute Material = A.material;
};

Figure 2: Specification for Semantic Enrichment

The relationship Components is expressed by Set<PART> Components inverse PartOf = {A+C I A.father + C.father =
C.cid}. The set of component parts consists of those tuples in A and C that have the complex parts' cid as value of
father. The inverse relationship ProducedBy is analogously computed. Round brackets convert a tuple in C into a
corresponding object of type COMPLEX, while curly brackets convert a set of tuples into a set of objects.
Composite attributes are again possible to establish associations.
The specification language offers more concepts to express semantics. For instance, several relational
representations for subtypes (vertical, a horizontal and a complete materialization strategy as well as a flag
approach) can be rebuild. For more details about the specification language, the reader is referred to Hohenstein
and Korner (1995) as well as Hohenstein (1996).

Homogenization of Object-Oriented Databases

In contrast to the one language ODLR handling all relational DBSs, there are several languages ODLo because
each ODBMS possesses some peculiarities that must be taken into account. Each specification language ODLO

is naturally simpler than ODLR since it is easy to express how ODMG types are built from existing object types.
But every object-oriented DBS provides special modeling concepts such as versioning that are not available in
ODMG. Even if commercial systems completely supported the ODMG standard, they would surely offer
specific add-ons to beat competitors. Those advanced constructs cause trouble. There may be existing databases
that use those concepts, e.g., databases that contain versioned objects. In particular, some concepts possess a
specific semantics that must be maintained by ODMG operations at the homogenized level! We have to find
ODMG ways to remodel peculiarities adequately without falsifying semantics.
In the following, we discuss some problems that occur when homogenizing the commercial object-oriented DBS
Objectivity/DB. However, the critical points are similar for other systems. We present an adequate specification
language ODLobjy that reflects advanced concepts in ODMG2.0.

Storage hierarchy

Objectivity has a storage hierarchy that consists of federated databases 2, containers, and objects. A federated
database contains several databases and gives them a common schema. The databases can be located on
different sites in a network. Databases are partitioned into containers. Newly created objects are assigned to one
of the containers. Containers are thus useful for clustering objects.

2 Please note that the term "federated database" is here used in an Objectivity context.

74

AJIS Vol. 7 No. 1 Sept 1999

Concerning homogenization, federated databases and databases do not give rise to problems. An Objectivity
application program can open only one federated database in a process. Consequently, the names of a database
and its associated federated database can be considered together as a database name from an ODMG point of
view. Opening a database at the ODMG level requires then opening both the federated database and the
database.
But containers cause some trouble. If we did not support containers, we would give up clustering, an important
aspect of tuning object-oriented databases. A possible solution could be to define new types Ct in the ODMG
schema, one for each container. Objects of type T in a certain container are put into a type TG that is subtype of
both T and Ci. Accessing type T yields all objects, while type TCj contains only those that are in container Cj.
Unfortunately, the amount of containers is dynamic, as they can be created and deleted in Objectivity programs.
Hence, the schema must be modified every time a new container is created and deleted. This is an inadequate
solution!
We suggest establishing a predefined type d.Container as a subtype of ODMG type d_Database: Each container
becomes an instance of d_Container. Containers can thus be created and deleted dynamically, as in Objectivity.
Being objects of supertype d_Database, containers can be used instead of db when creating objects with new(db).
Clustering becomes possible. Moreover, d_Container inherits the typical d_Database functionality such as open
and Close, now having the Objectivity specific container semantics. Certainly, we have slightly extended
ODMG, as there is a new predefined type, but the real user-defined schema is not affected. Supporting
clustering is worth it anyway.

Short relationships

Objectivity's object model offers so-called short relationships that reduce storage. Short relationships must refer
to objects in the same container. If short relationships are not supported in the homogenized schema,
establishing new relationships may violate this restriction regarding containers. Since Objectivity recognizes
violations and issues an error message, it is not necessary to designate short relationships in an ODLotjy
specification.

Complex objects

Objectivity allows one to define propagation of operations copy, delete, and lock. This is done by means of so-
called relationship specifiers: The operation is propagated to objects related by that relationship. We suggest no
propagated copy and lock, because ODMG does not support any explicit copy and lock operations; this means no
great loss of functionality. But otherwise we would extend OML.
If propagation of delete is not supported at the ODMG level, the contents of an Objectivity database may be
corrupted: Propagation of delete may define an implicit integrity constraint; an object cannot exist without
participating in a relationship. A propagated deletion can be achieved by changing the effect of ODMG
delete_object. The ODLobjy syntax should indicate propagation so that the implementation of delete takes
propagation into account.

interface ARTICLE from object type ObjyArt
{ -

relationship ORDER OrderedBy = ObjyArt.orderedBy: propagate delete;
);

Versioning

In Objectivity, any object in the database may occur in several versions. Versionable classes need not be defined
in the schema. Objects can dynamically become versionable by invoking a method setVersStatus(on/off). If
versioning is enabled for an object, any modification (more precisely, any invocation of ooUpdate in order to
explicitly notify an update, comparable to ODMG's markjnodified) creates a new version. A version graph
maintains all versions of an object and possesses predefined relationships to navigate in the graph, i.e., going to
previous or next versions. There exists a predefined Genealogy class the objects of which are surrogates for
version graphs. Besides normal relationships pointing to a concrete version of an object, it is possible to
establish relationships referring to genealogies, i.e., whole version graphs. Those relationships are floating in a
certain sense. If the target is a genealogy, the current version within the graph can be accessed by means of
predefined methods.
We cannot omit the concept of versioning if there are existing databases containing versioned objects and
floating relationships. We propose a predefined class d_VersionGraph. This class supports special methods to

75

AJIS Vol. 7 No. 1 Sept 1999

handle versions, e.g., to turn versioning on and off, to designate a referenced version in a version graph as
current one etc. Any versionable type must inherit from d_VersionGraph. Objects then inherit versioning
methods. Furthermore, it is possible to mark relationships as floating. Finally, the semantics of markjnodified is
altered to create new versions if versioning is switched on. Since all these points affect the "semantic
enrichment" of object-oriented database systems, ODLobjy must reflect them in the following way:

interface ARTICLE: d_VersionGraph from object type ObjyArt
{ - } ;

interface ORDER from object type ObjyOrder
{...

relationship Set<ARTICLE> Orders = ObjyOrder.orders floating;
};

Please note the whole functionality is concentrated in one additional predefined class. Neither the schema nor
OML is really extended.

Object manipulation

Homogenizing implies emulating ODMG OML on top of Objectivity. It is no problem to bridge the differences
in both manipulation languages. But again, there are advanced Objectivity manipulation concepts that exceed
ODMG2.0. Omitting those manipulation features causes a lack of Objectivity functionality. Anyway, this will
not exclude existing databases from a federation.
We propose in general omitting those functions that do not endanger usability, e.g., copy propagation.
Sometimes simulating operations is easily possible by giving ODMG operations an extended effect
(propagational delete with delete_object, creating new versions with markjnodified).
Keeping advanced functionality can also be done by adding new classes. The extensions are then encapsulated
in classes, staying outside the original OML. This principle was applied previously to support versioning and
containers, e.g., classes d_VersionGraph and d_Container. Similarly, we introduce a subclass d_LongTransaction of
d_Transaction to support Objectivity's checkln/checkOut functions.
We strictly avoid introducing new OML methods. Hence, we do not support scoped queries in the sense that
searching objects can be done in a particular container, in one database, or in the whole federation. This would
require a new type of query method in ODMG.

Homogenization of File Systems

The specification language ODLF,ie has the goal to define a "schema" for file contents in a certain sense. The
syntax of ODLFl)e is a mixture of the ODMG ODL and an enhancement of Yacc. ODL is used to describe the
schema of the data file in an object-oriented way. The Yacc-part defines a grammar. This eases the later
generation of a parser by means of this compiler-compiler. Parsing a file, the collected information has to be
organized according to the ODL schema. Hence a third part of ODLFlle relates the grammar to the schema.
Figure 3 presents the three parts of an ODLRie specification. We assume a data file containing machines and the
parts they produce. Lines starting with "100" denote machines, those starting with "200" mark parts. Please note
the sequence of the records within the data file is relevant; it defines an implicit relationship between the
objects: All parts following a machine record are produced by that machine.

76

AJIS Vol. 7 No. 1 Sept 1999

File content:

100,Caster,1
200.AB.4
200.ABC.5
200.ABD.6
100,Press,2
200.ACG.7

//Part 1 ofODLfUf specification: ODL schema
interface PRODUCT
{

attribute short No;
attribute String Name;

interface MACHINE
{

order by Name asc;
attribute short No;
attribute String Name;
attribute Set<PRODUCT> Partlist;

//Part 2 ofODLFne specification: Grammar
startsymbol(Rle); // start
Rle: Data[1-]; // rules of the grammar
Data: Machine Part(1-];
Machine: '100' .COMMA MName_COMMA MNum _EOL;
Part: '200' .COMMA PName .COMMA PNum .EOL;
PName: .IDENTIFIER; // nonterminals using
PNum: .NUMBER; // predefined terminal
MName: .IDENTIFIER;
MNum: .NUMBER;

//Part 3 ofODLfiit specification: Assignment Rules
Machine class2use(MACHINE);
MName export(Name,ET_ASCII);
MNum export(No,ET_ASCII) condition(short,ET_ASCII,LT,10);
Data export(Partlist);
Part class2use(PRODUCT);
PName export(Name,ET_ASCII);
PNum export(No,ET_ASCII);

Figure 3: ODLrue Specification

Interface Definition with ODL Subset

The first part of an ODLFdc specification defines an ODL-schema. The file content is here modeled as two object
types MACHINE and PRODUCT. Nested structures can be expressed: Each machine produces a Partlist, a set of
PRODUCTS. It is important to express those nested structures because they occur quite often in files as shown by
Ashish and Knoblock (1997).
In addition to ODMG ODL, it can be specified that an object type must be ordered in a certain way. Here,
machines occur in the file with ascending names. It is essential to express this, because otherwise the adapter
has no chance to write back the file correctly in this order! In other words, the specification would be
incomplete.

77

AJIS Vol. 7 No. 1 Sept 1999

Definition of the File Grammar

The second part of the specification consists of a grammar for the data file. The grammar rules describe, how the
data file is structured. Figure 3 also shows the grammar part for our example. The syntax of rules is similar to
the rules of the compiler-compiler Yacc.

nonterminal: item"! item2 I item3 item4...;

is a rule that defines a nonterminal symbols by means of items. Alternatives in rules are denoted as 'I' similar to
Yacc. Each item can be either a nonterminal that must be defined by other syntax rules, or a terminal symbol.
Terminal symbols can be defined in two different ways:

• Embedding the characters in quotation marks such as "100".
• Usage of predefined terminal symbols.

Terminal symbols represent the characters in the data file. There are several predefined terminal symbols. For
example _NUMBER stands for an optionally signed integer number. Similarly, .IDENTIFIER represents a sequence
of letters, _BYTE any byte character, _COMMA a comma, _1 the digit "1", and so on. The predefined terminal
symbols are provided because they ensure shorter specifications and thus improve readability. Furthermore,
fixed-sized attributes can be described easily. This is necessary to effectively describe files with fixed-sized
records.
The specification language offers the possibility to use repetition groups to bypass recursions. This clearly
improves the readability and the maintainability of a specification and also has advantages for unparsing a file.
For example, FILE: DATA[1-] specifies that DATA can occur more than once.
In some cases, a data file contains a certain set of tokens which can occur in any order. It is cumbersome to
describe this variable order by only using alternatives, as it has to be done with Yacc. That is why ODL,Rie
provides an operator &:

Article: Author & Title & Journal & Year;

specifies that an article consists of an author, a title, a journal and a year, whereby these components may occur
in any order within one record of the data file.

Assignment Rules

The grammar only describes the structure of the data file. A parser can then collect the information from the file.
Assignment rules now relate the parsed information to objects in the ODL schema.
A nonterminal always has a certain value. This value is a string, which arises as a concatenation of the values of
the nonterminals on the right side of the rule: The value of Machine is composed as follows: "100" is a terminal
symbol which naturally has the value "100". _COMMA is a predefined terminal symbol with the value ",".
MName and MNum are other nonterminals which are later assigned the values "Caster" and "1" after analyzing
the first machine record. Hence, Machine has the value "100,Caster,l". The values of the nonterminals are
assigned to the attributes of the objects in the following way.
A nonterminal is connected with an object type by the keyword class2use. For example, Machine
class2use(MACHINE) specifies that the nonterminal Machine is related to the object type MACHINE. That is, the
value of the nonterminal is used to build MACHINE-objects.
An export rule fills an attribute of the current object type with the value of a nonterminal. Thereby, it has to be
specified how the data in the file is encoded. It is a difference, whether an integer number is encoded in a binary
format or as an ASCII-number. ODLFiie offers a possibility to distinguish between different encodings. For
example, ET.ASCII can be used for ASCII-text, while ETJEEE is used for IEEE binary encoding. PNum export
(No, ET_ASCII) then specifies that the parsed PNum-value should be ASCII-decoded before assigning to the No
attribute of the current PRODUCT-object. Similarly, the set-valued attribute Partlist is filled by using the DATA
rule that describes the nesting.
Condition rules contain simple comparisons in order to be able to filter certain records. In Figure 3, machine
records are only exported if the value of MNum is lower than 10. A condition rule always effects a whole object
type. The current record is only exported, if all condition rules affecting the appropriate object evaluate to
"true". Condition rules need a data type, since the comparison value need not be part of the object type.

78

AJIS Vol. 7 No. 1 Sept 1999

Condition rules are very useful because some file formats use a flag to mark a record as deleted in order to
increase performance. Using the condition rules, a specification can be built which only exports undeleted
records to the DBS.
Such an ODLF,ie specification is input to a generator. This generator produces a Yacc program that is able to
parse the data file. Moreover, the Yace-program contains semantic actions that build objects according to the
ODL schema. This releases one from the tremendous task of building Yacc programs as it is necessary in
Abiteboul et al. (1993). The approach is similar to Ashish and Knoblock (1997), but more general.
At the moment, the file adapter is not directly embedded in the federation framework; the adapter stores file data
into a relational database it has previously installed. But the relational database can be included into the
federation as described in Subsection 3.1. An unparser is generated that writes data from the database back to
files.

DATA INTEGRATION

A flurry of activities developed languages to specify federated views for heterogeneous DBSs. However, most
proposals rely on relational and functional canonical models. Others like Radeke (1995) do rely on object-
orientation, but present only simple examples, not showing how to mix subtype hierarchies, as discussed in
Schmitt and Saake (1996) from a methodological point of view. Some approaches seem to be too powerful with
regard to view updates. For example, Busse et al. (1994) use ODMG OQL queries to describe federated
schemata, a natural and flexible mechanism. Although they claim in Huck et al. (1994) to support ODMG OML,
it is not clear how they map updates onto local databases.
As far as we perceived, updates are a general problem of federation approaches. Queries are often preferred.
What is neglected, is how to represent federated views in a language such as C++, and how to embed object
manipulation.
These points led us designing a good compromise that is powerful enough, but is also able to support updates
invoked from C++. ODMG2.0 helps us since it defines a C++ binding for the OML. What we still have to do is
to care for a C++ representation of federated views.
The specification language ODLim we propose, provides syntactic constructs to handle typical problems (Reddy
et al. (1994)) and aspects of schema integration such as:

• Naming conflicts such as homonyms/synonyms.
• Type conflicts of attributes.
• Scaling conflicts (Dollar vs. DM).
• Structural discrepancies (Spaccapietra and Parent (1994)), e.g., if some unit is modeled by an attribute

in one component schema, but as an object type elsewhere.
• Interdatabase connections, i.e., to specify logical links between so far disjoint databases, i.e., objects

are built by "joining" objects from different databases.
• Objectification of values and relationships (Busse et al. (1994)).
• Generalization to bring together objects of same type, but from different, heterogeneous databases,

disjoint or overlapping.
• Relating types of different databases in a subtype hierarchy, in general merging subtype hierarchies etc.

(Schmitt and Saake 1996).

The language follows the way we pursue for homogenization. Given an ODLi,,, specification as input, object
classes, which represent the federated schema and provide OML, are automatically generated.
In the following, we stress important aspects that are mainly centered around subtyping. We feel subtyping has
not been investigated enough, especially because C++ possesses an odd semantics in this respect, impeding a
class representation.
Let us take the homogenized schemata defined in Figures 2 (schema SI) and 3 (schema S2). We first want to
"join" PARTs and PRODUCTS. We suppose that only complex parts are produced. Hence, the semantics for
integration is as follows: COMPLEX = PRODUCT. We define an interface JOINED_PART that generalizes COMPLEX
and PRODUCT.

79

AJIS Vol. 7 No. 1 Sept 1999

interface PART from PART@S1

ld = PART@S1.ld;...

interface JOINEDJ>ART: PART from PRODUCT® S2[No] = COMPLEX® S1 [Id]

attribute Name = COMPLEX@S1.Name = PRODUCT@S2.Name;
attribute Assembly = COMPLEX@S1.Assembly;
relationship MACHINE ProducedBy inverse Produces

= (MACHINE@S21 PRODUCT in MACHINE®S2.Partlist);

Similar to the ODL* homogenization languages, the basic bricks are existing types (related to homogenized
schemata by means of '@'), means to identify objects ('[]'), and set operators '+' (disjoint union), 'u', and
others. The from clause defines how the (virtual) extent is built.
At first, type PART is directly taken from schema SI. Objects of type JOINED_PART are essentially found in
COMPLEX, however, information is also needed from PRODUCT. This is particularly necessary to retain the
attribute Assembly from COMPLEX and the relationship ProducedBy from PRODUCT: An object of type
JOINED.PART should possess both. The clause ... from PRODUCT@S2[No] = COMPLEX@S1[ld] indicates this fact
and demands for an equality of extents. [No] and [Id] are used to relate objects in both types. This is indeed some
kind of instance integration that is absolutely necessary, but almost forgotten by other approaches. If the keys
are not homogeneous with regard to data type and value, functions can be defined to relate the objects.
Since objects of PRODUCT and COMPLEX are "joined", common attributes must be handled. The names of
products and complex parts should be the same in both schemata. Hence, we require an equation
COMPLEX@S1.Name = PRODUCT@S2.Name. If value conflicts between names were allowed, we could omit the
part = PRODUCT® S2.Name, just saying to take the Name of COMPLEX. If the names were homonyms, we could
specify

Namel = PRODUCT@S2.Name
Name2 = COMPLEX@S1.Name

The relationship Produces is computed by using the set-valued attribute Partlist. The embedded Partlist of
MACHINE is converted to an explicit relationship.
A second example shows a generalization of types: We now suppose PART and PRODUCT be disjoint, and we
want to generalize them to one type PARTJ5UM the extent of which should receive all the objects:

interface PART.SUM from PART@S1[ld] + PRODUCT@S2[No]
(extent sum)

attribute No = PART@S1.ld + PRODUCT®S2.No;

Please note keys [...] are not necessary here. If they are omitted, PART and PRODUCT will be assumed to be
disjoint due to '+', but there is no mean to control it then. Key specifiers [Id] and [No] allow the federation layer
to check for disjoint sets of numbers.
Let us now suppose PART and PRODUCT overlapping: There are parts that possess the same Id and No, stored in
both databases. The following interface definition is sufficient at a first glance:

interface PARTJJNION from PART@S1[ld]uPRODUCT@S2[No]...;
interface PART_S1 : PARTJJNION from PART@S1...
interface PRODUCT_S2: PARTJJNION from PRODUCT@S2...

'u' now allows non-disjoint unions, in contrast to '+'. [Id] and [No] must specify how to relate identical parts in
PART and PRODUCT. PARTJJNION allows handling all parts uniformly, independently of their location, interfaces
can be added in order to access not only all parts, but also the parts in SI (as PART.S1), and the parts in S2 (as
PRODUCT.S2), too.

80

AJIS Vol. 7 No. 1 Sept 1999

But this specification is only partly correct, owing to the odd semantics of C++, and ODMG2.0, too: Subtypes
are always disjoint in C++ with regard to real instances. Even if PART and PRODUCT contain common objects,
the federated view is not aware of them. There is no means in OML, no object type, to insert one instance in
both PART_S1 and PRODUCT_S2. This problem can be solved by introducing an additional subtype
PARTJNTERSECTION of PART.S1 and PRODUCT.S2:

interface PARTJNTERSECTION : PART_S1, PRODUCT_S2 from PART@S1[ld], PRODUCT @S2[No] ...

PARTJNTERSECTION is now the type to insert common objects; it has the purpose to hold the intersection of
PART and PRODUCT. Hence an identification [] of objects in both types is demanded. Considering the shallow
extents, PARTJ31 contains the real parts (that are not products), PRODUCTJ32 the real products, and
PARTJNTERSECTION all the parts that are also products. The shallow extent of PARTJJNION is empty as there
no instances that are neither parts nor products; nevertheless, the deep extent contains all the parts. Other
approaches such as Busse et al. (1994) and Radeke (1995) that also rely on ODMG2.0 do not discuss this
important fact! Only approaches that use their own manipulation language, e.g., Kaul et al. (1990), can make
things easy to handle disjoint and overlapping generalizations.
Mixing several subtype hierarchies is another problematic case that requires special concepts. The literature
contains methodologies how to mix hierarchies, for example Schmitt and Saake (1996). But less effort has been
spent on languages to define mixed subtype hierarchies and their relationships to the original ones.
Let us assume two databases: A university library (UNI) contains a type PUBLication with a subtype JOURNAL.
A computer science library (CS2) has a type PUBL possessing a subtype PROCeedings. The following conditions
should hold with regard to extents:

PUBL@UN1 2PUBL0CS2 2JOURNAL@UN1,
PUBLOUN1 2 PUBL@CS2 2 PROC@CS2,
JOURNAL@UN1 n PROC@CS2

The following specification defines an integrated subtype hierarchy that covers these conditions.

interface UNLPUBLfrom PUBL@UN1 ...
interface CS.PUBL : UNLPUBLfrom PUBL@CS2[isbn=PUBL@UN1.isbn]...
interface JOURNAL :CS_PUBL from JOURNAL@UN1 [isbn=PUBL@CS2.isbn) ...
interface PROC : CS.PUBL from PROC0CS2 ...
interface J_P : JOURNAL.PROC from JOURNAL@UN1[isbn],PROC@CS2[isbn] ...

Types of different schemata can be put in a subtype relationship by "join" conditions such as
[isbn=PUBL@UN1.isbn]. This is necessary to access inherited attributes.
The definition of federated schemata must obviously be done in accordance with the extents of the existing
types. In principle, we can derive different federated schemata from one and the same set of subtype hierarchies.
Methodologies such as Schmitt and Saake (1996) and Spaccapietra and Parent (1994) help finding the right
semantics.
To sum up, ODLin, has the power to handle complex situations. Anyway, the semantics is compatible with C++
so that manipulations become possible. The above examples can certainly give only an impression of the power
and flexibility of our approach.

CONCLUSIONS

In this paper, we suggested a comprehensive approach to database federation. Building federations is done in a
completely generative manner: Generators automatically implement access layers to a set of heterogeneous data
sources and provide integrated views and uniform access conforming to the ODMG standard (Cattell and Barry
(1997)).
The approach is based on a set of specification languages that build the input to code generators. A first set of
languages is concerned with homogenization. Each object-oriented database system acquires a language of its
own due to the diversity of systems and concepts. Relational systems are handled by one single language. So are
files. The languages allow making semantics explicit. An additional language allows one to merge the
homogenized schemata to federated ones. A federated schema then defines a system-spanning, integrated and
consistent view of all the databases.
Giving specifications in those languages as input, corresponding generators produce code to provide the
schemata with an ODMG conforming object manipulation. Defining a homogenization specification, a
generator produces a schema-dependent adapter that automatically maps ODMG2.0 operations and queries onto

81

AJIS Vol. 7 No. 1 Sept 1999

the data source. Each adapter can be used stand-alone. For instance, the adapter for a relational database
provides an object-oriented access to relational data. A set of generated ODMG adapters can be used to access
several, heterogeneous databases in parallel, without implementing any glue! A programmer just needs to
compile and link the homogenized schemata into an application program in order to operate in an ODMG
manner on the data sources. Plugging adapters in a global federation framework provides full functionality.
There is now a database-spanning view, and global querying and transaction management.
The generative nature of database federation has a significant advantage with regard to schema evolution: Any
time a local schema is modified, the corresponding generator produces a new adapter for the local database
without any implementation effort. Just the specification has to be adapted.
The presented generative approach has partly been implemented. At the moment, there are generators for a
homogenization of files, any relational database system and the commercial object-oriented databases
Objectivity/DB and Versant. The specification language for defining federated schemata and the corresponding
generator for producing federation layers is still under development.
Future work will be dedicated to some improvements. Homogenizing file systems should take into account
directory information as discussed in Hoding (1996). Furthermore, file systems must be integrated into the
federation framework directly, avoiding the detour via relational databases. Finally, we feel the need for a
comfortable graphical support for defining schemata similar to Hohenstein and Korner (1995). Anyway, some
more support is necessary for guiding users in the integration process.

REFERENCES

Abiteboul, S., Cluet, S. & Milo, T. (1993) "Querying and Updating the File", In Proc. of Conf. on Very Large
Databases (VLDB) 1993

Ashish, N. & Knoblock, C. (1997) "Wrapper Generation for Semi-structured Internet Sources", ACM
SIGMOD Workshop on Management of Semi-structured Data, Tucson (Arizona) 1997, Superseded by
ACM SIGMOD Record 26(4), Dec. 1997

Busse, R., Fankhauser, P. & Neuhold, E. (1994) "Federated Schemata in ODMG", Proc. of 2nd East/West
Database Workshop 1994

CACM (1994) "Reverse Engineering", Special Issue of Communications of the ACM 37(5), 1994
Castellanos, M. (1993) "Semantic Enrichment of Interoperable Databases", in IMS (1993)
Cattell, R. & Barry, D. (1997) (eds.) "The Object Database Standard: ODMG2.0", 2nd edition, Morgan-

Kaufmann Publishers, San Mateo (CA) 1997
Chiang, R., Barron, T. & Storey, V. (1994) "Reverse Engineering of Relational Databases: Extraction of an EER

model from a Relational Database", Data&Knowledge Engineering 12, 1994
Conrad, S., Eaglestone, B., Hasselbring, W. , Roantree, M., Saltor, F., Schonhoff, M., StraBler, M. & Vermeer,

M. (1997) "Research Issues in Federated Database Systems", SIGMOD RECORD 12/1997, 26(4)
Conrad, S., Hasselbring, W., Heuer, A. & Saake, G. (1997) "Proc. of the Int. CAiSE97 Workshop Engineering

Federated Database Systems EFDBS'97", Barcelona 1997
Hainault, J.-L., Tonneau, C., Joris, M. & Chandelon, M. (1993) "Schema Transformation Techniques for

Database Reverse Engineering", 12th Int. Conf. on Entity-Relationship Approach, Karlsruhe 1993
Hoding, M. (1996) "An Approach to Integration of File Based Systems into Database Federations", in Proc. of

10th European Research Consortium for Informatics and Mathematics (ERCIM'96) on Heterogeneous
Information Management, Prague 1996

Hohenstein, U. (1996) "Bridging the Gap Between C++ and Relational Databases", Proc. of 10th European
Conf. on Object-Oriented Programming (ECOOP'96), Linz (Austria) 1996, Springer LNCS 1098

Hohenstein, U. & Korner, C. (1995) "A Graphical Tool for Specifying Semantic Enrichment of Relational
Databases", 6th IFIP WG 2.6 Work. Group on Data Semantics (DS-6) "Database Applications Semantics",
Atlanta 1995

Huck, G., Fankhauser, P., Busse, R. & Klas, W. (1994) "IRO-DB: An Object-Oriented Approach towards
Federated and Interoperable DBMS", in: Advances in Databases and Information Systems (ADBIS'94),
Moscow 1994

IMS (1993) "Proc. of Conf. on Research Issues in Data Engineering: Interoperability in Multidatabase Systems"
(RTOE-IMS'93). Vienna 1993

Kambayashi, Y., Rusinkiewicz, M. & Sheth, A. (1991) (eds.) "Proc. of 1st Int. Workshop on Interoperability
in Multidatabase Systems", Kyoto (Japan), 1991

Kaul, M., Drosten, K. & Neuhold, E. (1990) "ViewSystem: Integrating Heterogeneous Information Bases by
Object-Oriented Views", Proc. 6th Int. Conf. on Data Engineering, Los Angeles 1990

Kuno, H. & Rundensteiner, E. (1996) "The MultiView OODB View System: Design and Implementation",
Theory and Praxis of Object Systems 2(3), 1996

Markowitz, V. & Makowsky, J. (1990) "Identifying Extended ER Object Structures in Relational Schemas",

82

AJIS Vol. 7 No. 1 Sept 1999

IEEE Transactions on Software Engineering 16(8), 1990
Pitoura, E., Boukres, O. & Elmagarid, A. "Object-Orientation in Multidatabase Systems", ACM Computing

Surveys 27(3), 1995
Premerlani, W. & Blaha, M. (1994) "An Approach for Reverse Engineering of Relational Databases",

Communications of the ACM 37(5), May 1994
Radeke, E. (1995) "Efendi: Federated Database System of Cadlab", ACM SIGMOD Conf. on Management of

Data 1995, SIGMOD RECORD 24(2)
Rafii, R., Ahmed, R., DeSmedt, P., Kent, B., Ketabchi, M. & Litwin, W. (1991) "Multidatabase Management in

Pegasus", Kambayashi et al. (1991)
Reddy, M., Prasad, B., Reddy, P. & Gupta, A. (1994) "A Methodology for Integration of Heterogeneous

Databases", IEEE Transactions on Knowledge and Data Engineering 8(6), 1994
Roantree, M. & Murphy, J. (1997) "An Architecture for Federated Database Metadata", in Conrad et al. (1997)
Saltor, F., Castellanos, M. & Garcia-Solaco, M. (1992) "Overcoming Schematic Discrepancies in Interoperable

Databases", in O.K. Hsia, E.J. Neuhold, R. Sacks-Davis (eds.): Proc. of the IFIP WG 2.6 Database
Semantics Conf. (DS-5) on Interoperable Database Systems, Lome (Australia), 1992

Schmitt, I. & Saake, G. (1995) "Integrating of Inheritance Trees as Part of View Generation for Database
Federations", 15th Int. Conf. on Conceptual Modeling (ER'96), Cottbus 1996, Springer LNCS 1157

Sheth, A. & Larson, J. (1990) "Federated DBSs for Managing Distributed, Heterogeneous and Autonomous
Databases", ACM Computing Surveys 1990, 22(3)

Spaccapietra, S. & Parent, C. (1994) "View Integration: A Step Forward in Solving Structural Conflicts", IEEE
Transactions on Knowledge & Data Engineering 1994, 6(2)

83

